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Abstract. This article presents a specific filtering algorithm for the Frequency Assignment Problem with
Polarisation, which combines arc-consistency and path-inverse-consistency adapted to the specificities of
the constraints. The effectiveness of this filtering algorithm enabled us to improve the Tabu Search on
a Consistent Neighbourhood (CN -Tabu) using two different approaches. So, after a short recall of this
general methodology and a presentation of its obtained results on the FAPP, we propose a behavioural
study of the two approaches by comparing the results.
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Consistent Neighbourhood

Introduction

The Frequency Assignment Problem with Polarisation (FAPP) in Hertzian telecommu-
nication networks consists in assigning frequency resources so as to minimise electro-
magnetic interference due to the proximity of antennae and interactions within the same
Hertzian liaison between emitter and receptor frequencies.

To solve the FAPP, a Tabu Search method working on consistent partial configura-
tions (CN -Tabu) was implemented. The originality of the approach is that it deals with
a consistent neighbourhood defined on these particular configurations.

In order to control the global quality of the Hertzian network, in terms of inter-
ference, relaxation levels were introduced on some electromagnetic constraints. Taking
into account this specificity, we improved our resolution method by an original filtering
process, which combined Arc-Consistency (AC) on all the constraints and Path-Inverse-
Consistency (PIC) on the relaxable constraint cliques.

The solution search, strongly linked to the relaxation level allows to encapsulate the
CN -Tabu following two general approaches: the first one starts from the highest level
where maximal relaxation is authorized. The second one begins from the last consistent
level calculated by the filtering algorithms. Analysis of these approaches emphasises the
stability and speed of the Tabu Search on a Consistent Neighbourhood.

∗ Corresponding author.



This article begins with the modelling of the problem in section 1. Section 2 de-
scribes the filtering algorithms, and gives the results obtained. The next part presents the
FAPP resolution by detailing the tabu search on a consistent neighbourhood for solving
a constraint network, then followed in section 4 by both implementations: Downward
and Upward, and a behavioural study by comparison of their results. Finally, section 5
summarises the results obtained by other methods developed to solve the FAPP.

1. Problem presentation

1.1. Physical description

The FAPP concerns a Hertzian telecommunication network made up of transmission
equipment (antennae connected to emitters or receptors) located at a set of geographical
sites. A Hertzian liaison joins two sites by one or more paths. Hence, a path is a unidi-
rectional radio-electric bond, established between antennae at distinct sites, which has a
given frequency and polarisation. A frequency resource for a path is a pair (frequency,
polarisation), whose components are respectively associated to the carrying frequency of
the transmitted signal and the wave polarisation. In the simplified model, the polarisation
is a binary variable (i.e., only vertical or horizontal). For each path xi , a set of available
resources {(fi ,pi), fi ∈ Fi and pi ∈ Pi}, where Fi is the ordered frequency domain rep-
resenting the authorised wave band, and Pi is the polarisation information, which may
include a required polarisation.

So, the frequency assignment problem consists in finding, for each path, a fre-
quency resource satisfying the radio-electric compatibility constraints. Moreover, given
that many emitters and receptors are located on the same site, other coupling binary
constraints linking paths located on the same site, or linking two paths belonging to the
same Hertzian liaison must be also verified. Thus, the constraint set is composed by:

1. equality or inequality of frequencies across two paths: fi = fj or fi �= fj ;

2. distance between frequencies of two paths: |fi − fj | = εij or |fi − fj | �= εij ;

3. equality or inequality of polarisation across two paths: pi = pj or pi �= pj (not all
the paths are linked by this constraint type);

4. minimal distance between frequencies of two paths:

|fi − fj | �
{

γij if pi = pj ,
δij if pi �= pj .

The last constraint type controls the interference phenomenon, which is why the
required distance between frequencies depends on their polarisations: it is smaller if the
polarisations are different (i.e., δij � γij ).

One feasible solution is thus to assign all the paths that completely satisfy this
constraint set. Unfortunately, most problems do not have feasible solutions, because
the domains are too restrictive or the requirements too numerous. Consequently, the



operator must look for a “good quality” solution. This means that some deterioration is
allowed, by permitting some interference. Thus, the intention is now to minimise this
interference. With this aim, two constraint classes are introduced:

• IC: strong or Imperative Constraints (type 1–3 above);

• ECC: Electromagnetic Compatibility Constraints (type 4), where a progressive re-
laxation is authorised and expressed by relaxation levels: level 0 corresponds to no
relaxation, and going from level k to level k + 1 involves the relaxation of some or
all the frequency gaps, the maximum relaxation level being 10:

|fi − fj | �
{

γ 0
ij � · · · � γ k

ij � · · · � γ 10
ij if pi = pj ,

δ0
ij � · · · � δk

ij � · · · � δ10
ij if pi �= pj ,

since in the 11th level, γ 11
ij = δ11

ij = 0, so there is no ECC.

So, we note ECCk the set of ECC constraints at level k; this means that each con-
straint belonging to ECCk is affected to its γ k

ij and δk
ij gaps.

Accordingly, a feasible solution at level k is an assignment of all the paths satisfy-
ing all the strong constraints IC and all the ECCk constraints. If such a solution exists,
the problem is said to be k-feasible. Consequently, the objective function of the problem
becomes, in order of priority:

1. search the lowest relaxation level k for which a k-feasible solution exists;

2. then, minimise V (k−1): the number of constraints of ECC(k−1) unsatisfied at level
k − 1;

3. finally, minimise
∑

0�i<k−1 V (i): the sum of the constraints of ECCi unsatisfied at
all levels i less than k − 1.

