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Coloration des graphes de reines

Jusqu'en 2003, le nombre chromatique des graphes de reines (χ n ) n'était pas connu pour des tailles de l'échiquier strictement supérieures à 9 et multiples de 2 ou de 3. Dans ce compte-rendu nous présentons une étude qui nous conduit dans un premier temps à trouver des colorations à n couleurs pour n = 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28 et 32. Nous montrons ensuite qu'il existe une infinité de valeurs de n divisibles par 2 ou 3 pour lesquelles χ n = n.

On the Queen graphs coloring problem. Until 2003 no chromatic numbers (χ n ) for the queen graphs were available for n>9 except where n is not a multiple of 2 or 3. In this research announcement we present an exact algorithm which provides coloring solutions for n = 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28 and 32 such as χ n = n. Then we prove that there exists an infinite number of values for n such that n = 2p or n = 3p,and χ n = n.

Introduction

Pour une dimension n donnée, le graphe de reines (queen_n 2 ) est constitué des n 2 sommets correspondant aux cases de l'échiquier. Deux cases appartenant à une même ligne (colonne ou diagonale) constituent une arête : c'est la règle de déplacement de la reine au jeu d'échec. Le problème que nous considérons dans cette étude est le suivant : peut-on colorer le graphe queen_n 2 avec seulement n couleurs différentes ? Si c'est le cas, alors le nombre chromatique χ n du graphe est n. En effet, les n cases d'une même colonne, d'une même ligne ou des deux diagonales principales de l'échiquier sont reliées entre-elles par le mouvement possible d'une reine : ces sommets définissent des cliques de taille n du graphe. Nous pouvons donc conclure que χ n = n dès lors que nous disposons d'une coloration à n couleurs. Alors que la littérature sur la coloration de graphes est abondante, les résultats sur les graphes de reines sont peu nombreux. Nous rappelons ici les plus récents. Pour ce qui est des méthodes exactes, Mehrotra et Trick [START_REF] Mehrotra | A column generation approach for graph coloring[END_REF] utilisent une génération de colonnes efficace sur des graphes de moins de 500 sommets mais qui ne dépasse pas 81 sommets (n = 9) pour les graphes de reines. Caramia et Dell'Olmo [START_REF] Caramia | Iterative coloring extension of a maximum clique[END_REF] proposent une recherche arborescente qui Adresse e-mail : Michel.Vasquez@ema.fr (M. Vasquez).
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repose sur l'extension de la coloration d'une clique maximale : les problèmes queen_n 2 sont résolus jusqu'à n = 9. Pour ce qui est des heuristiques, Hamiez [START_REF] Hamiez | Coloration de graphes et planification de rencontres sportives: heuristiques, algorithmes et analyses[END_REF] a développé une méthode de combinaison de colorations qui traite des problèmes jusqu'à n = 16 et produit des valeurs qui majorent le nombre chromatique. Mais les méthodes incomplètes, voir également [START_REF] Chiarandini | An application of iterated local search to graph coloring problem[END_REF], ne parviennent pas à colorer queen_n 2 avec n couleurs et ne peuvent prouver le caractère optimal de leur résultat.

