
HAL Id: hal-00353825
https://hal.science/hal-00353825

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency checking within local search applied to the
frequency assignment with polarization problem

Michel Vasquez, Audrey Dupont, Djamal Habet

To cite this version:
Michel Vasquez, Audrey Dupont, Djamal Habet. Consistency checking within local search applied to
the frequency assignment with polarization problem. RAIRO - Operations Research, 2003, 37 (4),
pp.311-323. �10.1051/ro:2004004�. �hal-00353825�

https://hal.science/hal-00353825
https://hal.archives-ouvertes.fr

CONSISTENCY CHECKING WITHIN LOCAL SEARCH
APPLIED TO THE FREQUENCY ASSIGNMENT

WITH POLARIZATION PROBLEM

Michel Vasquez
1
, Audrey Dupont

1
and Djamal Habet

1

Abstract. We present a hybrid approach for the Frequency Assign-
ment Problem with Polarization. This problem, viewed as Max-CSP,
is treated as a sequence of decision problems, CSP like. The proposed approach
combines the Arc-Consistency techniques with a performed
Tabu Search heuristic. The resulting algorithm gives some high qual-
ity solutions and has proved its robustness on instances with approxi-
mately a thousand variables and nearly ten thousand constraints.

Keywords. Filtering techniques, consistency checking, Tabu Search.

1. Introduction

The ever-increasing demand for communication, coupled with the limited num-
ber available spectra, have made frequency assignment more and more difficult to
accomplish effectively. Optimization of this process has therefore become a major
issue for network administration and deployment, both civil and military. The
Frequency Assignment Problem with Polarization (FAPP) can be formalized as a
Max-CSP which is known to be NP-hard.

Because the data problem to be optimized was very large, we decided to adopt a
local search method. From among all the existing algorithms, we chose Tabu Search,
introduced by Glover in [8]. The specific structure of the FAPP constraint net-work
led us to apply local filtering techniques. Consequently, an arc-consistency
procedure, AC, was embedded in the Tabu Search framework to reduce the search

1 Centre LGI2P, École des mines d’Alès, site EERIE, 30035 Nı̂mes Cedex 1, France;
e-mail: vasquez,dupont,habet@site-eerie.ema.fr

space. Hence, the consistency checking concept occurred twice (during the res-
olution): firstly in the filtering pre-processing, and secondly in the kernel of the
neighborhood design.

After presenting the physical and formal definitions of the FAPP problem in
Section 2, we describe in Section 3 our general approach to solve it. Finally, a large
number of experimental results are discussed and compared in Section 4, in order
to highlight the advantages obtained by combining a constraint programming tool
with the local search heuristic.

2. Problem definition

2.1. Physical description

The FAPP consists in finding an optimal frequency allocation in hertzian
telecommunication networks. The network is composed of a set of sites in which
the transmission devices (antennae connected to emitters or receptors) are located.
A hertzian connection joins two geographic sites by one or more paths. A path
is a uni-directional radio-electric bond, established between antennae at distinct
sites, which has a given frequency and polarization.

A frequency resource is therefore a (frequency, polarization) pair in which the
components are respectively associated to the carrying frequency of the transmit-
ted signal, and the wave polarization. The polarization is simply either positive or
negative. Accordingly, we define the path domain as a set of available resources.
This set contains the frequency domain Fi, and the polarization information Pi,
which may include a required polarization.

A frequency allocation consists in assigning a (fi, pi) pair for each path i which
satisfies certain radio-electric compatibility constraints (1, 2, and 3), and minimal
distance constraints to avoid interference (4):

1. frequencies equality or not across paths i and j: fi = fj or fi �= fj ;
2. distance between frequencies: |fi − fj | = εij or |fi − fj | �= εij ;
3. polarization equality or not across paths: pi = pj or pi �= pj ;

4. minimal distance between frequencies: |fi − fj | ≥
{

γij if pi = pj

δij if pi �= pj .

In the constraints (4), the required distance between frequencies depends on their
polarizations: the distance is obviously smaller if the polarizations are different
(γij ≥ δij).

