
HAL Id: hal-00353835
https://hal.science/hal-00353835

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Results on the Queens n2 Graph Coloring Problem
Michel Vasquez

To cite this version:
Michel Vasquez. New Results on the Queens n2 Graph Coloring Problem. Journal of Heuristics, 2004,
10 (4), pp.407-413. �10.1023/B:HEUR.0000034713.28244.e1�. �hal-00353835�

https://hal.science/hal-00353835
https://hal.archives-ouvertes.fr

New Results on the Queens n2 Graph
Coloring Problem

MICHEL VASQUEZ
URC-EMA-CEA,∗ LGI2P Research Center, Parc Scientifique Georges Besse, 30035 Nı̂mes Cedex 1, France
email: vasquez@site-eerie.ema.fr

Abstract

For the Queens n2 graph coloring problems no chromatic numbers are available for n > 9 except where n is not
a multiple of 2 or 3. In this paper we propose an exact algorithm that takes advantage of the particular structure of
these graphs. The algorithm works on the independent sets of the graph rather than on the vertices to be colored.
It combines branch and bound, for independent set assignment, with a clique based filtering procedure. A first
experimentation of this approach provided the coloring number values ranging for n = 10 to n = 14.

Key Words: queens graphs, graph coloring, independent sets, cliques based filtering

1. Introduction

Given a n × n chess board, a queen graph is a graph with n2 vertices, each of them corre-
sponding to a square of the board. Two vertices are connected by an edge if the corresponding
squares are in the same row, column, or diagonals (both ascending and descending diago-
nals), this corresponds to the rules for moving the queen in a chess game.

The coloring problem for this graph consists in finding the minimum number of colors
necessary for placing n2 queens on the board so that two queens of the same color cannot
attack each other. Finding this number (the chromatic number χ) is an optimization problem.
We may also consider the following decision problem: given a n2 chess board, is it possible
to place n sets (each of them corresponding to a given color) of n queens on the board so that
there is no clash between two queens in the same set? Gardner (1995) states without proof
that this is the case if and only if n is not divisible by 2 or 3. If so, n = χ (Queens n2)—
notedχn—since the maximum clique number is n (the rows, the columns and the 2 main
diagonals constitute the 2n + 2 maximum cliques of this graph).

Although the graph coloring problem has been the subject of intense research, applications
to the Queens n2 problem are much scarcer: Mehrotra and Trick (1996) use a column
generation approach to the independent set formulation of the graph coloring problem,
devising an efficient algorithm tosolve the maximum weighted independent set problem

∗Joint “Ecole des Mines d’Alès, Commissariat à l’Energie Atomique” Research Team.

arising in the column generation process, and are able to solve problems up to n = 9. Caramia
and Dell’Olmo (2001) suggest a sophisticated algorithm based on the iterative coloring
extension of a maximum clique; extensive computational results are given, Queens n2

problems are solved up to n = 9. Heuristic methods canalso be used: Kochenberger et al.
(to appear) transform general binary integer problems into unconstrained quadratic binary
problems, and solve these problems using the tabu search method. Queens n2 problems up
to n = 10 are tackled, but non-exact methods (see Chiarandini and Stützle, 2002; Hamiez,
2002 for other recent works) fail to prove that χn = n and only give an upper bound for the
chromatic number.

2. Our approach

Due to the above observation concerning maximum cliques, the chromatic number of the
Queens n2 is greater than or equal to n. We consider the question: “Are n colors enough
to color the Queens n2?”. Considering this decision problem, and taking into account the
specific characteristics of the Queens n2 graphs, we shall design a straightforward algorithm.

This algorithm is mainly based on the notion of an independent set (IS). An IS is a subset
of vertices not linked by an edge of the graph: the vertices of an IS can all have the same
color.

If n colors are enough to color the Queens n2 graph, then each coloring with n colors
defines n independent sets (one for each color). Since no IS can contain more than n vertices
while n2 vertices have to be colored, the answer to the above question is positive if and only
if there are n disjoint independent sets I1 . . . In with exactly n vertices each.

2.1. Independent sets

Hence, the frst step for solving Queens n2 consists in enumerating all IS with n vertices
(in other words in computing the set ISn of candidate independent sets: the global set of
IS). This step is completed by a standard depth-first search that uses the forward checking
technique effciently to reduce the search space. Starting from each square of the first row
on the chess board, this algorithm erases the column and diagonals under the current row
before trying to find a free (unerased) square in the next row. A new IS is added to ISn if
there is a square remaining in the last row of the chess board.

We thus replace the vertex ← {colors} assigning problem by the ISn ← {0, 1} assigning
problem: the value is 1 if the corresponding IS is selected, 0 otherwise. That leads us from
a nn×n search space size to one of size 2|ISn|. For instance, this preprocessing step applied
to Queens 52 decreases the number of combinations from 298023223876953000 to 1024
since |IS5| = 10.

Actually, trying to solve the problem by selecting such IS avoids manyincorrect color
assignments during the coloring process.

