N
N

N

HAL

open science

LINEAR PROCESSES FOR FUNCTIONAL DATA
André Mas, Besnik Pumo

» To cite this version:

André Mas, Besnik Pumo. LINEAR PROCESSES FOR FUNCTIONAL DATA. The Oxford Hand-
book of Functional Data, Oxford Univ. Press, pp.47-71, 2011. hal-00353837

HAL Id: hal-00353837
https://hal.science/hal-00353837
Submitted on 16 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00353837
https://hal.archives-ouvertes.fr

LINEAR PROCESSES FOR FUNCTIONAL DATA
André Mas® and Besnik Pumo?
@ I3M, Université Montpellier 2,
Place Eugene Bataillon, 34095 Montpellier, France
mas@math.univ-montp2.fr

b Agrocampus Ouest, Centre d’Angers,
2 rue Le Notre, 49045 Angers, France
besnik.pumo@agrocampus-ouest.fr

Abstract

Linear processes on functional spaces were born about fifteen years ago.
And this original topic went through the same fast development as the other
areas of functional data modeling such as PCA or regression. They aim at
generalizing to random curves the classical ARMA models widely known
in time series analysis. They offer a wide spectrum of models suited to
the statistical inference on continuous time stochastic processes within the
paradigm of functional data. Essentially designed to improve the quality
and the range of prediction, they give birth to challenging theoretical and
applied problems. We propose here a state of the art which emphasizes
recent advances and we present some promising perspectives based on our
experience in this area.

1 Introduction

The aim of this chapter is double. First of all we want to provide the reader
with basic theory and application of linear processes for functional data. The
second goal consists for us in giving a state of the art which complements
the monograph by Bosq (2000). Many crucial theorems were given in this
latter book to which we will frequently refer. Consequently, even if our work
is self-contained we pay special attention to recent results, published from
2000 to 2008, and try to draw the lines of future and promising research in
this area.

It is worth recalling now the approach that leads to modelizing and infer-
ring from curves-data. We start from a continuous time stochastic process
(&);>0- The paths of £ are cut into equally spaced pieces of trajectories.
Each of these piece is then viewed as a random curve. With mathematical



symbols we set:
Xp(t) =&krge, 0<t<T

where T is fixed. The function X}, (-) maps [0,7] to R and is random. Ob-
serving & over [0,nT] produces a n sample X7, ..., X,,. Obviously the choice
of T is crucial and is usually left to the practitioner and may be linked with
seasonality (with period T'). Dependence along the paths of £ will create
dependence between the X;’s. But this approach is not restricted to the
whole path of stochastic process. One could as well imagine to model whole
curves observed at discrete intervals: the interest rate curves at day k Iy (0)
is for instance a function linking duration ¢ (as an input) and the asso-
ciated interest rates (as outputs). Observing these curves, whose random
variations will depend on financial markets, along n days produces a sample
similar in nature to the one described above, although there is no underlying
continuous-time process in this situation, rather a surface (k,d, I;(9)). We
refer for instance to Kargin and Onatski (2008) for an illustration.

Statistical models will then be proposed and mimic or adapt the scalar or
finite-dimensional approaches for time-series (see Brockwell, Davis (1987)).
Each of these (random or not) functions will be viewed as a vector in a
vector space of functions. This paradigm has been adopted for a long time
in probability theory as will be seen through, for instance, Ledoux and Ta-
lagrand (1991) and references therein. But the first book entirely dedicated
to the formal and applied aspects of statistical inference in this setting is
certainly due to Ramsay and Silverman (1997), followed by Bosq (2000),
Ramsay and Silverman (2002) again then Ferraty and Vieu (2006).

In the sequel we will consider centered processes with values in a Hilbert
space of functions denoted H with inner product (-,-) and norm ||-||. The
Banach setting though more general has several drawbacks. Some references
will be given yet throughout this section. The reason for privileging Hilbert
spaces are both theoretic and practical. First many fundamental asymptotic
theorems are stated under simple assumptions in this setting. The central
limit theorem is a good example. Considering random variables with values
in C ([0,1]) or in Holder spaces for instance lead to very specific assumptions
to get the CLT and computations are often uneasy whereas in a Hilbert
space moment conditions are usually both necessary and sufficient. The
nice geometric features of Hilbert space allow us to consider denumerable
bases, projections, etc in a framework that generalizes the euclidean space
with few drawbacks. Besides, in practice, recovering curves from discretized
observations by interpolation or smoothing techniques such as splines or
wavalets yields functions in the Sobolev spaces, say W2 (here m is an order



of differentiation connected with the desired smoothness of the output), are
all Hilbert spaces. We refer to Ziemer (1989) or to Adams, Fournier (2003)
for monographs on Sobolev spaces.

In statistical models, unknown parameters will be functions or linear
operators (the counterpart of matrices of the euclidean space), the latter
being of utter interest. We give now some basic facts about operators which
will be of great use in the sequel.