A feasible solution is an allocation for each path that satisfies the full set of
constraints. Unfortunately, most problems do not have any such feasible solution,
because the domains are too restrictive or the requirements are too numerous.
The operator must therefore search for a “good quality” solution in terms of in-
terference, rather than a feasible one. For this purpose, two constraint classes are
introduced:

– CI: strong or imperative constraints (1, 2, and 3 above);
– CEM: constraints of type 4 where progressive relaxation is authorized and

controlled by 11 relaxation levels. Level 0 corresponds to no relaxation.
Increasing from level k to k + 1 involves relaxation of some or all the
frequency distances defining each constraint, the maximum level being 10:

|fi − fj| ≥
{

γ0
ij ≥ γ1

ij ≥ ... ≥ γk
ij ≥ ... ≥ γ10

ij if pi = pj

δ0
ij ≥ δ1

ij ≥ ... ≥ δk
ij ≥ ... ≥ δ10

ij if pi �= pj.

In this context, a feasible solution at level k is an allocation of each path satisfying
all the strong constraints CI and all the CEM constraints at level k, noted CEMk.
Such a problem is said to be k-feasible. Assuming that a good quality solution
minimizes interference, and that the smaller k is the fewer CEM constraints are
relaxed, the hierarchical objective function is dependent on k: first minimizing k,
secondly minimizing the number of unsatisfied CEMk−1 constraints, and finally
minimizing the number of unsatisfied CEM constraints at the levels below k − 1.

2.2. Formal definition

From this physical description, modelling the FAPP as a Maximal Constraint
Satisfaction Problem (Max-CSP), consists in defining the constraint network
〈X ,D, C〉, and the formal criterion to minimize f :

– associating a variable xi to each path: X = {pi, i = 1, ..., n};
– associating to xi a domain Di = Fi×Pi, where Fi is the set of the allowed

frequencies for the path xi and Pi is one of the following sets {-1}, {1}, or
{-1, 1}, D =

⋃
i=1,...,n Di;

– adding several imperative constraints CI between two paths xi and xj :
fi = fj or fi �= fj , |fi − fj | = εij or |fi − fj | �= εij , pi = pj or pi �= pj ;

– adding CEM constraints where progressive relaxation is authorized:

|fi − fj| ≥
{

γ0
ij ≥ ... ≥ γk

ij if pi = pj

δ0
ij ≥ ... ≥ δk

ij if pi �= pj

where the index k, increasing from 0 to 10, indicates the relaxation level
of the CEM constraints.
C = CI ∪ CEM;

– let V(k) be the set of unsatisfied CEMk constraints. The hierarchical ob-
jective function to be minimized is:

f =

(
k, V(k−1),

∑
i<k−1

V(i)

)

where k is such that the problem is k-feasible. The formal criterion f
is directly related to the hierarchical optimization problem. We must
therefore successively minimize k, V(k−1) then Σi<k−1V(i).

Where necessary, for simplicity, we also define:

– Ck = CI ∪CEMk the whole constraint set at level k;
– CI(i, j) ⊂ CI the imperative constraints involving the paths i and j;
– CEMk(i, j) ⊂ CEMk the relaxed constraints involving the paths i and j.

3. General approach for solving the FAPP

Among all of the dedicated algorithms to solve frequency assignment prob-
lems [1,4,11], only heuristic based approaches can produce good quality solutions
in reasonable computing time for realistically sized instances. The described al-
gorithm here is also a meta-heuristic one. Although it may seem unworkable to
attempt to use a pre-processing filtering operation on an optimisation problem, our
Tabu Search procedure is reinforced by a consistency technique that reduces the
search space and increases the overall efficiency of the neighborhood exploration.
Indeed:

– let n be the path number of a FAPP instance;
– let S be the non constrained search space: S includes all the configuration

vectors s = ((f1, p1), ..., (fn, pn)) such as fi ∈ Fi and pi ∈ Pi.

The initial size of S, equal to
∏n

1 |Fi| × |Pi|, is huge, even for the smallest FAPP
instances (200 ≤ n ≤ 3000 and 19 ≤ |Fi| ≤ 500). To cope with this difficulty, we
restrict the Fi domains by a filtering process.

The two expected advantages of such a reduction in domain size are: firstly
to decrease the time complexity of the neighborhood evaluation, and secondly to
avoid exploring wrong areas in the search space. That is why we hybridize our
Tabu Search algorithm with an Arc-Consistent (AC) filtering process.