Considering the first objective of the evaluation function, the optimal solution s∗
will be necessarily at the lowest k-feasible level (k∗).

1.2. Modelling as a constraint network

Setting the paths as variables, frequencies and polarisations as their domain values, and
IC and ECC as the constraint set, the FAPP can be formalised as a Maximal Constraint
Satisfaction Problem (Max-CSP), on the following constraint network:

• let X = {x1, . . . , xn} be the set of the n paths;

• let Fi be the frequency domain of xi , and Pi the polarisation domain, where Pi ∈
{{−1}, {1}, {−1, 1}}, each resource to be affected to each variable xi is a pair (fi , pi)
where fi ∈ Fi and pi ∈ Pi ;

• let IC be the set of the imperative constraints: IC = {pi = pj , pi �= pj , |fi − fj | =
εij , |fi − fj | �= εij }, εij can be null; in this way, all the frequency constraints are
merged in two constraint types: Equality of the Distance between two Frequencies
(EDF) (fi = fj and |fi − fj | = εij ) and Difference of the Distance between two
Frequencies (DDF) (fi �= fj and |fi − fj | �= εij ).



• let ECCk for 0 � k � 10 be the set of the relaxed constraints:

|fi − fj | � |pi + pj |
2

γ
(k)
ij + |pi − pj |

2
δ

(k)
ij ;

Every problem is 11-feasible.

The strategy adopted for the resolution consists in transforming the Max-CSP (an
optimisation problem) into 11 CSP (decision problems) according to the relaxation level
on the electromagnetic compatibility constraints: each CSP(k) contains both the IC and
the ECCk constraints.

This enables us to introduce some filtering treatments on each CSP(k), in order to
obtain the k consistent level closest to level k∗. The second advantage of this filtering
process is to reduce the domain size, by deleting the inconsistent values.

2. Filtering algorithms for the FAPP

2.1. Basic definitions

After recalling some concepts of consistency, we briefly present two filtering algorithms:
Arc-Consistency (AC) then Path-Inverse-Consistency (PIC).

Let CN = 〈X ,D, C〉 be a binary constraint network, and C(ij) a constraint in C
linking xi and xj . A value fi ∈ Di is consistent with C(ij) if and only if ∃fj ∈ Dj

such that (fi, fj ) ∈ C(ij), fj is then called a support for (xi, fi) on C(ij). A value fi is
called viable if it has at least one support on each C(ij).

A domain Di is called consistent domain, if all of its values have at least one
support on each constraint.

Introduced by Waltz (1975), Arc-Consistent filtering (AC) on a constraint network
is achieved by removing all non-viable values. Some variant AC algorithms have been
elaborated, for example AC3 (Mackworth, 1977) and AC-inference (Bessière, Freuder,
and Régin, 1995).

To refine the filtering operation, Freuder proposes in (Freuder and Elfe, 1996) the
k-inverse consistency, in which each variable value that cannot be extended to a con-
sistent instantiation including k − 1 additional variables is removed. We shall use the
Path Inverse Consistency (PIC), which is the 3-inverse consistency. More formally, a
constraint network is PIC-consistent, if and only if ∀xi, xj , xk ∈ X such that xj �= xi �=
xk �= xj ,∀vi ∈ Di: ∃vj ∈ Dj and vk ∈ Dk such that {(xi, vi), (xj , vj ), (xk, vk)} is
locally consistent.

For more details concerning filtering algorithms, the interested reader can refer to
(Debruyne and Bessière, 1997).

2.2. General methodology

It may seem unworkable to attempt to use a pre-processing filtering on an optimisation
problem. However, as stated in section 1.2, the resolution strategy adopted for the FAPP



transforms the initial optimisation problem into 11 decision problems. Hence, each CSP
resolution is preceded by a filtering process.

Starting from level 11 down to the consistent level, the filtering algorithm finds,
for each domain value, the minimal level at which the value has, at least one support on
each constraint. So, it stops when it empties one variable domain, and returns the level
above, which is the last consistent level where a solution can possibly be found. This
algorithm is directly inspired by the AC3 and PIC algorithms.

The next three sections present this filtering process. To be precise, for each con-
straint type C(ij), they detail the computing of the consistent domain of a variable xi

involved in this constraint type, then the propagation mechanisms (i.e., how to maintain
the consistency of the domain Dj linked by C(ij) to Di where a value was deleted by an
other constraint).

2.3. Arc-consistency on binary constraints

Arc-consistency is carried out on each constraint type. So, we begin with the equal-
ity and difference constraints of distance between two frequencies, which are easy to
process, then continue with the specific processing of the electromagnetic compatibility
constraint type.

2.3.1. Distance constraints: equality and difference
The equality of the distance between frequencies. EDF are expressed by |fi − fj | =
εij , where εij ∈ N can be null (i.e., fi = fj ). For checking the Di consistency, it is
enough to check for each fi ∈ Di if fi − εij or fi + εij are in Dj . For all the equality
constraints between xi and a neighbouring variable xj with a gap εij , the deletion of fi

from Di is propagated on Dj by deleting fi + εij (respectively fi − εij ) if fi + 2 × εij

(respectively fi − 2 × εij ) is not in Di .

Difference of the distance between frequencies. DDF are expressed by |fi − fj | �=
εij , where εij ∈ N can be null (i.e., fi �= fj ). Checking the consistency on a difference
constraint is easier. Indeed, for each fi ∈ Di , all the Dj values different from fi −εij and
from fi + εij are supports for fi on C(ij). Hence, if the domains Dj contains more than
two values, then it is sure of finding a fi support. If Dj has only one value f1, we delete
the two values fi = f1 − εij and fi = f1 + εij if they belong to Di . If Dj has two values
(f1 and f2), we propagate on Di if and only if ∃fi ∈ Di such as fi = f1 +εij = f2 −εij .
Consistency domain of Dj is compute in the same way. Concerning the propagation on
this constraint type C(ij), considering that a value fi was deleted from Di by a C(ik)

constraint, any propagation is needed on Dj if and only if the filtered Di has more than
two values. Otherwise, we use the same consistency check as to compute the consistent
domains.