Several monographs are dedicated to operator theory, which is a major
theme within the mathematical science. Classical references are Dunford,
Schwartz (1988) and Gohberg, Goldberg and Kaashoek (1991). The adjoint
of the operator T is classically denoted T™. The Banach space of compact
operators C on a Hilbert space H is separable when endowed with the clas-
sical operator norm ||-|| :

|7l = sup || Tz||
TEB

where B; denotes the unit ball of the Hilbert space H. The space C contains
the set of Hilbert-Schmidt operators which is a Hilbert space and denoted
S. Let T and S belong to S the inner product between T and S and the
norm of T are respectively defined by:

(5,T)s = Z (Sep, Tep)
P
ITI5 = el
P

where (ep)peN is a complete orthonormal system in H. The inner prod-
uct and the norm defined just above do not depend on the choice of the
c.o.n.s.(ep)peN. The nuclear (or trace-class) operators are another impor-
tant family of operators for which the series:

> |ITey|| < +oo.
p

It is plain that a trace class operator is Hilbert-Schmidt as well. Many of
the asymptotic result mentioned from now on and involving random oper-
ators are usually obtained for the Hilbert-Schmidt norm, unless explicitly
mentioned. It should be noted as well that this norm is thinner than the
usual operator norm.

The next section is devoted to general linear processes. Then we will
focus on the autoregressive model and its recent advances, which will be
developed in the third section. We will conclude with some issues for future
work.



2 General linear processes

The linear processes on function spaces generalize the classical scalar or
vector linear processes to random elements which are curves or functions

and more generally valued in an infinite-dimensional separable Hilbert space
H.

Definition 1 Let (e3),cn be a sequence of i.i.d. centered random elements
in H and let (ay),cy be a sequence of bounded linear operators from H to
H such that ag =1 and p € H be a fized vector. If

+oo
Xn::u"i'zaj (En—j)v (1)
=0

(Xn)pen 18 a linear process on H (denoted in the sequel H-linear process)
with mean .

Unless explicitly mentioned the mean function p will always be assumed
to be null (and the process X is centered). Its seems that, after a collection
of paper dating back to the end of the 90’s-early 00’s the model creates
less inspiration in the community. We guess that the recent works by Bosq
(2007) and the book by Bosq and Blanke (2007) may bring some fresh ideas.
We state here some basic facts: invertibility and convergence of estimated
moments.

2.1 Invertibility

When the sequence € is a strong H-white noise, that is a sequence of i.i.d.
random elements such that E ||e|* < +oc and whenever

+o0o

2
> llajlig, < +oo (2)
j=0

the series defining the process (X,),cy through () converges in square
norm and almost surely through the 0 — 1 law. The strict stationarity of X,
is ensured as well. The problem of invertibility is addressed in Merlevede
(1995).

Theorem 1 If (X,,),cy @5 a linear process with values in H defined by (EN)
and such that :

+oo
L= 2 lajll #0 for |2| <1 (3)

j=1



then (Xy),en 45 invertible:
+oo
Xpn = €n + ij (Xn—j)
j=1

where all the p;’s are bounded linear operators in H with Zjﬁf llpjll < +o0
and the series converges in mean square and almost surely.

Remark 1 We deduce from the latter that €, is the innovation of the process
X and that () coincides with the Wold decomposition of X.

We give now some convergence theorems for the mean and the covariance
of Hilbert-valued linear processes. These results are not completely new but
essential.

2.2 Asymptotics

It is worth mentioning a general scheme for proving asymptotic results for
linear processes. If several approaches are possible, it turns out that, up to
the authors’ opinion, one of the most fruitful relies on approximating the
process X,, by truncated versions like:

Xn,m = Z Qj (En—j)
j=0

where m € N. The sequence X, ,,, is for fixed m, blockwise independent:
Xntm41,m is indeed stochastically independent from X, ,,, if the ¢;’s are.
The outline of the proofs usually consists in proving asymptotic results for
the m-dependent sequence X, ,,, then to let m tend to infinity with an
accurate control of the residual X,, — X, ,, = ;:fnﬂ a; (en—j) -

2.2.1 Mean

Asymptotic results for the mean of a linear process may be found in Mer-
levede (1996) and Merlevede, Peligrad and Utev (1997). Even if the first
is in a way more general, we focus here on the second article since it deals
directly with the mean of the non-causal process indexed by Z :

+oo

Xp= > aj(ej).

j=—o00

The authors obtain sharp conditions for the CLT of S, = > }_; Xj.



Theorem 2 Let (aj)jEZ be a sequence of operators such that:

+oo
S lagll, < 400

j=—o00

Then g
77% —uw N (0, AT A¥)

where N (0, AT A*) is the H-valued centered gaussian random element with
covariance operator AT A* where I'c = E (€g ® €q) is the covariance operator
of g and A = Z;’;’iw aj.