Another important feature of this approach, with the aim of reducing comput-
ing complexity, is that only the first component k of the objective function f is
considered within the move heuristic. Consequently, the optimization process is
transformed into a sequence of decision problems verifying the existence of a k-
feasible configuration, where k decreases from 11 to k∗ (best k found). The search
for a lower value of k is started only if a (k + 1)-feasible configuration has been
found. Hence, we solve several CSPs rather than one Max-CSP.

To summarize, if AC is the filtering function of the frequency domains, and
Tabu the exploring function of the search space using the meta-heuristic Tabu
Search, we have the general pattern described in Algorithm 1.

Algorithm 1. AC-Tabu

begin
k ← 11
while AC(k) = True do

if Tabu(k) = True then
k ← k∗ − 1

end

This is a very straightforward iterative procedure. When either AC(k) or Tabu(k)
fails then AC-Tabu returns k∗ = k + 1 as the best k∗-feasible solution found. If
AC(k− 1) fails and Tabu(k) finds a solution, then k is the optimal value. Indeed,
AC provides the Lower Bound of k, and Tabu the Upper one.

On the other hand, if Tabu(k) finds a feasible solution, that solution may be
k∗-feasible, with k∗ < k. This means that Tabu can jump more than one k-level.

3.1. Filtering with AC

Arc-consistency is a widely studied topic in constraint programming [2,3,12,13].
AC eliminates variable values with no support, since such values cannot lead to a
feasible solution.

As FAPP constraints are binary, it is easy to check for every path i (1 ≤ i ≤ n)
and for every value couple (fi, pi), if for each neighbor j of i, there is a couple
(fj, pj) such that CI(i, j) and CEMk(i, j) are satisfied. This elimination process,
eliminate(Fi, Pi, k), is repeated until there is no change in the domain of any
variable: in this case eliminate returns False, otherwise it returns True. For
more details about such algorithms, please refer to [2,3,12]. The main features of
the following AC(k) procedure are:

– managing a list of updated variable domains, in order to check, at the next
iteration, only the variables for which their domains have changed;

– for each fi and pi values, and for each constraint C(i, j), the eliminate
(Fi, Pi, k) function checks another value in the domain Di as soon as it
has found a pair fj ∈ Dj and pj ∈ Pj satisfying C(i, j).

Algorithm 2. AC(k)

begin
change← True
while change do

change← False
for i ∈ [1, n] do

if eliminate(Fi, Pi, k) then
if Fi = ∅ or Pi = ∅ then

return False

change← True

end

3.2. Exploring with Tabu

Contrary to the random local search, where randomness is extensively used,
the meta-heuristic Tabu Search is based on the belief that an intelligent search
should include more systematic forms of guidance based on adaptive memory and
learning.

Designing a good Tabu Search requires that its main characteristics should be
well defined: the effective search space and therefore the definition of the visited
configurations, the neighborhood structure, the move heuristic, and the tabu list
management.

Algorithm 3. Tabu(k)

begin
s← �0 % i.e. any path is allocated: |s| = 0
s∗ ← s % the best configuration found so far
while stop-criterion = False do

smax ← �0 % the best neighbor of s
for s′ ∈ N (s) do

if ∆(s, s′) > 0 ∨ move(s, s′) is not tabu then
1 if ∆(s, s′) > ∆(s, smax) then

smax ← s′

if smax �= �0 then
s← smax % move(s, smax)
if |s| > |s∗| then

s∗ ← s
if |s| = n then

return True

update tabu list

else
stop-criterion ← True

return False
end

In our approach, the search space is defined over partial configurations expressed
by s = (v1, v2, ..., vni), where vi = (fi, pi) and ni variables are instantiated (with
ni = |s|). To conform with the standard representation by n-ary vectors, we
add a new value u (for uninstantiated) to each domain Di, for indicating that xi

is free. Accordingly, the evaluation criterion of a configuration is the number of
instantiated variables in s.

This improvement enabled us to work on a consistent neighborhood N (s). At
each level k, the visited configurations in N (s) respect the CI and the CEMk con-
straints. In order to build this original neighborhood, a move(s,s’), replacing the
current configuration s by s′ ∈ N (s), is achieved in two steps: an instantiation
of a free variable (i.e. set to u), followed by consistent reparations, which are
simply deinstantiations of the conflicting variables with respect to the Ck con-
straints. Consequently, the selected move must improve the configuration (i.e.
increase |s|). Hence, the evaluation heuristic of moves from s to s′ ∈ N (s), is
simply ∆(s, s′) = |s′| − |s|. Note that the ∆ evaluation is carried out very quickly
using efficient incremental techniques, which are now well known [5, 6, 15, 16].