2.3.2. The electromagnetic compatibility constraints (ECC)
The mathematical formula of this constraint type is |fi − fj | � εij , where εij = γij if
polarisations pi and pj are equal, and δij otherwise.



In the following section, a different reasoning method is adopted to compute the do-
main consistency. Rather than searching for a support fj on C(ij) for each domain value
fi , we search the value set supported by Dj . Indeed, instantiating xi and xj consists in
respecting one of the two inequalities, fi < fj or fi � fj . In the first inequality, assign-
ing max(Dj) to xj leads to the potential consistent domain for xi , [−∞, max(Dj)−εij ].
In the second one, assigning min(Dj) leads to the second potential consistent domain,
[min(Dj) + εij ,+∞]. Considering the two inequalities, the full potential consistent do-
main becomes Cons(i) = [−∞, max(Dj)−εi,j ]∪[min(Dj)+εi,j ,+∞]. However, this
interval union is not necessarily a subset of Di , so the consistent domain is effectively
Di ∩ Cons(i). Since the domains are ordered, this algorithm has the same complexity as
a two set intersection computation, so it is linear. Concerning the propagation mecha-
nism, no updating is needed even if a value is deleted from the domain Di while min(Di)

and max(Di) have not changed.

2.4. Path inverse consistency on 3-cliques with 3 ECCs

Path inverse consistency is implemented for the electromagnetic compatibility constraint
cliques. As an AC refinement, PIC increases the deleted value number, by working
simultaneously on three constraints. This idea was inspired by (Hertz, Schindl, and
Zufferey, 2001), but is implemented using our method of consistency computing and
propagation on the ECCs.

In fact, stating that arc-consistency is 2-inverse-consistency allows the reasoning
to be extended to ECC cliques. At this stage, arc-consistency is carried out on three
variables (x1, x2 and x3) linked by three ECCs. So, there are 6 possible inequalities
(f1 < f2 < f3, f1 < f3 < f2, . . . ). Considering any one of them, all the constraints
lose their absolute term. In order to compute the arc consistent domain of one variable,
we determine the potential consistent interval for each inequality. Let l (where l ∈ [1, 3])
be the variable position in the current order, its potential consistent domain is computed
as follows:

• each of the l − 1 first variables is assigned to the minimal consistent value according
to the constraints linking it to the previous variables in the order;

• each of the 3 − l last variables is assigned to the maximal consistent value according
to the constraints linking it to the next variables in the inverse order;

• now, we define [a, b] as the potential consistent domain for the lth variable on the
current order; a (respectively b) is the minimal (respectively maximal) consistent
value for all the constraints linking the (l − 1)th first (respectively (3 − l)th last)
variables; a or b could be −∞, or +∞, or not defined, or any other value (not
necessarily in the domain of the lth variable domain);

• if l = 2, we check the crossing constraint (linking the first and the third variables)
before computing a and b.

If one of these points is not defined, the potential consistent interval in the consid-
ered order is empty. The consistent variable domain is therefore the intersection between



its domain and the union of the six intervals obtained by the different orders. As the do-
mains are sorted, local consistency checking is linear.

2.5. Path-inverse-consistency on 3-cliques with 2 ECCs and one EDF

A 3-inverse-consistency on two ECCs and one EDF is implemented if the distance value
of the equality constraint ε13 is smaller than the two ECCs values sum: ε13 < ε12 + ε23,
where C(13) is the EDF, C(12) and C(23) are the ECCs. Under this condition, the orders
f1 < f2 < f3 and f3 < f2 < f1 entail the violation of at least one constraint.

Hence, finding the consistent domain of x2 consists in looking for all f2 the pairs
(f1, f3), where f1 ∈ D1 and f3 ∈ D3 must be simultaneously higher, or simultaneously
lower than f2. If they exist, four value pairs (f1, f3) are well designed to be supports:
(f1, f3 = f1 − ε13) and (f1, f3 = f1 + ε13), set in the left of the domains, then
(f1 = f3 − ε13, f3) and (f1 = f3 − ε13, f3) set in the right. A value f2 is consistent
if it is supported by one of these pairs. So, calculating the x2 consistent domain is
linear.

Computing a x1 consistent domain consists in checking for each value f1 whether
f1 + ε13 or f1 − ε13 belongs to D3. Therefore, we deduce the f1 3-inverse-consistency
by verifying if one of these pairs can be extended with one of the x2 consistent values.
Finally, calculating the x3 consistent domain is similar to x1.

2.6. Filtering results

Experiments were carried out on the FAPP benchmark proposed for the ROADEF’01
challenge. This consists of 40 instances, having 200 to 3000 variables, 163 to 15664
imperative constraints and 945 to 30625 electromagnetic compatibility constraints. The
cardinality of the whole domain size is 2 million. Tests were performed on a 1.9 GHz
Pentium IV processor.

After giving the instance characteristics: instance name which includes the vari-
able number in column 1, the imperative constraint number (column 2), the ECC number
(column 3) and the total size of all the domains (column 4), table 1 shows a comparison
between a generic AC3 algorithm (column 5) and our specific AC3 (column 6). Generic
AC3 checks all the value pairs, while specific AC3 is adapted to constraint character-
istics. Because these two algorithms implement the same filtering, this two versions
obviously give the same consistent level kconst in column 7, and the same percentage of
filtered values according to the initial domain size in the ratio column. So, we compare
their computation time in seconds in columns 5 and 6.