Remind that if 4 and v are two vectors in H then notation u®wv stands for
the rank-one linear operator from H to H defined by: (u ® v) (z) = (v, x) u.

This result is extended with additional assumptions to the case of strongly
mixing €;’s. Note that the problem of weak convergence for the mean of sta-
tionary Hilbertian process under mixing conditions had been addressed in
the early 80’s by Maltsev and Ostrovski (1982). A standard equi-integrability
argument and classical techniques provide the following rates of convergence
for S,. Nazarova (2000) proved the same sort of theorem when X is a lin-
ear random field with values in a Hilbert space. Now we turn to the rate
of convergence of the empirical mean in quadratic mean and almost surely.
The following theorem may be found in Bosq (2000).

Proposition 1 Let X = > 70 a; (ex—;) and S, = Sop_, Xy, then

nE ?" — Y E{Xo, Xx),
k=—o0
n1/4 Sn 0
Gogmy v | 7

for all e > 0.

We turn to covariance operators now.

2.2.2 Covariance operators

The situation is slightly more complicated than for the mean due to the
tensor product.



Definition 2 The theoretical covariance operator at lag h € N of a process
X is defined by:

Iy, :E(Xh®Xo).
The linear operator I'y, is nuclear on H when the second order strong mo-

ments of the X 1is convergent. Its empirical counterpart based on the sample
18:

1 n
Lpp= - ;Xt—l—h @ Xi.

The covariance operator of the process, I'y = I is selfadjoint, positive and
nuclear hence Hilbert-Schmidt and compact.

It should be noted that I'j, is not in general a symmetric operator con-
versely to the classical covariance operator I'y. The weak convergence of
covariance operators for H-linear processes was addressed by Mas (2002).
It is assumed that:

E |leo|* < +o0
+o0

Z ”ak”oo <400

k=—o00
then the vector of the h covariance operators up to any fixed lag h is asymp-

totically gaussian in the Hilbert-Schmidt norm.

Theorem 3 Let us consider the following linear and Hilbert space valued
process

+o0
Xe= ) aj(ey)
j=—00
then
Ino—To
Jn pi—TIh e

n—-400

Lpn—Th

where Gp = (G(O),...,Géh)> is a Gaussian centered random element with
values in S, Its covariance operator is Op = (@%p’q)> which is a

0<p,q<h
nuclear operator in S"*1 defined blockwise for all T in S by

@lgp,q) (T) = Z Chip oI Th + Z ThiqIThp+Ag (A= D) A, (T) (4
h h
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where A, ® and A, are linear operators from S to S respectively defined by

A(T)=E ((e0® €0) ® (€0 ® €0)) (T)
O (T)=C(T+T*)C+ (CC)(T)

and Ay (T) =), aipTal.

As by-products, weak convergence results for the eigenelements of I';, o —
Ty, that is for the PCA of the stationary process X, are derived. The reader
interested with these developments should refer to the paper by Mas and
Menneteau (2003a) which proposes a general method to derive asymptotics
for the eigenvalues and eigenvectors of I'y, o (the by-products of the functional
PCA) from the covariance sequence itself. Perturbation theory is the main
tool through a modified delta-method.

2.3 Perspectives and trends: towards generalized linear pro-
cesses ?

It turns out that the literature based on inference methods for general linear
processes is rather meager. Obviously estimating simultaneously many a;’s
seems to be intricate and not necessarily needed as the functional AR pro-
cess, which will be enlightened in the next section, is quite successful and
easier to handle. However general linear processes are the starting point for
very interesting theoretical problems where dependence plays a key-role. We
mention at last the abstract papers by Merlevede and Dedecker (2003) es-
pecially section 2.4 dedicated to proving a conditional central limit theorem
for linear processes under mild assumptions and to Merlevede and Dedecker
(2007) whose section 3 deals with rates in the law of large numbers. These
works may provide theoretical material to go further into the asymptotic
study of these processes.

In a very recent article, Bosq (2007) introduces the notion of linear pro-
cess in the wide sense. The definition remains essentially the same as in
display ([]) but the operators (aj)j cn may then be unbounded; which finally
generalizes the notion. A key role is played by linear closed spaces (LCS)
introduced by Fortet. A LCS G is a subspace of L%{ -the space of random
variables with values in H and finite strong second moment- such that:

(i) G is closed in H.
(i) If X € G, [ (X) € G for all bounded linear operator I.



This theory -involving projection on LCS, weak and strong orthogo-
nality, dominance of operators- allows Bosq to revisit and extend the no-
tions of linear process, Wold decomposition, Markovian process when the
bounded (a;) jeN may be replaced with measurable mappings () jeN Sev-
eral examples are given : derivatives of functional processes like in the MAH
X, = en+ce,, arrays of linear processes, truncated Ornstein-Uhlenbeck pro-
cess... The personnal communication Bosq (2009) discusses these extensions
to tensor products of linear processes and will certainly shed a new light at
their covariance structure. We also refer to chapters 10 and 11 in the book
by Bosq and Blanke (2007) for an exposition of these concepts.