The tabu list is needed to prevent cycling, which notably occurs when we at-
tempt to instantiate the last free variables. To avoid undoing the recent instantia-
tion (xi, vi), we penalize all the conflicting pairs (xj , vj) where xj are the neighbors
of xi in the constraint network, regarding the CI(i, j) and the CEMk(i, j). In this
way, we maintain a table counting the number of times a resource vl is assigned
to a path xi (freq[i][l]++). So, the tabu tenure is a dynamic function based on
the flip frequencies: tabu[i][l] = freq[i][l]+ iter, where iter is the current iteration
number.

The stop-criterion is either if a solution is found, or if computing time has
elapsed.

With the specifications, we thus present the general Tabu algorithm in 3.

3.3. Diversification

The aim of the diversification phase is to enable Tabu to escape from attractive
zones of the search space. For this purpose, we introduce penalties in the move
heuristic. More precisely, each time a configuration s such as ∀s′ ∈ N(s), |s′| ≤ |s|
is reached, we add a penalty to all the allocated paths having an unallocated
neighbor in the constraint graph. This penalty value is then included in the move
heuristic during the diversification phase. Hence, the line [1] in Algorithm 3 is
replaced by the following code, where nogoodmin is the threshold value, and penalty
is the effective penalty value of the move.

if (∆(s, s′) > ∆(s, smax)) ∨ (∆(s, s′) = ∆(s, smax) ∧ penalty < nogoodmin) then
smax ← s′

nogoodmin ← penalty

4. Numerical experimentation

The algorithms were coded in C programming language. The running tests
were carried out on an NT PC station with a Pentium III 600 MHz cpu. The
results are presented in four parts. The first describes the reduction of the search
space by the filtering step. The second describes the best qualitative results ob-
tained by the hybrid approach AC-Tabu. The next section then compares the
results produced by our Tabu and the hybrid AC-Tabu algorithm. This section
ends with a comparison between several methods proposed for the ROADEF-2001
challenge. More information about this competition is available on the web site
http://www.prism.uvsq.fr/∼vdc/ROADEF/CHALLENGES/2001/

4.1. Cutting frequency domains

This first table shows some characteristics of the fapp instances, their size is
given in the second part of their name: up to 3000 variables (paths). These

Table 1. Search Space reduction.

fapp IDS FDS ∆% k0 sec. fapp IDS FDS ∆% k0 sec.

01 0200 26 963 12 712 52.85 2 0 16 0260 47 293 46 622 1.42 10 0

02 0250 36 618 14 759 59.69 1 2 17 0300 64 034 918 98.57 3 0

03 0300 53 536 28 212 47.30 6 1 18 0350 73 016 1089 98.51 7 0

04 0300 61 762 21 962 64.44 0 4 19 0350 201 074 3414 98.30 5 6

05 0350 79 311 54 177 31.69 7 2 20 0420 87 077 1886 97.83 9 0

06 0500 108 024 53 034 50.91 4 6 21 0500 113 594 7745 93.18 3 1

07 0600 109 658 69 952 36.21 8 2 22 1750 813 037 10 656 98.69 6 25

08 0700 134 020 81 933 38.87 4 5 23 1800 455 735 3265 99.28 8 9

09 0800 121 824 52 948 56.54 2 6 24 2000 567 396 8328 98.53 6 4

10 0900 197 665 122 050 38.25 5 8 25 2230 610 084 18 867 96.91 2 6

11 1000 294 634 152 727 48.16 7 15 26 2300 635 123 14 217 97.76 6 4

12 1500 436 967 164 613 62.33 1 70 27 2550 588188 93 768 84.06 4 8

13 2000 320 494 144 873 54.80 2 21 28 2800 2 087 947 63 597 96.95 2 66

14 2500 774 322 320 458 58.61 3 92 29 2900 1 477 634 6435 99.56 5 23

15 3000 515 606 306 127 40.63 4 24 30 3000 1 942 250 80 703 95.84 6 103

problems contain up to 2 087 947 total domain values, and up to 67 898 binary
constraints.