The AC3 time analysis shows that the specific version is much faster than the
generic one, up to 100 times faster in some instances, for example, 12-1500, 14-2500
and 39-2750.

The last part of table 1, presents the results obtained by our PIC only on the partic-
ular 3-cliques, as mentioned in sections 2.4 and 2.5, which is why we refer to PIC− in the
results table. The k consistent level is given in column 9, then the ratio of filtered values
at this level according to the initial domain size is presented in column 10 and finally the



Table 1
Filtering results.

Instance Characteristics AC3 PIC−
name IC ECC Init dom. gen. spec. kconst ratio kconst ratio time

01-0200 163 945 26963 3 1 3 52.85 4 51.85 1
02-0250 217 1419 36618 6 1 2 59.70 2 63.16 1
03-0300 277 2049 53536 7 1 7 47.30 7 54.42 1
04-0300 238 1561 61762 16 1 1 64.44 1 66.40 2
05-0350 311 2177 79311 11 1 8 31.70 8 32.31 1
06-0500 425 3053 108024 22 1 5 50.90 5 56.49 2
07-0600 559 4218 109658 11 1 9 36.21 9 38.01 1
08-0700 546 3288 134020 20 1 5 38.86 5 40.08 2
09-0800 625 4175 121824 17 1 3 56.54 3 58.29 2
10-0900 761 5310 197665 35 1 6 38.25 6 44.88 4
11-1000 978 7027 294634 63 1 8 48.16 8 49.31 3
12-1500 1469 11970 436967 206 2 2 62.32 2 65.19 11
13-2000 1686 11983 320494 68 2 3 54.80 3 56.40 4
14-2500 2453 19157 774322 293 3 4 58.61 4 60.75 20
15-3000 2487 15267 515606 89 2 5 40.63 5 41.07 3
16-0260 249 1839 47293 1 1 11 1.42 11 1.42 1
17-0300 247 1809 64034 1 1 4 98.57 4 98.57 1
18-0350 962 1425 73016 1 1 8 98.51 8 98.51 1
19-0350 355 2759 201074 11 1 6 98.30 6 98.30 1
20-0420 237 2249 87077 1 1 10 97.83 10 97.83 1
21-0500 326 1263 113594 1 1 4 93.18 4 93.18 1
22-1750 1799 15125 813037 43 2 7 98.69 7 98.69 7
23-1800 2712 30625 455735 8 4 9 99.28 9 99.28 5
24-2000 1849 12452 567396 7 2 7 98.53 7 98.53 2
25-2230 4977 6997 610084 10 1 3 96.91 3 96.91 1
26-2300 1269 11492 635123 7 1 7 98.04 7 98.04 2
27-2550 1576 4655 588188 14 1 5 84.06 5 84.04 1
28-2800 1523 10523 2087947 93 2 3 96.95 3 96.96 6
29-2900 15664 26117 1477634 43 3 6 99.57 6 99.57 3
30-3000 3398 29903 1942250 178 5 7 95.84 7 97.42 20
31-0400 285 1359 273538 75 1 3 42.06 5 39.46 1
32-0550 573 4444 448436 42 1 6 98.80 6 98.81 3
33-0650 578 4053 233788 12 1 5 96.42 5 96.46 2
34-0750 607 4016 3298471 13 1 4 99.46 4 99.46 1
35-1500 1379 10344 844907 51 2 6 97.12 6 97.17 7
36-2000 1534 8533 750979 18 1 7 96.07 7 96.07 1
37-2250 2407 20146 1531733 150 4 5 98.84 5 98.85 13
38-2500 3112 29510 1460508 191 6 3 98.79 3 98.86 31
39-2750 2056 10549 1343881 355 4 2 35.25 2 36.11 4
40-3000 3078 25235 1873230 199 5 4 98.54 4 98.57 20

computing time in the last column, expressed in seconds. Hence, we can compare PIC−
with the specific AC3 in terms of filtering quality by first regarding the consistent level
then the filtered domain size.



The qualitative improvement made by adding PIC− to the specific AC3 consists,
firstly, in a refinement of the consistent level for two instances: 01-0200 (from 3 to 4) and
31-0400 (from 3 to 5). In the latter instance, this avoids the resolution method having
to search CSP(3) and CSP(4). Secondly, it deletes more values for other instances in a
time that remains reasonable, below 31 seconds.

3. Resolution with CN -Tabu

CN -Tabu (for Tabu Search on a Consistent N eighbourhood) is an interesting hybrid
method which includes some of the arc-consistent mechanisms in its Tabu Search (as
defined in (Glover and Laguna, 1997)). This method has been applied to some industrial
problems adjacent to the FAPP (Vasquez, 2002): the Daily Photographs Satellite Prob-
lem (DPSP) (Vasquez and Hao, 2001b) and the Antenna Positioning Problem (APP)
(Vasquez and Hao, 2001a), which is the upstream problem of the FAPP. For better un-
derstanding, we will first present the general methodology of a Tabu Search, then the
principle of our hybrid method. The last part explains how our Tabu Search is used
through the levels corresponding to each CSP, in both directions, downward and upward.

3.1. Tabu search methodology

A Tabu Search, TS, is a meta-heuristic designed for tackling hard combinatorial optimi-
sation problems. By contrast with random approaches, TS is based on the belief that an
intelligent search should include more systematic forms of guidance based on adaptive
memory and learning. TS can be described as a form of a neighbourhood search with a
set of critical and complementary components.

