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Let θ be a Salem number. It is well-known that the sequence (θ n ) modulo 1 is dense but not equidistributed. In this article we discuss equidistributed subsequences. Our first approach is computational and consists in estimating the supremum of limn→∞ n/s(n) over all equidistributed subsequences (θ s(n) ). As a result, we obtain an explicit upper bound on the density of any equidistributed subsequence. Our second approach is probabilistic. Defining a measure on the family of increasing integer sequences, we show that relatively to that measure, almost no subsequence is equiditributed.

Subsequences

Let u = u(n) be an infinite sequence of real numbers. A subsequence u • s = u(s(n)) is said to have density d 1 if as n increases n/s(n) → d. Suppose the sequence u is dense (mod 1). Answering a question of one of us in 1973, Y. Dupain and J. Lesca [START_REF] Dupain | Répartition des sous-suites d'une suite donnée[END_REF] established that the set of densities d of equidistributed (mod 1) subsequences of u is a closed interval [0, d 0 ] where d 0 1 depends on u. They also showed how to compute d 0 . For 0 x 1, define the repartition function

f (x) = lim N →∞ 1 N card n < N | {u(n)} < x
where {u(n)} is the fractional part of u(n). We only consider those x where f (x) and its derivative f (x) both exist, i.e. almost everywhere. Y. Dupain and J. Lesca proved that d 0 = inf x f (x).

A particularly striking example of such an instance concerns the distribution (mod 1) of the powers of Salem numbers θ > 1. A Salem number [START_REF] Salem | Power series with integral coefficients[END_REF] (see also [START_REF] Bertin | Pisot and Salem numbers[END_REF]) is a real algebraic integer whose algebraic conjugates other than θ all lie in the unit disc |z| 1 with one conjugate at least on the boundary |z| = 1. It is then known that one and only one of these conjugates θ -1 is inside the disc while the others are on the boundary. The degree 2t of θ is necessarily even and at least equal to 4.

Mathematics Subject Classification: 11K06, 11J71.

Denote the different conjugates by θ, θ -1 , exp(±2iπω 1 ), . . . , exp(±2iπω t-1 ). The sum of all conjugates of an algebraic integer is an integer and therefore for all n ∈ N,

θ n + θ -n + 2 t-1 j=1 cos 2πnω j ≡ 0 (mod 1)
so that the distribution of θ n (mod 1) is essentially that of -2 t-1 j=1 cos 2πnω j . Ch. Pisot and R. Salem [START_REF] Ch | Distribution modulo 1 of the powers of real numbers larger than 1[END_REF] observed that 1, ω 1 , . . . , ω t-1 are Z-linearly independent so that, according to Kronecker, the (t -1) dimensional sequence

(ω 1 n, . . . , ω t-1 n) is equidistributed in R/Z t-1 . As a consequence, the sequence (θ n ) is therefore clearly dense (mod 1). Furthermore, for all k ∈ N \ {0} lim N →∞ 1 N n<N exp 2iπkθ n = lim N →∞ 1 N n<N t-1 j=1 exp(-2iπk.2 cos 2πnω j ) = 1 0 exp(-4iπk cos 2πx) dx t-1 = J 0 (4πk) t-1 = 0 (1.1)
where J 0 (• ) is the Bessel function of the first kind of index 0.

Since |J 0 (α)| < 1 for all real α = 0, the above limit tends to 0 as t → ∞. Y. Dupain and J. Lesca conclude that for large degrees t, the sequence θ n (mod 1) is close to being equidistributed, a fact that S. Akiyama and Y. Tanigawa [START_REF] Akiyama | Salem numbers and uniform distribution modulo 1[END_REF] make very explicit in their article. This is quite remarkable since even though for almost all real τ > 1, (τ n ) is equidistributed (mod 1), no explicit τ is known (J. F. Koksma [START_REF] Koksma | Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins[END_REF]).

We know the existence of d 0 < 1 (and quite obviously d 0 > 0) such that s(n) ∼ 1 d0 n and θ s(n) equidistributed (mod 1). We shall see later on that those sequences are rare. But we can already guess why these sequences s(n) are exceptional. This is a consequence of our first rather trivial theorem.

Theorem 1.1. If s(n) is an increasing sequence of integers such that θ s(n) is equidistributed (mod 1), then there exists an irrational x such that xs(n) is not equidistributed (mod 1).