2.2. Branching and backtracking rules

The choice of these n IS, among the |ISn| candidates, is submitted to the non overlapping
constraint: ∀i �= j, Ii ∩I j = ∅ (only one queen by square). This assignment task is achieved
by a branch and bound procedure. Note that assigning one IS corresponds to coloring n
vertices (or squares): the depth of the search tree is less than n.

Every time an IS Ii is selected, propagation on the constraint above is carried out: all I j

such that Ii ∩ I j �= ∅ are removed from the global set of IS: ISn .
At every stage in the search we can identify the subsets ISi j of IS that cover each free

square (i, j) of the chess board. The non colored square which can be covered by the
smallest number of remaining IS corresponds to the branching node. More precisely, the
next branching node is made up of the minimal subset ISmin = argmin{|ISi j |, (i, j) non
colored square}. Exploring this node consists in sequentially selecting each IS of ISmin. The
search tree is not a binary one but a variable breadth one depending on |ISmin|.

Eventually, the process backtracks as soon as ISmin = ∅ occurs.

2.3. Dynamic filtering based on cliques

It is not a new idea to reduce the search space while exploring it (see, for instance, the
study of Sabin and Freuder (1994) for general CSP framework and Caramia and Dell’Olmo
(2002) for a graph coloring application of constraint propagation). The key point of such
a technique is to find a condition that eliminates numerous values while needing little
computing time to be evaluated.

The principle of our filtering procedure is as follows. After the i th IS assignment n − i
other IS have to be chosen to constitute a solution. If, at this stage of the search, there
exists, in the subgraph of non colored squares, a clique of size n − i, Cn−i , then all the
remaining IS to be chosen must cover one vertex in this clique. This means that if the
condition I j ∩ Cn−i = ∅ holds for an I ∈ ISn , then we can remove this I j from the search
space under the current node of the tree search. By construction, the I j can not produce
such a condition with squares belonging to the same row or column (there are no more than
n rows and n columns in the chess board, and each I j counts n vertices). This is not the case
for the diagonals. For example, at the root of the search tree, we can delete the IS which
do not cover one square of each of the 2 main diagonals. At the next node we can consider
these 2 main diagonals plus the 4 with n − 1 squares, and so on. We only need to update
one counter and implement one test for each diagonal to check this condition.

To summarize, this filtering procedure is based on cliques corresponding to the diagonals
of the chess board.

3. Experimentation

In this section we briefly give some details of the largest structures used to implement the
algorithm before showing the main results it has produced.

3.1. Implementation

The algorithm is written in the C programming language.
Independent sets are stored in a global two dimensional array Big IS Array that contains

|ISn| × n entries to memorize the n column numbers that define each IS in ISn .
Two other tables of size proportional to |ISn| are used to keep track of the non overlapping

constraint on the remaining IS. This constraint is propagated effciently by means of an n ×n
array of pointers to tables which contain the addresses in Big IS Array of the IS covering
the square in row i and column j . The numbers |ISi, j | of these IS are stored in a n × n array
of integers (see figure 1 for an example).

Figure 1. Distribution of the IS at the root of the search tree for Queens 102.

These tables are dynamically updated during the exploration of the search tree. To illus-
trate this point, we give in figure 2 the new values of ISi j after selecting the first IS of ISmin

at the first node of the search tree. Following the explanations given in Section 2.2, in this
instance, ISmin corresponds to the IS that cover the square in the second column of the first
row on the chess board (|ISmin| = 36).

Figure 2. |ISi, j | after the first assignment of the search process for Queens 102.

Considering Queens 152 problem which has 1484400 IS, the structure Big IS Array uses
85 MB of memory, then, for each node of the search tree,we need one array for the pointers
to the IS, this gives a total amount of 85 × (1 + 15) = 1360 MB RAM.

3.2. Results

Computation was carried out on a PENTIUM 4 1.7 GHz CPU with 512 MB RAM.
Up to Queens 112 the answer is instantaneous. There is no solution for Queens 102.

Thus X10 ≥ 11. Since X11 = 11 we deduce that X10 = 11 (the first 10 rows and the first
10 columns of the Queens 112 solution constitute a 11 colors correct assignment for the
10 × 10 chess board). Exploring the search tree for Queens 122 requires less than 2 hours
CPU. The enumeration finds 454 solutions proving that X12 = 12. The algorithm hence
achieved complete-ness for Queens 102 and Queens 122.

Unfortunately, instances become quickly intractable when n increases (we limited the
CPU time to one week). Finding a solution for Queens 142 required some parallelization.
The 9990 IS of the first ISmin set (which corresponds to the first node of the search tree),
are distributed on several CPU. The process starting with the 9987th IS provided a solution
after 472692 seconds of computing time. This result is weaker than completeness but it is
enough to prove that X14 = 14.

The figure 3 gives certificates for both the Queens 122 and Queens 142 coloring numbers.
Each letter represents a color. We can note symmetries on the two above solutions. The IS
always appear in pairs and are symmetric (horizontally for n = 12 and vertically for n = 14).
It is also the case for the 454 other solutions of Queens 122. Exploiting this remark would
divide the tree depth by two. However, even if we could generalize this result, it would not
allow us to cope with the Queens 162 problem since it counts 4543410 pairs of IS: that

Figure 3. Certificates for X12 = 12 and X14 = 14.