For a given optimisation instance (S, f ) characterised by a search space S and an
objective function f , a neighbourhood N is introduced. It associates for each s in S,
a non-empty subset N (s) of S. A typical TS algorithm begins with an initial configura-
tion s in S, then repeatedly visits a series of the best local configurations following the
neighbourhood function. At each iteration, one of the best neighbours s′ ∈ S is selected
to become the current configuration, even if s′ does not improve the current one in terms
of cost function. To avoid the problem of cycles occurring and allow the search to go be-
yond local optima, tabu list is introduced. This adds a short time memory component to
the method. A tabu list maintains a selective history H (short time memory), composed
of previously encountered configurations or, more generally, pertinent attributes of such
configurations. A simple TS strategy consists in preventing configurations of H from
being considered on the k next iterations, called the tabu tenure. A tabu tenure can vary
for different attributes, and is generally problem dependent. At each iteration, TS looks
for the best neighbour from this dynamically modified neighbourhood N (H, s), instead
of N (s) itself. Such a strategy prevents the search from being trapped in short term
cycling and makes the search more rigorous. When attributes of configurations, instead
of configurations themselves, are recorded in a tabu list, some unvisited, yet interesting
configurations may be prevented from being considered. Aspiration criteria may be used



to overcome this problem. A widely used aspiration criterion consists in removing a tabu
status from a move when it leads to a configuration better than the best one obtained so
far. Since TS uses an aggressive search strategy to exploit its neighbourhood, it is cru-
cial to have special data structures and techniques which allow rapid updating of move
evaluations, and reduce the effort of finding best moves. A Tabu Search can therefore
be described by specifying its main elements: the configuration representation, the cost
function to evaluate the configurations, the neighbourhood function, the tabu list and its
tabu tenure, and finally the aspiration criterion.

3.2. The CN -Tabu method

For better understanding of the method description, we must differentiate between two
uses of the term neighbouring. The first one concerns the neighbouring variables in the
constraint network, which are the variables linked by a constraint to the given variable;
whereas a neighbouring configuration in an approximate method is used to denote a
new configuration obtained from the current one by a move which changes one or more
variable affectations.

Now, we will see the specificities of our Tabu Search. The first and most important
point to emphasize is that CN -Tabu works on consistent partial configurations, rather
than on inconsistent complete configurations, like all the other local search methods.
Hence, the cost function used is merely the affected variable number in the configuration:
one configuration is better than another if it has more instantiated variables.

In order to visit the combinatorial space search, CN -Tabu jumps from a configu-
ration to a neighbouring one by making moves. A move consists in affecting a not yet
instantiated variable, then repairing the possible conflicting affectations. More precisely,
each move is made in two steps: first, we assign a pair (fi, pi) to the chosen candi-
date path xi , then we propagate this affectation to its neighbours xj in the constraint
network and, if necessary, we de-instantiate the conflicting neighbouring values, using
local considerations respecting IC(ij) ∪ ECCk(ij). This can be done efficiently using
the incremental computing principle as in (Fleurent and Ferland, 1996), on specific data
structures, allowing variable domains to be dynamically reduced. More precisely, after
each move, we update the domains of xj , neighbours of the variable xi which has al-
ready been instantiated, by considering their inconsistency degrees regarding the current
partial configuration. Hence, this mechanism can be viewed as a dynamic filtering op-
eration. As the complexity of the updating step is directly linked to the graph constraint
degree, the mechanism seems to be appropriately sized only for weak arity networks.
Moreover, a tabu list is needed to prevent cycling, which notably occurs when we at-
tempt to instantiate the last uninstantiated variables in the current partial configuration.
Indeed, all the domain values (fj , pj ) likely to de-instantiate the variable xi affected by
the move are classified tabu during some iterations: the tabu tenure is proportional to the
number of times this resource has been affected. However, the aspiration criterion en-
ables selection of a tabu neighbour if and only if it improves the cost function, i.e., it has
more affected variables than the current one. Finally, the last two important elements



in a Tabu Search are the intensification and the diversification phases. Given that our
study focuses on minimising the relaxation level, we need to solve the different CSP(k)

as quickly as possible. The intensification phase is therefore not needed. The diversifi-
cation phase makes it possible to escape from attractive zones of the search space. For
this purpose, we introduce penalties during the search phase. More precisely, each time
a partial configuration s cannot be extended (i.e., the configuration s has more instanti-
ated variables than all its neighbours), we add a penalty to all pairs (xi, (fi, pi)) of the
affected variables which have an unassigned neighbour in the constraint network. These
assigned variables belong to a nogood, emphasized by adding penalties. This penalty
value is then included in the move heuristic during the diversification phase. Indeed,
the diversification phase is a tabu search in which candidate selection depends on the
“nogood” values.

4. Downward and upward methods

The presented filtering algorithm provides the last consistent level. However, this level
may be lower than the feasible one, i.e., the minimal level from which a solution exists.
If they are the same (i.e., the search method found a solution at the last consistent level
returned by the filtering), we are sure that this level is the optimal one, considering the
first point of the objective function (i.e., minimize the feasible level).

This allows to envisage two ways to tackle the FAPP: the first one starts from the
maximal level, then decreases the level when it has found a solution. The second one, in
opposite, starts from the last consistent level, and try to find a solution. If not, it increases
the level since it found a feasible level.

In the next, we will present the two approaches, downward and upward, by using
the CN -Tabu algorithm to solve each CSP(k), before giving some comparison results.