Proof. We note that

θ s(n) ≡ -2 t-1 j=1 cos 2πω j s(n) -θ -s(n) (mod 1)
. n) would not be equidistributed (mod 1). Therefore there exist integers h 1 , . . . , h t-1 not all 0 such that

The (t -1) dimensional sequence ω 1 s(n), . . . , ω t-1 s(n) is not equidistributed in R/Z t-1 since if it were, θ s(
h 1 ω 1 s(n) + • • • + h t-1 ω t-1 s(n)
is not equidistributed (mod 1). The theorem is established with

x = t-1 j=1 h j ω j .
Next, we develop a method to approximate d 0 for the sequence θ n (mod 1) , where θ is a Salem number of degree 2t. The results indicate that d 0 tends to 1 very quickly as t tends to infinity. A key result in this approach is the study of the minimum of a cosine series on ]0, 1[. Under certain conditions, we show that the minimum is always attained at x = 1/2, cf. Theorem 2.1.

Explicit Computations of d 0

The repartition function is explicitly determined for a Salem number of degree 4, cf. [START_REF] Dupain | Répartition et discrépance[END_REF]. Namely,

f (x) = 5 2 - 1 π arccos x -2 2 + arccos x 2 + arccos x -1 2 + arccos x + 1 2 .
It follows that

f (x) = 1 2π ⎛ ⎝ 1 1 -x 2 -1 2 + 1 1 -x-1 2 2 + 1 1 -x 2 2 + 1 1 -x+1 2 2 ⎞ ⎠ .
A direct study of f (x) shows that it attains its minimum for x = 1 2 and gives the exact value of d 0 , i.e.

1 π 4 √ 7 + 4 √ 15 = 0.809988350 . . . (2.1)
For a Salem number of degree 2t with t > 2, we want to estimate the corresponding d 0 . First, let us show the following lemma.

Lemma 2.1. Let θ be a Salem number of degree 2t, then the repartition function

f (x) of the sequence (θ n ) modulo 1 satisfies f (x) = 1 + 2 ∞ k=1 J 0 (4kπ) t-1 cos 2πkx on ]0, 1[, for all t 2.
Proof. We have

lim N →∞ 1 N n<N exp 2iπkθ n = 1 0 exp 2iπkx dν
where ν is the repartition function f (x). According to Y. Dupain [START_REF] Dupain | Répartition et discrépance[END_REF] the measure dν = f (x) dx is absolutely continuous. It follows from (1.1) that

J 0 (4πk) t-1 = 1 0 exp 2iπkx f (x) dx .
We can associate with f (x) its Fourier series

k∈Z J 0 (4πk) t-1 exp(-2iπkx) = 1 + 2 ∞ k=1 J 0 (4πk) t-1 cos 2πkx. (2.2)
If this series converges uniformly, then its sum is continuous and equals f (x). The lemma is clear for t > 3, since

J 0 (x) = O x -1 2
and we even have equality on [0, 1]. For t = 2 and 3, we need the following result.

Lemma 2.2. The sequence J 0 (4πk) is positive for all k > 0 and strictly decreasing.

Proof. In [1, Lemma 2], it is shown that

J 0 (2πk) = 1 π √ k 1 √ 2 - 1 16 √ 2πk + R , with |R| 9 512π 2 k 2 • It is straightforward to deduce that 0 1 2π √ k -J 0 (4πk) 1 61π 2 k 3 2 • (2.3)
This proves the first part of the lemma. Now

1 2π 1 √ k - 1 √ k + 1 1 8πk 3 2 > 2 61π 2 k 3 2
• This shows that

1 2π √ k - 1 61π 2 k 3 2 > 1 2π √ k + 1 - 1 61π 2 (k + 1) 3 2
which implies that J 0 (4πk) > J 0 4π(k + 1) , for k > 0.

We deduce that the series (2.2) is uniformly convergent on the compact [ε, 1-ε], for any ε > 0 and therefore f (x) is equal to this series on ]0, 1[. A consequence of Lemma 3.2 is that d 0 only depends on t and satisfies

d 0 = inf x∈]0,1[ 1 + 2 ∞ k=1 J 0 (4kπ) t-1 cos 2πkx .
Next let us recall a definition we shall use later. for all k 0 is totally monotone.