3 Autoregressive processes

3.1 Introduction

The model generalizes the classical AR(1) for scalar or multivariate time se-
ries to functional data and was introduced for the first time in Bosq (1991).
Let X1,..., X, be a sample of random curves for which a stochastic depen-
dence is suspected (for instance the curve of temperature observed during n
days at a given place). We assume that all the X;’s are valued in a Hilbert
space H and set:

Xn=0p (Xn—l) + €n (5)

where p is a linear operator from H to H and (e,), oy is a sequence of H
valued centered random elements usually with common covariance opera-
tor. The model is simple, with a single unknown operator, leaving however
the possibility to decline various assumptions either on the operator p (lin-
ear, compact, Hilbert-Schmidt, symmetric or not, etc) or on the dependence
between the €,’s. The latter are quite often independent and identically dis-
tributed but alternatives are possible (mixing or more naturally martingale
differences). Bosq (2000) proved that assumption () comes down actually

to the existence of a > 0, b € [0, 1[such that for all p € N :

1]l < ab

which ensures that (f]) admits a unique stationary solution. The process
(Xn)pen is Markov as soon as E (€,|Xy,—1,...,X1) = 0. As often noted the
interest of the model relies in its predictive power. The estimation of p is
usually the first and necessary step before deriving the statistical predictor
given the new input X,,1: p(X,,). The prediction are often compared with
ARMA model or with non-parametric smoothing techniques. The global



treatment of the trajectory as a function often ensures better long-run pre-
diction but at the expense of more tedious numerical procedures.

3.1.1 Representation of stochastic processes by functional AR

Various real valued processes allow the ARH representation. We plotted
on Figure [[] graphs of two simulated processes, the Ornstein-Uhlenbeck (O-
U) process and the Wong process. The O-U process (n;,t € R) is a real
stationary Gaussian process :

¢
n = / e_“(t_“)dwu,t €R

where (wy)ier is a bilateral standard Wiener process and a a positive con-
stant. Bosq (1996) gives the ARH representation X,, = p(X,—_1) + €, with
values in L? := L?[0,1] where X,,(t) = npit,t € [0,1],n € Z and p is a
degenerated linear operator

p(x)(t) = e (1), € [0,1],z € L?

and et
en(t) = / e~ H=9) quyg t € [0,1],n € Z.

The Wong process is a mean-square differentiable stationary Gaussian pro-
cess which is zero-mean and is defined for ¢ € R by:

& = V3 exp (—\/gt) /Oexp(2t/\/3) Wy, dUu.

Cutting R in intervals of length 1 and defining X,,(t) = &,4¢ for t € [0, 1],
Mas and Pumo (2007) obtain ARH representation, X,, = A(X,_1) + €, of
this process with values in Sobolev space W = W21 = {u e L% € L2}
and

exp[2(n—1+t)/V/3]
exp[2(n—1)/V/3]

for t € [0,1]. The linear and degenerated operator A is given by ¢ + ¥ (D)
where D is the ordinary differential operator and

[D(NIE) = lexp(—V/3t) +V3e()]f(1), [W(D)(F(#) = c(t)f'(1).

10
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Figure 1: Ornstein-Uhlenbeck (a = 1) and Wong processes both evaluated
at instants t; = 0.02 % 1.

with () = %2 - exp(—V/3t) - {exp(2t/v/3) — 1}.

Other examples are given in the paper of Bosq (1996) or in the classical
book of Bosq (2000).

A major issue would be to infer deeper links between autoregressive
functional processes and diffusion processes or stochastic differential equa-
tions with more general autocorrelation operators. But this remains an open
question and the work by Ramsay (2000) about this topic should certainly
deserve more attention to be extended.

3.1.2 Asymptotics for the mean and covariance

Obviously all the results obtained for general linear processes hold for the
ARH(1): namely for the mean and the covariance operator. Some new re-
sults are stated below -they are new essentially with respect to Bosq (2000)-
and are related with moderate deviations (Mas and Menneteau (2003b))
and laws of the iterated logarithm (Menneteau (2003)). Let n be a square
integrable real valued random variable. We need to introduce the following
notations (Ix and Jx are functions from H to H, Jr is a function from S

11



to S and Kt is a subset of S):

u =p(Xo) ®@er+ e ®@p(Xo)+ e ®er — I, (6)
Ix (z) = sup {(h,z — p(z)) — Eexp (h,e1)},
heH

Jx () = gt {Bo? 2= B [n(In — )" ()]},

Jets) = gint {B? s = B [n (s~ ) (w)] ),

Kr = {E [n (Is— R)™ (ul)} :ne L*(P), By < 1}
and R is a linear operator from S to S defined by R (s) = psp*.

We refer to Dembo and Zeitouni (1993) for an exposition on large and
moderate deviations.