4.1. Downward approach

Downward is the most intuitive approach, knowing that a local search can say if it has
found a solution but never say if no solution exists. Starting from level k = 11 where
any ECCs was considered, by a consistent partial configuration provided by a Greedy
search, downward attempts to decrease the feasible level to the consistent one. So, the
main loop alternates search and diversification phases, in order to solve each CSP(k)

until the last consistent level and decreases k if a solution is found.
Algorithm 1 describes the downward method, where S is the search space, and f

the objective function. For more clarity, we detail the notations and functions involved:

• s∗ represents the optimal configuration;

• s− represents the partial configuration from level k − 1, obtained from the solution at
level k by de-instantiating the conflicting variables;

• n is the total number of variables;

• k is the relaxation level, where the algorithm solves the CSP(k);
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• get-filtering-domains(k): computes, for each variable domain, the consistent values
at level k. Indeed, the domains are thus dynamic;

• change-parameters(): updates the execution parameters of CN -Tabu (seed, maximal
iteration number, etc.);

• stop-criterion: means that a solution is found at the consistent level (k-const), or once
the authorised time has elapsed.

4.2. Upward approach

By contrast with downward, upward starts from the consistent level and climbs through
the levels. It attempts to solve the different CSP(k) between the consistent and the feasi-
ble levels. More precisely, while no solution is found at the current level, k is increased
and the new CSP(k) resolution starts from the best partial configuration produced by
the previous step. Once a solution is reached, the feasible level becomes k. The aim is



Table 2
Upward versus downward.

Instance k Downward Upward Instance k Downward Upward
T % time T % time T % time T % time

01-0200 4 100 0.75 100 0.44 21-0500 4 100 0.01 100 <0.001
02-0250 2 100 3.55 100 4.12 22-1750 7 100 92.03 100 0.92
03-0300 7 100 13.68 100 16.05 23-1800 9 77 7.87 100 1.75
04-0300 1 98 25.48 100 10.49 24-2000 7 100 6.52 100 0.05
05-0350 11 100 <0.001 100 0.88 25-2230 3 100 6.77 100 0.39
06-0500 5 97 204.44 99 35.05 26-2300 7 100 8.56 100 1.01
07-0600 9 83 3.91 100 3.21 27-2550 5 100 23.92 100 2.55
08-0700 5 98 39.33 99 7.1 28-2800 3 100 33.64 100 1.2
09-0800 3 100 14.78 100 7.48 29-2900 6 100 17.31 100 2.03
10-0900 6 100 869.42 98 7.64 30-3000 7 100 319.55 100 5.99
11-1000 8 95 441.31 98 22.66 31-0400 5 65 791.86 18 809.33
12-1500 2 0 – 36 1371.53 32-0550 6 99 68.86 100 0.13
13-2000 3 0 – 3 2242 33-0650 5 79 112.47 100 <0.001
14-2500 4 1 3366 2 2542 34-0750 4 94 10.04 99 5.53
15-3000 5 77 2332.87 83 1748.52 35-1500 6 48 108.02 100 2.24
16-0260 11 100 <0.001 100 <0.001 36-2000 7 87 167.95 97 10.39
17-0300 4 100 <0.001 100 <0.001 37-2250 5 14 834.5 100 1.66
18-0350 8 100 <0.001 100 <0.001 38-2500 3 42 1168.67 100 4.96
19-0350 6 100 2 100 <0.001 39-2750 3 0 – 0 –
20-0420 10 100 <0.001 100 <0.001 40-3000 4 64 722.81 98 15.8

thus to reduce the feasible level to the consistent one. Algorithm 2 describes the upward
method as an “intelligent” algorithm, which reuses information and configurations from
the previous resolution. However, this approach is more risked. Indeed, downward ap-
proach guarantees to go down from a level only if a solution was found at the current
level, whereas it may be possible that upward searches at several levels without never
finding a solution.

Algorithm 2 describes upward method. The notations are the same as downward
algorithm, on which we add:

• k-const: the relaxation level returned by the filtering process, it means that no solution
can be found at (k-const − 1) level, at less one variable domain has been empty by
constraint propagations.

• k-real: the level at which CN -Tabu has found a solution. So, the aim is to reduce the
k-real level to the k-const one.

4.3. Result comparisons

Tables 2 present the results obtained by 100 runs of one hour on each instance, with the
initial seed varying from 0 to 99. They compare the downward (columns 3 to 4) and
upward (columns 5 and 6) approaches. Column 1 is the instance name and column 2 the
obtained level, it is underlined if it is the optimal level. For each method (downward,
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and upward), we give the success rate in the T % column, as well as the average time in
seconds required to reach the optimal level, in the time column.

By comparing the number of times each method found the optimal level, we see
that upward was 100% reliable on 27 instances, whereas downward only worked on 20
instances. Even if we consider that a method can be said to be reliable if it has a ratio



�75%, downward is reliable on 31 instances, as compared with 35 for upward. These
results show that the upward approach is more stable than the downward one (i.e., it is
less dependent on the tuning parameters, especially the random seed).

Furthermore, the upward approach consumes less time than downward. Indeed,
upward is faster than downward on 29 instances, whereas downward is faster on only
4 instances. For most of the benchmark instances, the times are approximately compa-
rable. However, some need to be focused, notably instance 22-1750, where upward is a
hundred times faster than downward, or instance 32-0550, where upward is more than
500 times faster. Hence, much more time is required in order to improve the other two
components of the objective function (i.e., minimise the violated constraint number at
level k − 1, and the sum at level less than k − 1).

The risks taken by upward in its resolution, changing the relaxation level without
having necessarily found a solution on the current level, allows this method to produce
better results, in terms of quality (or stability) as well as in execution speed, than the
downward one.