Theorem 2.1. Let (a k ) be a sequence of nonnegative real numbers (except maybe for a 0 ). Assume that (a k+1 ), k 0 is totally monotone, then the function

g(x) = ∞ k=0 a k cos 2πkx
is well-defined and decreasing on the interval ]0, 1/2]. As a corollary, g(x) attains its minimum for x = 1 2 •

Proof. Let us introduce

h(x) = ∞ k=1 a k cos 2πkx = ∞ k=0 b k cos 2π(k + 1)x .
Since, g and h only differ by a 0 , it is enough to study h to prove the theorem on g. Since (b k ) = (a k+1 ), Δb k 0, for all k. So the sequence (b k ) is decreasing and this shows that the series h(x) is convergent for all

x ∈ ]ε, 1 -ε[, for all ε > 0. Since h(x) = h(1 -x), it is enough to study h on ]0, 1/2] .
Since the b k 's are the moments of a certain nonnegative measure μ, we obtain

h(x) = ∞ k=0 b k cos 2π(k + 1)x = ∞ k=0 1 0 u k cos 2π(k + 1)x dμ = 1 0 e 2iπx 1 -e 2iπx u dμ.
The last equality being justified by the nonnegativity of μ. It follows that

h(x) = 1 0 cos 2πx -u 1 + u 2 -2u cos 2πx
dμ .

To show that h(x) is decreasing on ]0, 1/2], evaluate h(x)h(y) for 0 < x y 1/2. Let

j x (u) = cos 2πx -u 1 + u 2 -2u cos 2πx •
Then reducing to the same (positive) denominator, we see that the numerator of

j x (u) -j y (u) is (cos 2πx -cos 2πy)(1 -u 2 ) which is nonnegative for all u ∈ [0, 1].
Since μ is a nonnegative measure, we deduce that h(x) h(y) whenever x y 1/2 and that h(x) h(1/2) for all x ∈ ]0, 1/2]. These results apply trivially to the function g. Corollary 2.1. Let s > 0. Then the series

g(x) = a 0 + ∞ k=1 cos 2πkx
k s is decreasing on ]0, 1/2] and satisfies

g(x) a 0 + ∞ k=1 (-1) k k s •
Remark. It is possible to compute g(1/2) very efficiently following the method explained in [START_REF] Cohen | Convergence acceleration of alternating series[END_REF]. For instance, for the sequence (a k ) defined by a given a 0 and

a k = 1/ √ k, for k 1, we have that g(x) g(1/2) = a 0 -0.6048986434216303702472659142359554997597625451 . . .
All the digits in the last equality are correct as can be established knowing the first 60 a k 's.

Unfortunately, we are not able to show that the sequence J 0 (4πk) t-1 , k > 0 is totally monotone, though the extensive numerical computations of its first nth forward differences seem to indicate that this is the case. Based on the case t = 2 and also on direct computations of f (x) for various x, we conjecture that inf x f (x) = f (1/2) for t 2. However, to be totally rigorous, we cannot directly apply Theorem 2.1 to obtain the value of d 0 . Nevertheless, this result will give an approximation of d 0 , for t > 2.

The idea is to apply (2.3) to deduce that

J 0 (4πk) t-1 - 1 (2π √ k) t-1 1 61π 2 k 3 2 (t -1) (2π √ k) t-2 • It follows that f (x) -1 -2 inf k=1 cos 2πkx (2π √ k) t-1 inf k=1 2 61π 2 k 3 2 (t -1) (2π √ k) t-2 ,
which, combined with Theorem 2.1, implies that for all x ∈ ]0, 1[

f (x) 1 + 2 ∞ k=1 (-1) k (2π √ k) t-1 S1 - ∞ k=1 2 61π 2 k 3 2 (t -1) (2π √ k) t-2 S2 •
The main contribution, i.e. S 1 , can be obtained using the acceleration convergence method explained in [START_REF] Cohen | Convergence acceleration of alternating series[END_REF], whereas the second series S 2 is simply (up to a constant) an evaluation of the ζ function at the point (t + 1)/2. This gives a lower bound for d 0 . An upper bound is given by d 0 f (1/2), where f (1/2) is bounded, for any K even, by the truncated alternating series

1 + 2 K k=1 (-1) k J 0 (4πk) t-1 .
The convergence is quite slow for t = 3 so that we fixed K = 2.10 6 to obtain a relevant upper bound. Much less terms are necessary for larger t. A conjectured value d * 0 is also given relying on the assumption that d 0 = f (1/2) and on the computation of f (1/2) using [START_REF] Cohen | Convergence acceleration of alternating series[END_REF]. The method seems to converge and at most the first 10 terms are sufficient to give a result with an error less than 10 -10 . Also, we checked for t = 2 that the value given in (2.1) is, up to several hundred digits, equal to the one computed with this approach.