Table 1. Filtering efficiency and other global indications.

n |V | |E | pp.t. |ISn | |IS f
n | |sol.| cmpl. t.t.

4 16 76 0 2 0 0 yes 0 sec.

5 25 160 0 10 10 2 yes 0 sec.

6 36 290 0 4 0 0 yes 0 sec.

7 49 476 0 40 32 4 yes 0 sec.

8 64 728 0 92 48 0 yes 0 sec.

9 81 1056 0 352 232 0 yes 0 sec.

10 100 1470 0 724 544 0 yes 0 sec.

11 121 1980 0 2680 1744 8 yes 1 sec.

12 144 2596 0 14200 9440 454 yes 6963 sec.

13 169 3328 2 73712 52008 295 no 168 hours

14 196 4186 15 365596 238088 1 no 168 hours

15 225 5180 73 2279184 1484400 ? no 168 hours

means 277 MB RAM for the Big IS Array and 8 × 277 MB for the 8 arrays of pointers to
IS needed by the search tree.

Finally, the Table 1 summarizes the computational results obtained for instances up to
n = 15. For each Queens n2 instance, we show the number of vertices (|V |), the number
of edges (|E |), the preprocessing—for ISn—CPU time in seconds (pp.t.), the number of IS
before filtering on n cliques: (|ISn|) and after: (|IS f

n |), the number of solutions found (|sol.|),
the search completeness state (cmpl.) and the total CPU time (t.t.).

For n = 4 and n = 6 no branch and bound is needed because there are not enough IS to
cover the chess board.

This table answers the question: is Xn = n ? for values of n up to 14.

4. Conclusion

We have proposed an exact algorithm for solving the Queens n2 coloring problems. This
algorithm makes major use of a particular characteristic of these graphs: only independent
sets with n vertices are useful to answer the question: “is Queens n2 chromatic number
equal to n ?”.

This leads us to a straightforward enumeration approach intended to select n independent
sets rather than assign colors to n2 vertices. The branch and bound procedure is reinforced
by an efficient filtering technique based on the cliques belonging to the vertices of the
graph which are not colored yet. Thus, at each node of the tree, many independent sets are
removed, drastically decreasing the size of the remaining search space.

Experimentation provided 3 new results:
X (Queens 102) = 11 , X (Queens 122) = 12 and X (Queens 142) = 14.
That is the qualitative contribution of this work.

Moreover the results for n = 12 and n = 14 are the same for Queens m × n problems
(m × n chess boards for which m ≤ n) since the maximum clique number is still equal to
n when m < n.

5. Perspectives

Firstly, the investigation of symmetries noted in Section 3.2 should enable to obtain results
for larger instances than Queens 142. For this purpose, we suggest to modify significantly
the data structures used by our first algorithm. More precisely, the concept aims at changing
the balance between speed and memory consumption. We strongly believe that this is a
promising way to improve our algorithm.

Secondly, the results obtained on Queens 122 and Queens 142 constitute an example
of some instances that are not too large and have never been solved by any heuristic ap-
proach (see for instance Chiarandini and Stützle, 2002; Hamiez, 2002; Kochenberger et al.,
to appear). Here we have an implement of critical analysis and maybe even a perfecting
implement for these inexact resolution methods of dificult problems, that we are going to
investigate in a near future.

Acknowledgments

We would like to thank the anonymous referees for the valuable and detailed comments
which helped to improve the presentation of this paper.

References

Caramia, M. and P. Dell’Olmo. (2001). “Iterative Coloring Extension of a Maximum Clique.” Naval Research
Logistic 48(6), 518–550.

Caramia, M. and P. Dell’Olmo. (2002). “Constraint Propagation in Graph Coloring.” Journal of Heuristic 8,
83–107.

Chiarandini, M. and T. Stützle. (2002). “An Application of Iterated Local Searchto Graph Coloring Problem.”
In Mehrotra, A., Johnson, D.S., and Trick, M. (eds.), Proceedings of the Computational Symposium on Graph
Coloringand its Generalizations. Ithaca, New York, USA, pp. 112–125.

Gardner, M. (1995). Further Mathematical Diversions: The Paradox of the Unexpected Hanging and Others.
Mathematical Association of America.

Hamiez, J.P. (2002). “Coloration de Graphes et Planification de Rencontressportives: Heuristiques, Algorithmes
et Analyses.” PhD thesis, Universitéd’Angers.

Kochenberger, G., F. Glover, B. Alidaee, and C. Rego. (to appear). “An Unconstrained Quadratic Binary Program-
ming Approach to the Vertex Coloring Problem.” Annals of Operations Research.

Mehrotra, A. and M.A. Trick. (1996). A Column Generation Approach for Graph Coloring.” INFORMS Journal
of Computing 8(4), 344–354.

Sabin, D. and E. Freuder. (1994). “Contradicting Conventional Wisdom in Con-Straint Satisfaction.” In ECAI’94,
Amsterdam, pp. 125–129.