Another aspect to point out concerns the hard instances 12-1500, 13-2000 and 14-
2500. The upward approach found the optimal level 36 times for 12-1500, and 3 times
for 13-2000 as compared with 0 times by the downward method. For instance 14-2500,
upward found the optimal level twice, as opposed to once by the downward approach.
These instances are said to be hard because they have many variables, many constraints,
and the filtering ratio is less than 66%. However, there are two things wrong, concerning
the instances:

• 31-0400: the downward approach obtains better results than the upward approach.
This instance has only 400 variables and all (except 6 for upward) the founded solu-
tions are at the level 5 or at level the 11.

• 39-2750: no method found a level better than 11, whereas the known optimum is 3;
except for two occasions where upward found solutions at level 8.

Table 3 details the results obtained on the hard instances, in order to better under-
stand the real difficulties met by a local search on these instances. The first two columns
give the instance name and the name of the resolution approach, the next ten show the
relaxation level. The optimal k is underlined if it has been found, otherwise an * is
inserted.

Once again, we note the effectiveness of the upward approach, notably on instance
14-2500, where the k found is mainly between 5 and 6, while it can reach 11 by down-
ward.

5. Related work

The Frequency Assignment Problem Framework has been widely studied, notably in
the context of the European Project EUCLID CALMA (Combinatorial Algorithms for
Military Applications). In 1995, the CELAR (Centre d’ELectronique de l’ARmement,



Table 3
More details on hard instances.

Instance Method 2 3 4 5 6 7 8 9 10 11

12-1500 downward * 2 16 15 34 33
upward 36 9 45 6 1 3

13-2000 downward * 11 47 40 2
upward 3 57 27 13

14-2500 downward 1 33 49 4 1 9 3
upward 2 46 51 1

31-0400 downward 65 35
upward 18 6 76

39-2750 downward * 100
upward * 2 98

France) proposed a set of benchmarks for the frequency affectation problem called the
RLFAP (Radio Link Frequency Assignment Problem) coming from real networks with
simplified data. From the wide range of literature in the field (Koster, 1999; Aardal
et al., 2002; Hao, Dorne, and Galinier, 1998; Castellino, Hurley, and Stephens, 1996;
Voudouris and Tsang, 1998), we would like to cite (Aardal et al., 2001), which provides
a very clear survey of the different frequency assignment problems and their resolution
methods.

The model studied in this paper can be viewed as a follow-up to that of the CALMA
project. Indeed, the problem is extended to take into consideration the polarisation and
the relaxation level on the electromagnetic compatibility constraints. It was the sub-
ject of the ROADEF’01 challenge, which took place at FRANCORO III, in the city of
Québec (Canada) in May 2001. It has opposed six finalist methods. We present in ta-
ble 4 the results they obtained. During the competition, only one run was allowed and
the computing time was limited to one hour on a Pentium III, 500 MHz, 128 MB. Table 4
details the hierarchical objective function, by giving first the relaxation level k, then the
sum of all the unsatisfied ECCk−1, and finally the sum of all the unsatisfied ECCi , where
i varies from 0 to k − 2.

The first approach, developed by Bisaillon’s team (Galinier et al., 2002) and re-
ferred to as TS–VN, is a local search based on Tabu Search on a variable neighbourhood.
This method successively treats three different problems:

• finding a solution at the level k (k-feasible);

• finding a k+1-feasible solution which as far as possible satisfies constraints at level k;

• finding a k + 1-feasible solution and minimising the objective function.

The algorithm MH + CP, developed by Caseau, combines constraint propagation
with meta-heuristics, increasing the level. More precisely, at each level, it “shaves”
with strong consistency. If the constraint network is consistent, a Large Neighbourhood
Search (Shaw, 1998) returns a configuration. If it is a nonfeasible solution, then a Limited
Discrepancy Search (Harvey and Ginsberg, 1995) tries to obtain a feasible one. If not, it
increases the level.



Table 4
Comparison with others methods.

FAPP TS–VN MH + CP LS–CC LNS + CP Tabu CN -Tabu
k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2