Theorem 4 The empirical mean of the ARH(1) process follows the large
deviation principle in H with speed n~" and rate function Ix and the mod-
erate deviation principle with rate function Jx.

The covariance sequence of the ARH(1), T, — T, follows the moderate devi-
ation principle in the space of Hilbert-Schmidt operators with rate function
Jr and the law of the iterated logarithm with limit set Kp.

The first results obtained on the covariance sequence are in Bosq (1991)
but we mention here the interesting decomposition given in Bosq (1999).

Proposition 2 Let X,, be an ARH(1) such that E || Xo||* < +o0, then the
tensorized process

18 an autoregressive process with values in S such that:
Zi = R(Zi_l) + U;

where R (S) = pSp* and uy was defined at (). The sequence u; is a mar-
tingale difference with respect to the filtration o (€;,€;—1,...) .

3.2 Two issues related to the general estimation problem
3.2.1 Identifiability
The moment method provides the following normal equation:

A =pll’ (7)

12



where

I'=E(X;®X;),
A:E(X2®X1)

are the covariance operator (resp. the cross covariance operator of order
one) of the process (X,),,cz-

The first step consists in checking that the Yule-Walker equation ([)
correctly defines the unknown parameter p.

Proposition 3 When the inference on p is based on the moment equation
(@), identifiability holds if kerI' = {0}.

The proof of this proposition is plain since taking p = p + u ® v where v
belongs to the kernel of I', whenever this set is non-empty we see that

pI' =pI'+u®@T'v=pl

hence that (ff) holds for p # p.

Consequently the injectivity of I' is a basic assumption which can hardly
be removed and which entails that the eigenvalues of I' are infinite, strictly
positive. These eigenvalues will be denoted (\;),;cy Where one assumes once
and for all that the \;’s are arranged in a decreasing order with >,y A;
finite. The corresponding eigenvectors (resp. eigenprojectors) will be de-
noted (e;);cn (resp. (m;);cny Where m; = e; ® ¢;). Heuristically we should
expect with ([) at hand that I'~! exists to estimate p and this inverse will
not be defined if I" is not one to one.

3.2.2 The inverse problem

Even if the identifiability is ensured estimating p is a difficult task due to
an underlying inverse problem which stems from display ([{). The notion of
inverse (or ill-posed) problem is classical in mathematical analysis (see for
instance Tikhonov, Arsenin (1977) or Groetsch (1993)). In our framework
it could be explained by claiming that equation () will imply that any
attempt to estimate p will result in a highly unstable estimate. This comes
down with simple words, which will be developed below, from the inversion
of I'. A canonical example of an inverse problem is the numerical inversion
of an ill-conditioned matrix (that is a matrix with eigenvalues close to zero).

The first stumbling stone comes from the fact that we cannot deduce
from (f) that AT~' = p. We know that a sufficient condition for T~! to

13



be defined as a linear mapping is: kerI' = {0}. Then I'"! is an unbounded
symmetric operator on H. Some consequences are collected in the next
proposition:

Proposition 4 When T is injective ™! may be defined. It is a linear
measurable mapping defined on a dense domain in H, denoted D (F_l) and
defined by:

+oo +oo x2
D(F_l) =Iml = x:prep € H, Z)\—g < +oo
p=1 p=1"7

This domain is dense in H. It is not an open set for the norm topology of
H. The operator is unbounded which means that it is continuous at no point
of D (I‘_l). Besides T ™'T' = Iy but TT~! = Ipr-1y and T, which is not
defined on the whole H, may be continuously extended to H.

For similar reasons ([}) implies AT'"! = Pmr # p and AT'"! may be
continuously and formally extended to the whole H. In fact I hence I'"! are
unknown. However would I" be totally accessible we should find a way to
regularize the odd mathematical object that is I'"'. Within the literature on
inverse problems (see for instance Groetsch (1993)) one often replaces I'~*
by a linear operator ”close” to it but endowed with additional regularity
(continuity /boundedness) properties, say I'f. The Moore-Penrose pseudo
inverse is an example of such an operator but many other techniques exist.

Indeed starting from
_ 1
I(z) = E —m (x)

Al
leN

for all x in D (F_l) one may set for instance:

@)=Y tm @ )
1<kn
1
o)=Y 5am @ ©)
f(2) = 7)” m (z
M) = Y 5y @) (10)

where k, is an increasing and unbounded sequence of integers and «, a
sequence of positive real numbers decreasing to 0. The three operators in
the display above are indexed by n, are all bounded with increasing norm

14



and are known as the spectral cut-off, penalized and Tikhonov regularized
inverses of I'. They share the following pointwise convergence property:

e -1 1z

for all z in D (F_l).

In practice if I',, is a convergent estimator of I' the regularizing meth-
ods introduced below can be applied to I',, which is usually not invertible
(see below for an example). It should be noted at this point that the reg-
ularization for the inverse of the covariance operator appears in the linear
regression model for functional variable:

y=(X,p) +e

when estimating the unknown ¢ (see Cardot et al. (2007)).