Note that if the sequence J 0 (4πk) t-1 , defined for k > 0 is totally monotone, then both assumptions are valid, and therefore d 0 = d * 0 . All the figures are given in Table 1. In the next section we shall define the notion of "almost all" increasing sequences of integers s(n) . For almost all sequences s(n) and for all irrational numbers x, xs(n) is equidistributed. This already shows how exceptional those sequences s(n) are for which θ s(n) is equidistributed.

Furthermore R. Salem [START_REF] Salem | Uniform distribution and capacity of sets[END_REF] demonstrated that if s(n) is any increasing sequence such that s(n) = O(n), then the Hausdorff dimension of the set of x for which xs(n) is not equidistributed (mod 1), vanishes. The x's in Theorem 1.1 are therefore "rare" if indeed s(n) ∼ 1 d0 n.

Metrical Results

Let S be the family of finite or infinite strictly increasing sequences of positive integers. To each s = s(n) ∈ S corresponds a unique sequence χ ∈ D = {0, 1} N (characteristic sequence) and conversely:

χ(n) = 1 if n ∈ s, 0 if not.
Any measure on D lifts to a measure on S.

Let 0 < d < 1. Put m{1} = d and m{0} = 1 -d. Then μ =
m is a probability measure on D to which corresponds a probability measure on S which we still denote by μ or μ d if we wish to emphasize the parameter d. Theorem 3.1. Consider the polynomial P (X) = ν =0 a X where at least one of the coefficients a , 1 ν is irrational. Then for μ-almost all sequences s ∈ S, P (s) = P (s(n)) is equidistributed (mod 1). Theorem 3.2. If θ is a Salem number then μ-almost no sequence θ s(n) is equidistributed (mod 1). More generally, if P is any positive integer valued polynomial, θ P (s) = θ P (s(n)) is μ-almost never equidistributed (mod 1).

We have seen in Section 1 that there exists a d 0 ∈ ]0, 1[ for which no sequence s = s(n) exists such that s(n) ∼ 1 d n (d > d 0 ) and θ s(n) equidistributed (mod 1). For d d 0 there do exist d-density equidistributed subsequences θ s(n) but they are μ d -rare.

Remark. For d ∈ [0, 1] let T (d) be the family of increasing sequences s(n) of density d such that θ s(n) is equidistributed (mod 1). We know that T (d) = ∅ as long as d > d 0 . Could it be true that as d decreases to 0 the family T (d) "increases in size"? Could one devise a way to show that this is so, e.g. by defining a fractal dimension adapted to the question? 

h i < h i+1 lim N →∞ 1 N n<N k i=1 χ(n + h i ) -d = 0 .
A sequence Y is said to be uncorrelated if for all k 1 and all integers h 1 • • • h k where at least one couple 

h i < h i+1 lim N →∞ 1 N n<N k i=1 Y (n + h i ) = 0 . If χ ∈ {0, 1} N is d-normal, then as remarked above, χ -d is uncorrelated.
lim N →∞ 1 N n<N Y (n) exp 2iπP (n) = 0 .
Proof. The result is obviously true if deg P = 0. We now argue by induction and assume the truth of the lemma for all P with deg P = ν -1 0. Let Q be any polynomial of degree ν and let h 1 be an arbitrary integer. Put f (n) = Y (n) exp 2iπQ(n) and consider the correlation

= lim N →∞ 1 N n<N f (n)f (n + h) = lim N →∞ 1 N n<N Y (n)Y (n + h) exp 2iπ Q(n + h) -Q(n) . The product Z(n) = Y (n)Y (n + h) is again uncorrelated and the polynomial P (n) = Q(n + h) -Q(n) is of degree ν -1. Therefore lim N →∞ 1 N n<N f (n)f (n + h) = 0 for all h 1. A classical result (see J. Bass [2]) then implies lim N →∞ 1 N n<N f (n) = 0 .
We now prove Theorem 3.1. Suppose P (X) = ν =0 a X where at least one of the coefficients a 1 , . . . , a ν is irrational. Consider the exponential mean

= lim N →∞ 1 N n<N exp 2iπhP s(n) = lim N →∞ 1 N <s(N ) χ( ) exp 2iπhP ( )
where h 1 is an integer, and where χ is the characteristic function of s.