Recherche exhaustive

Dans cette section, notre objectif est de prouver que χ n = n pour un certain nombre de valeurs de n divisibles par 2 ou 3. À défaut d'une méthode de construction nous proposons un algorithme d'énumération qui exploite les caractéristiques particulières des graphes de reines. Il est conçu à partir d'une reformulation du problème et se caractérise par un filtrage dynamique très efficace. Une coloration à n couleurs, si elle existe, définit n ensembles de sommets sans arête commune. Ce sont des stables du graphe. Les n lignes (ou colonnes) de l'échiquier constituent des cliques de taille n. Ces cliques sont disjointes et constituent une partition du graphe. Aucun stable ne peut donc contenir plus de n sommets. Colorer n 2 sommets avec n couleurs revient à trouver n stables disjoints avec exactement n sommets chacun. Considérons maintenant les sommets d'une des cliques de taille n. À chacune des n cases correspondant à ces sommets nous associons le sous-ensemble des stables dont l'un des sommets correspond à cette case. Les n sous-ensembles de stables ainsi définis constituent une partition de l'ensemble des stables maximaux du graphe. Chacune des classes de cette partition C i , i ∈ [1, n] est une variable du problème, à laquelle on peut associer une case de l'échiquier. Les stables d'une même classe S ∈ C i sont les valeurs que peut prendre cette variable. Nous voulons donc affecter n valeurs (S 1 , . . . , S n ) sous la contrainte {S i ∩ S j = ∅, 1 i < j n} qui formalise l'interdiction de placer deux reines sur une même case. La résolution de ce problème de satisfaction de contraintes s'effectue par une recherche arborescente. La variable de branchement correspond à la case non colorée de couverture minimale. Si ce minimum est nul un retour au noeud supérieur de l'arbre de recherche est effectué. La profondeur de cette recherche ne dépasse pas n. Après chaque affectation les stables qui couvrent une case colorée sont supprimés. Cette reduction de l'espace de recherche est renforcée par un filtrage qui s'appuie sur les cliques du sous-graphe des sommets non colorés. En effet, au noeud i de l'arbre de recherche, il reste ni stables à sélectionner pour construire une solution. Si, pour cette configuration partielle, il existe -dans le sous-graphe des cases libres -une clique à n + 1i sommets, alors il n'est plus possible de la compléter et nous pouvons retourner au niveau précédent de l'arborescence. Cette règle s'applique dès la racine de l'arbre de recherche en supprimant les stables qui n'ont pas de sommet sur les diagonales principales. Au noeud suivant on prend en compte les 4 diagonales à n -1 sommets. À chaque niveau de profondeur, 4 contraintes viennent s'ajouter.

Le Tableau 1 indique le nombre de stables à la racine et le nombre de noeuds produits au niveau 3 de l'arbre de recherche, ainsi que le temps de calcul de ces combinaisons de trois stables. Les colonnes 2, 3 et 4 indiquent ces valeurs lorsque seule la contrainte de non-recouvrement est propagée. Les colonnes 5, 6 et 7 montrent que combinatoire et temps cpu sont divisés par 2 si l'on tient compte de la contrainte sur les sommets non colorés dans les diagonales. La phase expérimentale est menée sur un XEON cadencé à 3 GHz. Jusqu'à n = 11 la réponse est instantanée. Il n'y a pas de solution pour n = 10, mais il est facile de construire une coloration de queen_10 2 à partir de celle de queen_11 2 pour lequel χ 11 = 11. Donc χ 10 = 11. Pour queen_12 2 , la recherche exhaustive a duré moins de 2 heures et a produit 454 solutions. Nous avons donc la complétude pour n = 10 et n = 12. Une semaine de calculs a été nécessaire pour obtenir une solution pour queen_14 2 . Cela suffit à prouver que χ 14 = 14. Pour n 14 les stables sont générés une fois pour toute, mais la complexité spatiale de cet algorithme nous interdit de traiter des instances de taille supérieure. 

Recherche incomplète

La version de l'algorithme d'énumération dont il est question dans cette section est plus économe en mémoire centrale : les stables sont générés au fur et à mesure de la recherche arborescente. Les temps de réponse de cette option sont moins bons que ceux de la version précédente d'autant plus que l'on ne bénéficie plus de l'heuristique de branchement sur la variable dont le domaine de valeurs est minimal. Toutefois, la Fig. 1 -où chaque nombre représente une couleur -fait apparaître des symétries entre les stables qui constituent une solution. À partir de ce constat, et selon la valeur de n nous allons émettre des hypothèses sur la répartition des couleurs d'une solution afin d'énumérer plusieurs stables à la fois. Pour n = 2p nous affectons simultanément un stable et son symétrique par rapport à l'axe vertical : les variables correspondent aux n 2 paires de cases opposées de la première ligne. Les n couleurs de la première ligne sont fixées une fois pour toutes. Grâce à cette hypothèse nous prouvons que χ n = n jusqu'à n = 26. Pour n = 2p + 1, et n multiple de 3, nous utilisons la symétrie centrale : les variables correspondent aux n-1 2 paires de cases opposées sur la diagonale principale : les stables qui couvrent la case centrale sont exclus de la combinatoire grâce à la contrainte sur les cliques constituées par les sommets non colorés. Dans ce cas, l'algorithme ne parcourt plus que n-1 2 niveaux dans l'arbre de recherche et prouve que χ 15 = 15. Pour n = 4p, la conjonction des symétries horizontale et verticale nous permet de colorer quatre cases en même temps. Nous obtenons ainsi des colorations à n couleurs pour n = 16, 20, 24, 28 et 32. Il en va de même, pour n = 4p + 1, avec les compositions de la rotation de π 2 nous réduisons la profondeur de l'arbre de recherche à n-1 4 (la remarque sur la coloration implicite de la case centrale quand n = 2p + 1 s'applique également ici) et parvenons à prouver que χ 21 = 21. Ces résultats sont obtenus en moins d'une semaine de calcul, excepté n = 22 qui a été distribué sur 20 CPU et n = 26 qui a coûté 1 400 000 secondes. Notons enfin qu'une coloration de queen_14 2 est trouvée après 5673 noeuds en 5 secondes avec le filtrage sur les cliques de sommets non colorés alors que, sans ce filtrage, l'algorithme visite 45 299 345 noeuds en 19 469 secondes avant de produire une solution.