At last a general scheme to estimate p may be proposed with estimates
of I' and A at hand say I',, and A,: compute FIL and take for the estimate
and the predictor based on the new input X, 11 respectively:

ﬁn = Anriz and ﬁn (Xn-i-l) :

Obviously examples of such estimates are the empirical covariance and cross-
covariance operators

1 n
I = > X @ X,
k=1
1 n—1
A, = ZXk-i-l ® Xy

n—1
k=1

where the X}’s were reconstructed by interpolation techniques.
For instance the spectral cut-off version for I';, is

where the eigenvalues Xl and the eigenprojectors 7; are by-products of the
functional PCA of the sample X, ..., X,,.

Remark 2 This inverse problem is the main serious abstract concern when
infering on the ARH model. The considerations above are moreless exposed
i all the articles dealing with it and we guess it will be of some interest to
expose and sum up this issue and some of its solutions in this monograph.

15



3.3 Convergence results for the autocorrelation operator and
the predictor

As the data are of functional nature, the inference on p cannot be based
on likelihood. Lebesgue’s measure cannot be defined on infinite-dimensional
spaces. However it must be mentioned that Mourid and Bensmain (2006)
propose to adapt Grenander’s theory of sieves (Grenander (1981) and Ge-
man and Hwang (1982)) to this issue. They prove consistency in two very
important cases: when p is a kernel operator and when p is Hilbert-Schmidt.
In the former case p is identified with the associated kernel K, developed on
a basis of trigonometric functions along the sieve:

@m:{K€L2:K()—co—i—z\/_ckcos(%rkt te[0,1], Z }

k=1 k=1

This approach is truly original within the literature on functional data
and could certainly be extended to other problems of linear or non linear
regression.

The seminal paper dealing with the estimation of the operator p dates
back to 1991 and is due to Bosq (1991). Several consistency results are car-
ried out immediately relayed by Pumo’s (1992) and Mourid’s (1995) PhD
thesis. Then Pumo (1998) focus on random functions with values in C ([0, 1])
with specific techniques. Besse and Cardot (1996), then Besse, Cardot and
Stephenson (2000) implement spline and kernel methodology with applica-
tion to climatic variations. Amongst several interesting ideas they introduce
a local covariance estimate:

5 Do [Xi ® Xa) K (| X — Xal /h)

th = n—1
>imr K (X — X[ /h)

and a local cross-covariance estimate which emphasize data close to the last
observation. This method make it possible to consider data with departures
from the stationarity assumption. This issue of the estimation of p is also
treated in Guillas (2001) and Mas (2004).

A recent paper by Antoniadis and Sapatinas (2003) carry out wavelet
estimation and prediction in the ARH(1) model. The inverse problem is
underlined through a class of estimates stemming from the deterministic
literature on this topic. This class of estimates is compatible with wavelet
techniques and lead to consistency of the predictor. The method is applied
on the ”El Nino” dataset which tends to become a benchmark for comparing
the performances of the predictions.
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Ruiz-Medina et al (2007) consider the functional principal oscillation pat-
tern (POP) decomposition of the operator p as an alternative to functional
PCA decomposition. They implement a Kalman filter to the state-space
equation obtained at the preceding step and derive the optimal predictor.
This original approach, illustrated by some simulations, seems to be suited
to spatial functional data as well.

Kargin and Onatski (2008) introduce the notion of predictive factor
which seems to be better suited than the PCA basis to project the data
if one really focuses on the predictor (and not on the operator itself). A
double regularization (penalization and projection) provides them with a
rate of O (n_l/ 61og”? n) (where 3 > 0) for the prediction mean square error.

In Mas (2007) the problem of weak convergence is addressed. The main
results are given in the Theorem below:

Theorem 5 It is impossible for p, — p to converge in distribution for the
classical norm topology of operators. But under moment assumptions, if
HI‘_l/QpHOO < 400 and if the spectrum of I' is convex then when k, =

nl/4

(0]

)

logn
n ~ = w
k_ (pn (Xn-l-l) — pllg, (Xn+1)) — G
n
where G is a H-valued gaussian centered random variable with covariance
operator I'c and Il is the projector on the k,, first eigenvectors of I'y,.

Remark 3 The first sentence of the Theorem above is quite surprising but is
a direct consequence of the underlying inverse problem. Finally considering
the predictor weakens the topology and has a smoothing effect on p,. This
phenomenon -which was exploited in Antoniadis, Sapatinas (2003)- appears
as well in the linear regression model for functional data (see Cardot, Mas,
Sarda (2007)).