01-0200 4 4 56 4 6 279 4 14 165 4 5 210 5 1 281 4 14 233
02-0250 2 7 86 2 18 248 2 21 160 11 1 435 11 1 1274 2 20 195
03-0300 7 10 341 7 27 1076 7 16 420 11 1 1211 7 13 589 7 32 892
04-0300 1 31 0 1 164 0 3 9 224 2 1 282 7 1 3678 1 184 0
05-0350 11 1 372 11 892 12364 11 1 1467 11 97 3459 11 7 2284 11 364 5694
06-0500 5 12 246 5 53 1029 7 15 879 6 1 1086 7 15 1210 5 31 811
07-0600 9 22 714 9 132 4419 10 28 3070 12 – – 9 33 1585 9 106 3375
08-0700 5 16 266 5 53 1359 5 37 691 11 3 2144 5 26 625 5 73 1225
09-0800 3 28 195 3 63 937 4 24 573 4 2 999 10 1 3678 3 104 846
10-0900 6 18 475 6 82 2365 6 39 1146 11 4 3661 8 5 2871 6 103 2003
11-1000 8 8 1015 8 119 5206 9 30 3736 11 8 6146 10 1 5108 8 119 4191
12-1500 3 83 1698 7 180 6538 11 17 2634 11 647 13797 9 70 7682 2 62 1310
13-2000 3 49 2003 7 229 7503 11 59 6164 11 671 15145 10 13 9651 5 132 3645
14-2500 4 35 3485 8 18 10661 11 3 5574 11 1209 24751 10 101 15718 5 217 5045
15-3000 5 15 1569 7 333 9988 11 46 9523 11 1060 22898 10 61 14010 5 192 4727
16-0260 11 5 56 11 572 5779 11 67 913 11 590 5968 11 5 57 11 514 5189
17-0300 4 4 34 4 4 36 4 4 35 4 4 36 4 4 34 4 4 36
18-0350 8 4 55 8 4 55 8 4 57 8 4 57 8 4 55 8 4 59
19-0350 6 2 51 6 3 79 6 2 53 6 2 60 6 2 51 6 3 70
20-0420 10 5 97 10 6 145 10 5 99 10 5 106 10 5 97 10 7 142
21-0500 4 2 10 4 2 12 4 2 11 4 2 12 4 2 10 4 2 12
22-1750 7 15 187 7 16 356 7 16 194 7 15 292 7 15 187 7 25 503
23-1800 9 16 187 9 17 197 9 16 189 12 – – 9 16 187 9 17 197
24-2000 7 6 71 7 7 90 7 7 79 7 6 77 7 6 71 7 9 91
25-2230 3 7 32 3 7 33 3 7 33 3 7 34 3 7 32 3 7 33
26-2300 7 9 74 7 10 81 7 9 74 7 9 75 7 9 74 7 10 86
27-2550 11 4 64 5 7 46 5 8 37 5 4 22 5 4 20 5 11 54
28-2800 3 13 32 3 32 129 3 25 58 3 14 72 3 13 32 3 42 142
29-2900 6 25 239 6 28 351 6 25 212 12 – – 6 25 212 6 25 310
30-3000 11 1166 12029 7 17 602 7 16 190 12 – – 7 13 148 7 48 1045
31-0400 5 4 1180 5 161 2131 5 34 1151 5 63 1845 5 16 1400 5 117 1896
32-0550 10 52 1739 6 16 388 6 5 71 11 116 2057 11 25 2166 6 10 235
33-0650 5 7 66 5 16 332 5 7 77 5 7 181 11 5 1310 5 10 235
34-0750 4 2 46 4 35 767 4 6 213 4 3 433 10 1 1701 4 22 565
35-1500 7 3 1280 6 74 1919 6 16 431 11 324 5967 11 24 5870 6 62 1375
36-2000 7 99 2153 9 3 2478 8 25 970 7 19 1451 11 16 4652 7 63 1643
37-2250 11 3 12229 5 56 1745 8 13 975 11 4703 52406 11 14 10353 5 51 1288
38-2500 11 79 14058 3 39 572 3 14 174 12 – – 11 53 13355 9 125 6717
39-2750 3 356 2844 3 2567 10470 3 747 4603 3 2211 9498 11 36 13267 11394740473
40-3000 11 39 16755 4 77 1562 8 20 1261 12 – – 11 867 13684 4 64 1252

The third method, LS–CC, developed by Gavranovic is a typical Local Search
guided by the constraint cost. At each level, it builds frequency trees, ignoring the
polarisation constraints. Then it tries to optimise the polarisation allocation.



In a similar way, the classical Tabu Search (referred to as Tabu in table 4), imple-
mented by Schindl’s team decreases the level, and at each level optimises a frequency
allocation without any polarisation, then assigns polarisation values.

Michelon junior team solves the FAPP by using a meta-heuristic based on a Large
Neighbourhood Search and on constraint propagation (LNS + CP). They relax some
constraints to obtain a maximal cover tree. Indeed, their algorithm works in three phases:
first it computes a lower bound of k, then it searches for a k-feasible solution, and finally
it improves this solution with respect to the last two points of the objective function.

Finally, the last column gives the results obtained by the CN -Tabu developed for
the challenge. It follows the downward approach, using a standard AC procedure.

Briefly to analyse table 4, we only focus on the optimal level k∗. The first method
(TS–VN) reaches this level in 32 instances, the second (MH + CP) in 35 instances,
and the third (LS–CC) in 28 instances. Both LNS + CP and Tabu reach k∗ only in
19 instances. By achieving optimality 36 times, CN -Tabu obtains the best results in
the competition. Moreover, the improvements presented in this paper are significant.
Indeed, downward finds k∗ for 37 instances and upward fails only in one instance (see
table 2). However, great care is needed, because the running conditions are not the same:
although the resolution time was fixed to one hour, CPU speeds are different, and we
consider the best results out of 100 runs.

More details on this challenge, the benchmarks, and all the results can be found on
the web site: http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/
2001/challenge2001_en.html

6. Conclusion and perspectives

In this paper, we have presented an original approach to the resolution of the FAPP. It
combines a specific filtering algorithm with the hybrid CN -Tabu search.

The filtering algorithm, based on the FAPP constraint specificities and improved by
considering the path inverse consistency on 3-cliques, refines the consistent level search.
From a theoretical point of view, the PIC algorithm for the 3-cliques on ECCs, could be
generalised to the k-inverse consistency. The k-inverse consistent domain of Di becomes
the intersection between Di and the k! intervals defined by the k! orders. The complexity
remains linear within the domain size.

CN -Tabu hybridises a Tabu Search with arc-consistent mechanisms, by consider-
ing the consistent neighbourhood. Efficient at solving CSPs, it is the kernel of the two
hierarchical resolution strategies downward and upward. Emphasised by the experimen-
tal results, the speed and stability of upward confirm the effectiveness of working on
partial but consistent configurations. Moreover, they enable the other two components
of the objective function to be tackled. To achieve this, we envisage to define equality
constraints of distances between frequencies as meta-variables because of their hardness.
One last point that should be highlighted concerns instance 39-2750, for which a more
precise analysis is needed to understand its constraint network particularity, in order to
improve the CN -Tabu.
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