Table 1 gives the Initial Domain Size (IDS =
∑n

1 |D0
i |) and the Filtered one

(FDS =
∑n

1 |Df
i |). Columns k0 indicate the highest unfeasible level encountered

by the AC-Tabu procedure, and columns sec. give the computing time in seconds
for the whole iterative filtering process. This table shows that no more than two
minutes are required by AC-Tabu to reduce the domains of the largest instances
of this benchmark.

Apart from the fapp16 0260 problem, these benchmarks can be divided into two
subsets. The first one (from 01 to 15) contains the instances where the domain
size is reduced by nearly half. In the second one (from 17 to 30), domains are
reduced more than 90%.

4.2. Hybrid approach results

This part begins with the results obtained by the hybrid approach after 1 com-
puting hour. Only one run (with the 0 random seed) was carried out in this
experiment.

For each instance, the Table 2 specifies:

– k, the lowest level where a solution is found. This value is underlined when
AC-Tabu proves its optimality;

– Vk−1, the number of unsatisfied CEM constraints at level k − 1;
–
∑

Vk−2, the sum of the unsatisfied CEM constraints under the k−1 level;
– t1, the elapsed time in seconds required to reach the best value of k;
– and t2, the elapsed time required to obtain the best configuration (consid-

ering the three components of the objective function).

Table 2. AC-Tabu results after 1 computing hour.

fapp k Vk−1
∑

Vk−2 t1 t2 fapp k Vk−1
∑

Vk−2 t1 t2

01 0200 4 4 203 2 1839 16 0260 11 382 3864 0 2976

02 0250 2 16 173 19 19 17 0300 4 4 36 1 1

03 0300 7 28 835 30 34 18 0350 8 4 55 1 1

04 0300 1 97 0 26 2595 19 0350 6 3 66 16 16

05 0350 11 1 1836 1 3571 20 0420 10 6 133 2 2

06 0500 5 30 764 232 233 21 0500 4 2 12 2 2

07 0600 9 85 3039 107 433 22 1750 7 22 383 76 76

08 0700 5 67 1131 21 35 23 1800 9 16 189 31 31

09 0800 3 71 707 1789 1796 24 2000 7 9 91 17 17

10 0900 6 74 1877 174 372 25 2230 3 7 33 19 19

11 1000 8 105 4278 63 139 26 2300 7 8 75 18 18

12 1500 4 87 2138 2873 2873 27 2550 5 9 46 21 21

13 2000 5 126 3469 1020 1020 28 2800 3 38 125 165 203

14 2500 6 211 6302 1875 2950 29 2900 6 25 280 86 86

15 3000 5 198 4770 2534 2807 30 3000 7 36 798 268 275

Table 3. Improved results after 3 hours of computing.

fapp k Vk−1
∑

Vk−2 t1 t2

01 0200 4 4 139 2 10 194

05 0350 11 1 1683 1 5446

12 1500 2 57 1263 5384 5388

13 2000 3 165 2253 7345 7686

14 2500 5 168 4700 10 450 10 450

16 0260 11 358 3656 0 8543

Regarding the feasibility level, most of the k are proved optimal (25 of the 30 in-
stances). Obviously, the instances for which no k∗ is found are those belonging to
the first subset described above. Now, we shall see what happens if we give more
cpu time to the hybrid algorithm process.

Table 3 shows only the improved solutions reached after 3 computing hours.
Unfortunately, no improvement has been obtained for the majority of the instances.
Nevertheless, we can see again that it only concerns problems belonging to the first
subset of fapp instances. Elsewhere, two new optimal values of k are proved (for
the 12 1500 and the 13 2000 problems).

4.3. Tabu versus AC-Tabu

This section compares the behaviors of Tabu alone and the hybrid AC-Tabu
algorithm. These algorithms were executed 8 times with seed values varying from 0
to 7, and one hour of computing time.

Table 4 focuses on the k-feasibility level and gives the best (kmin) and the
worst (kmax) solutions found by the Tabu and hybrid AC-Tabu processes.

Table 4. Best and worst results for the level of feasibility.