Extension de colorations

Nous montrons maintenant que si χ n = n et si p est premier avec 2 et 3 alors χ np = np. La formule de coloration que nous proposons généralise des résultats connus sur le placement des n reines [START_REF] Abramson | Construction through decomposition: a divide-and-conquer algorithm for the N -queens problem[END_REF]. Notons (i, j ) la case qui se situe en ligne i et colonne j . Soit c(i, j ) une coloration du graphe queen_n 2 en n couleurs. Soit p un entier premier avec 2 et 3 et r(i, j ) ≡ p 2i + j , où ≡ p est l'égalité dans l'anneau Z/pZ. Alors la formule : R(i, j ) = r(i, j ) + p c(i/p, j/p), où k/p représente le quotient de k dans la division entière par p, est une coloration du graphe queen_(np) 2 en np couleurs. En effet : d'une part 0 r(i, j ) p -1 et 0 c(i/p, j/p) n -1 ⇒ 0 R(i, j ) p -1 + p(n -1) = np -1 : nous utilisons donc np couleurs. D'autre part, puisque r(i, j) < p, R(i, j) = R(i , j ) ⇔ r(i, j ) = r(i , j ) et c(i/p, j/p) = c(i /p, j /p). Nous en déduisons les quatre équivalences suivantes : (i) R(i, j ) = R(i, j ) ⇔ j ≡ p j et j/p = j /p (c(i, j ) est une coloration et nous sommes sur une même ligne) ⇔ j = j ; (ii) R(i, j ) = R(i , j) ⇔ i ≡ p i (p est premier avec 2) et i/p = i /p (c(i, j ) est une coloration et nous sommes sur une même colonne) ⇔ i = i ;

(iii) R(i, j ) = R(i , j ) et ji = ji ⇔ i ≡ p i et j ≡ p j (p est premier avec 3) et i/p = i /p et j/p = j /p (c(i, j ) est une coloration et nous sommes sur une même diagonale) ⇔ i = i et j = j ; (iv) R(i, j ) = R(i , j ) et j + i = j + i ⇔ i ≡ p i et j ≡ p j et i/p = i /p et j/p = j /p (c(i, j ) est une coloration et nous sommes sur une même diagonale) ⇔ i = i et j = j .

Nous avons unicité des couleurs sur une même ligne, colonne ou diagonale : R(i, j ) est donc une coloration de queen_np 2 en np couleurs. Ainsi χ np = np et nous pouvons prendre pour n n'importe quelle des douze valeurs indiquées en Sections 2 et 3.

Conclusions

Cette étude sur la coloration des graphes de reines établit que χ 10 = 11 et que χ n = n pour n = 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28 et 32 (Une partie de ces résultats figure dans l'encyclopédie des suites d'entiers de Sloane [3].) Les contributions originales en sont :

(i) de transformer la recherche du nombre chromatique des graphes de reines en un problème de décision où il s'agit de recouvrir l'échiquier avec n stables de n sommets chacun ; (ii) d'exploiter les cliques du sous-graphe des cases de l'échiquier non colorées à tous les noeuds de l'arborescence pour réduire l'espace de recherche ; (iii) d'effectuer une exploration incomplète de l'espace des solutions pour lesquelles la répartition des couleurs sur l'échiquier vérifie certaines propriétés géométriques.

Enfin, nous proposons un algorithme polynomial qui permet, à partir de l'un de ces douze nouveaux résultats, de montrer qu'il existe une infinité d'entiers n multiples de 2 ou 3 tels que χ n = n. Ce problème reste cependant difficile et nous ne connaissons pas, par exemple, le nombre chromatique du graphe correspondant à l'échiquier de dimension n = 27.

Références

Fig. 1 .

 1 Fig. 1. Certificat pour χ 12 = 12.