It should be noted that rates of convergence are difficult to obtain (see
Guillas (2001) or Kargin and Onatski (2008), Theorem 3) and rather slow
with respect to those obtained in the regression model. An exponential
inequality appears at Theorem 8.8 in Bosq (2000) but it seems that a more
systematic study of the mean square prediction error has not been carried
out yet and that optimal bounds are not available.
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3.3.1 Hypothesis testing

A very recent article by Horvath, Huskova and Kokoszka (2009) focuses
on the stability of the autocorrelation operator against change-point alter-
natives. In fact the model (fJ) based on the sample X1, ..., X,, is slightly
modified to:
X, = Pn (Xn—l) + €p
and the authors test
Hy:p1=..=py

against the alternative:
Hy, : there exists k* € {1,....n} : p1 = ... = ppx # Prra1 = -« = Pn-

The test is based on the projection of the process X,, on the p first eigenvec-
tors of the functional PCA and on an accurate approximation of the long-run
covariance matrix. The asymptotic distribution is derived by means of em-
pirical process techniques. The consistency of the test is obtained and a
simulation /real case study dealing with credit card transaction time series
is treated.

It turns out that Laukaitis and Rackauskas (2002) considered the same
sort of problem a few years sooner. They introduce a functional version of
the partial sum process of estimated residuals:

[t]
S(t)=>> [Xi—p(Xe-1)]
k=2
and obtain weak convergence results for its normalized version to an H-
valued Wiener process. This formal theorem yields different strategies (dyadic
increment of partial sums or moving residual sums) to derive a test.

It seems however that the topic of hypothesis testing was rarely addressed
yet quite promising even if serious theoretic and technical problems appear,
once again in connection with the inverse problem mentioned earlier in this
article.

3.4 Extension of ARH model

Various extensions have been proposed for ARH(1) model in order to im-
prove the prediction performance of ARH(1) model. The first one is the
natural extension autoregressive process of order p with p > 1, denoted
ARH(p), defined by

Xn=pXpa+ ...+ ppXn_p+en.
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Using the Markov representation Y,, = p'Y,,_1 + €|, where

p1 P2 Pn X €n
, I 0 0 Xn—1 ,
p = | Ya= ;and €, =
0 1 Xppi1 0

and I denotes the identity operator, Mourid (2003) obtain asymptotic results
of projector estimators and predictors.

Damon and Guillas (2002) introduced autoregressive Hilbertian process
with exogenous variables model, denoted ARHX(1), which intends to take
into account the dependence structure of random curves under the influence
of explanatory variables. The model is defined by the equation

X, = p(Xn—l) + al(Zn,l) + ... aq(qu) +€n,n € Z

where ay,--- ,a, are bounded linear operators in H and Z, 1, -, Zy 4 are
ARH(1) exogenous variables; they suppose that the noises of the ¢ +1 H—
valued autoregressive processes are independent. They obtain some limit
theorems, derive consistent estimators, present a simulation study in order
to illustrate the accuracy of the estimation and compare the forecasts with
other functional models.

Guillas (2002) consider a H-valued autoregressive stochastic sequence
(X,) with several regimes such that the underlying process (I,,) is station-
ary. Under some dependence assumptions on (I,,) he proves the existence
of a unique stationary solution and state a law of large numbers and the
consistency of the covariance estimator. Following the same idea in a recent
work Mourid (2004) introduces and studies the autoregressive process with
random operators X,, = p,X,—1 + €, where (p,,n € Z) is stationary and
independent of (e,). Results similar to classical ARH (1) are obtained.

A new model, denoted ARHD process, considering the derivative curves
of an ARH(1) model was introduced by Marion and Pumo (2004). In a
recent paper Mas and Pumo (2007) introduced and study a slightly new
model:

Xpn=0¢Xn 1 +¥(X,,_|)+en

where X,, are random function with values in the Sobolev space W21 =
{u € L?0,1],u’ € L?[0,1]}, ¢ is a compact operator from W to W, ¥ is a
compact operator from L2[0,1] to W2! and ||¢ph+ UK | < ||h|| for h € WL,
Convergent estimates are obtained through an original double penalization
method. Simulations on real data show that predictions are comparable to
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those obtained by other classical methods based on ARH(1) modelization.
Tests on the derivative part and models with higher derivatives may be
interesting from both theoretical and practical point of view.

3.5 Numerical aspects

We present in this section some numerical aspects concerning the prediction
when data are curves observed at discrete points. To our knowledge the
prediction methods based on linear processes are limited to application of
ARH(1) model since tractable algorithms using general linear processes in
Hilbert spaces do not exist (see Merlevede (1997)). However some partial
results are available for moving average processes in Hilbert spaces which
will be briefly discussed in the next section.