For μ = μ d -almost all s, s(N ) ∼ 1 d N = L. The theorem will be established if for L → ∞ 1 L <L χ( ) exp 2iπhP ( ) → 0 .
The above average can be decomposed into two parts

1 L <L χ( ) -d exp 2iπhP ( ) + d L <L exp 2iπhP ( ) .
For μ d -almost all s, χd is uncorrelated and therefore the first average converges to 0. As for the second average, it converges to 0 because the sequence is well known to be equidistributed (mod 1) [START_REF] Weyl | Über die Gleichverteilung von Zahlen mod[END_REF].

Proof of Theorem 3.2

Let P (X) = ν =0 a X , a ν > 0, be a polynomial which takes integer values when X runs through N. If s ∈ S, θ P s(n) ≡ -2 t-1 j=1 cos 2πω j P s(n) + o [START_REF] Akiyama | Salem numbers and uniform distribution modulo 1[END_REF] if P is nonconstant (if P is constant the theorem is trivial). The (t -1) polynomials ω 1 P, . . . , ω t-1 P all have irrational coefficients. According to Theorem 3.1, the sequences ω j P s(n) are μ d -almost surely equidistributed (mod 1) and more to the point, for all h = (h 1 , . . . , h t-1 ) ∈ Z t-1 \{0} the sequences h ωP (s) are equidistributed (mod 1). Here h ωP (s) is the scalar product of h and ω = (ω 1 , . . . , ω t-1 ). Therefore the (t -1) dimensional sequence ω 1 P (s), . . . , ω t-1 P (S) is equidistributed in R/Z t-1 and as in the first section, we conclude that

1 N n<N exp 2iπkP s(n) -→ N →∞
J 0 (4kπ) t-1 = 0 .

A Final Remark

All our arguments are based on the fact that θ n is essentially a finite sum of cos 2πω j n. We could probably extend some of our results to the study of sequences u = u(n) of the type

u(n) = t j=1
F (nω j ) .
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 21 Let (b k ) be a sequence of real numbers and let Δ 0 b k = b k and Δ n b k = Δ n-1 b k -Δ n-1 b k+1 , for all n > 0. The sequence (b k ) is said to be totally monotone if Δ n b k 0 for all k, and n = 0, 1, 2, . . . By a famous result of Hausdorff [7], the total monotonicity of (b k ) is equivalent to the existence of a nonnegative measure μ on [0, 1] such that the b k 's are the moments of μ, i.e. b k = 1 0 u k dμ . Example 2.1. Let s be a real positive number. The sequence (b k ) defined by b k = 1 (k + 1) s
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 41 Proof of Theorem 3.sequence χ ∈ {0, 1} N is said to be d-normal if all finite words w = w 1 . . . w ∈ {0, 1} occur in χ with the frequency d k (1d) -k where k is the number of 1's in w. It is well known that μ d -almost all χ are d-normal. For such a sequence lim N →∞ 1 N n<N χ(n)d = 0 and more generally, for all k 1 and all integers h 1 • • • h k where at least one couple
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 41 For all real polynomials P and all uncorrelated sequences Y

Table 1 :

 1 Lower bound, upper bound, and conjectured value of d0

	t	S 1	S 2	S 1 -S 2	f (1/2)	d * 0
	3	0.964884753 0.000869699 0.964015054 0.965745539 0.965745543
	4	0.993830708 0.000112882 0.993717825 0.994046008 0.994046007
	5	0.998944571 0.000016098 0.998928472 0.998991788 0.998991787
	6	0.999822887 0.000002401 0.999820485 0.999832498 0.999832497
	7	0.999970695 0.000000367 0.999970328 0.999972560 0.999972559
	8	0.999995201 0.000000056 0.999995144 0.999995551 0.999995550
	9	0.999999220 0.000000008 0.999999211 0.999999285 0.999999284
	10 0.999999874 0.000000001 0.999999872 0.999999886 0.999999885