The literature using ARH(1) model to make prediction is various and
rich and concern different domains:

e Environment: Besse et al. (2000); Antoniadis and Sapatinas (2003);
Mas and Pumo (2007); Fernandez de Castro et al. (2005); Damon et
Guillas (2002);

e Economy and finance: Kargin and Onatski (2008);
e Electricity consumption: Cavallini et al. (1994);

e Medical sciences: Marion and Pumo (2004); Glendinning and Fleet
(2007)

From a technical point of view the different approaches for implement-
ing an ARH proceed in two steps. The first step consists in decomposing
data in some functional basis in order to reconstruct them on the whole
observed interval. Most of the methods use spline or wavelet basis and sup-
pose that curves belong to the Sobolev W?2* space of functions such that
the k-th derivative is squared integrable. We invite the reader to refer to the
papers by Besse and Cardot (1996), Pumo (1998) and Antoniadis and Sap-
atinas (2003) among others for detailed discussions about the use of splines
and wavelets for numerical estimation and prediction using ARH(1) model
and for the numerical results presented hereafter. The second step con-
sists in choosing tuning parameters required by these methods, for example
the dimension of the projection subspace for the projection estimators. A
general method used by the precedent authors is based on cross-validation
approach which gives satisfactory results in applications. Note at last that
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Nino-3 time series, observations until 1986
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Figure 2: Monthly mean El Nifio sea surface temperature index from Jan-
uary 1950 to December 1986

alternatives approaches of prediction based on ARH(1) modelization are pro-
posed by Mokhtari and Mourid (2002) and Mourid and Bensmain (2005). In
Mokhtari and Mourid (2002) the authors use a Parzen approximation on re-
producing kernel spaces framework. Some simulation studies are presented
in the recent paper published in 2008 by the same authors.

In order to compare methods described above we consider a climatologi-
cal time series describing the El Nino-Southern Oscillation (see. for example
Besse et al. (2000) or Smith et al. (1996) for a description of the dataf]). The
series gives the monthly mean El Nifio sea surface temperature index from
January 1950 to December 1986 and is presented in figure f. We compare
the ARHD predictor with various functional prediction methods.

We compare the predictors of month temperature during 1986 knowing
the data until 1985 by two-criteria: mean-squared error (MSE) and relative
mean-absolute error (RMAE) defined by:

L2 . o L2 ‘Xfl—f(fl
MSE = — (X’ —Xi) CRMAE=—S" L "

!Data is freely available from http://www.cpc.ncep.noaa.gov/data/indices/index.html
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‘ Prediction method ‘ MSE ‘ RMAE (%) ‘

Wavelet 11 0.063 0.89
Splines 0.065 0.89
ARHD 0.167 1.25
ARH(1): linear spline 0.278 24
SARIMA 1.457 3.72

Table 1: Mean Squared Error (MSE) and RMAE errors for prediction of El
Nifno index during 1986

where X’ (resp. X!) denotes the i—th month observation (resp. predic-
tion). The two-criteria for various functional predictors are given in Table
fl. Results show that the best method are Wavelet 11 (one of the wavelet ap-
proaches proposed in Antoniadis and Sapatinas (2003)) and spline smooth-
ing ARH(1). Globally the predictors obtained using ARH(1) model are bet-
ter and numerically faster than the classical SARIMA (0,1,1) x (1,0,1)12
model (the best SARIMA model based on classical criteria).

4 Perspectives

In the precedent sections we insisted on two important statistical problems
concerning H linear processes. The first discussed in §P.J and in relation
with inference on general or generalized linear processes. The estimation
with the aim to make predictions with such processes seems to arise difficult
technical problems. Some new results in this direction are obtained recently
by Bosq (2006) by introducing the moving average process of order ¢ >
1, MAH(q). Some partial consistency results for the particular process
MAH(1) are presented in a paper by Turbillon et al. (2008). A MAH(1)
is a H valued process satisfying the equation X; = €; 4+ ¢(e;—1) where ¢ is
a compact operator and (e;)) a strong white noise. It is simple from ([)
to show that this process is invertible when the condition ||¢|| < 1. The
difficulty in estimating ¢ as for the real valued MA processes stems from
the fact that the moment equation is not linear conversely to the ARH(1)
process. Under mild conditions Turbillon et al. (2008) propose two types of
estimators for £ and give consistency results.

The second direction concerns the ARH(1) model and his extensions. In
§B-3.1] we recall some serious theoretical and technical problems with the
topic of hypothesis testing. But the problem is very important in particular
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from a practical point of view. As an example let us consider the ARHD
model and the test addressing the significance of the derivative in the model.
Another issue may be the characterization of real valued processes allowing
an ARH representation or more generally linear processes. While some
examples exists admitting an ARH or MAH representation (see the book by
Bosq (2000)) a general approach to recognize real processes allowing such a
representation is an issue for future works.

The above questions are important from a theoretical point of view, in
particular for the research in statistics. For the people who analyze data
that are discretized curves it’s more and more necessary to dispose of ana-
logue description tools as for the ARMA(p,q) real valued processes. In this
direction a work by Hyndman and Shang (2008) for visualizing functional
data and identifying functional outliers is an example.

Acknowledgement. The authors thank Frédéric Ferraty, Yves Romain
and the whole group STAPH for initiating this work as well as for permanent
and fruitful collaboration and are grateful to Professor Denis Bosq for helpful
discussions and pointing out recent articles about functional linear processes.
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