AC-Tabu Tabu AC-Tabu Tabu

fapp kmin kmax kmin kmax fapp kmin kmax kmin kmax

01 0200 4 4 4 4 16 0260 11 11 11 11

02 0250 2 2 2 3 17 0300 4 4 4 4

03 0300 7 7 7 7 18 0350 8 8 8 8

04 0300 1 1 1 11 19 0350 6 6 6 9

05 0350 11 11 11 11 20 0420 10 10 10 10

06 0500 5 5 5 6 21 0500 4 4 4 5

07 0600 9 10 9 10 22 1750 7 7 7 11

08 0700 5 6 5 6 23 1800 9 9 9 11

09 0800 3 4 3 8 24 2000 7 7 7 11

10 0900 6 7 6 11 25 2230 3 3 10 11

11 1000 8 9 8 11 26 2300 7 7 7 10

12 1500 4 7 6 8 27 2550 5 5 11 11

13 2000 5 6 6 6 28 2800 3 3 9 11

14 2500 6 6 7 11 29 2900 6 6 8 12

15 3000 5 6 7 11 30 3000 7 7 11 11

The gap between kmin and kmax is higher for Tabu, than for AC-Tabu, notably
on the second subset of the benchmark. In conclusion, the behavior of AC-Tabu
is more stable than that of Tabu alone.

Note that the results of fapp12 1500, fapp13 2000 and fapp14 2500 do not
contradict those from Table 3: it simply means that AC-Tabu finds a better so-
lution in 3 hours with 0 random seed than in 8 × 1 hour with different random
seeds.

4.4. Comparison with others methods

We will now present the results obtained during the ROADEF-2001 challenge,
which took place in FRANCORO III, in the city of Québec (Canada).

The three compared algorithms (apart from ours) were developed by Caseau
(MH+PPC), the Bisaillon team (Tabu), and the Michelon junior team
(LNS+PPC).

The (MH+PPC) algorithm combines some constraint propagation with meta-
heuristics. More precisely, the algorithm increases the level, and at each one it
shaves by strong consistency, shuffles by a Large Neighborhood Search (LNS) [14],
which gives a non-feasible solution, and finally tries to obtain a feasible solution by
a Limited Discrepancy Search (LDS) [10], such as a Variable Neighborhood local
search (VNS) [9].

The second approach (Tabu) [7] is a local search approach based on Tabu Search
that includes some original features, including a specialized neighborhood, heuris-
tics to determine critical variables and values, different diversification techniques,
an auto-adaptative mechanism to set the tabu list and finally, a pre-processing op-
eration based on consistency techniques inherited from constraint programming.
It is used to treat three different problems:

– Constraint Satisfaction Problem to find a solution at level k;
– the problem which satisfies all the constraints at level k + 1, and as much

as possible at level k;
– the problem which satisfies all the constraints at level k+1, and minimizes

the objective function.

The Michelon junior team solves the FAPP by using a meta-heuristic based on
a Large Neighborhood Search [14] and Constraint Propagation. Also, they relax
certain constraints to obtain a Maximal Cover Tree. Indeed, their algorithm works
in three phases: first it computes a lower bound of k, then it searches for a solution
at this level k, and finally it improves this solution with respect to the two last
points of the objective function. So as to compare several methods, in terms of
quality, we have just given the three values of the objective function: k (underlined
when the method proves optimality), the unsatisfied constraint number at level
k − 1, and the sum of the unsatisfied constraints at the levels below k − 1.

The AC-Tabu column gives the results obtained by our method during the
challenge. Note that they have been improved since the competition. Indeed, we
have polished the code, and experiments are made on different computers. More
details about the challenge, benchmarks and all the results can be found on the
web site http://www.prism.uvsq.fr/∼vdc/ROADEF/CHALLENGES/2001/

The main test condition is a computing time limited to one hour on a Pen-
tium III, 500 Mhz, 128 Mo.

Regarding only the level k, MH+PPC found the optimal k 26 times, Tabu
27 times, LNS+PPC 27 times, and AC-Tabu 28 times. It seems that there is a
problem with the LNS+PPC method, because in 4 instances, it could not find a
solution (k = 12) and in several others it found no solution better than 11.

Regarding the two other components of the objective function, Tabu without
AC gave the best results 27 times, although it could not prove optimality. In fact,
the time spent on the PPC techniques in the other methods, was spent to improve
the full objective function.

This method comparison reveals that the most difficult instances of the bench-
mark were 12 1500, 13 2000 and 14 2500.

To conclude, Table 5 highlights the effectiveness of approximate methods com-
bined with some arc-consistent processes on very large instances.

Table 5. Comparison with three other methods.

MH+PPC Tabu LNS+PPC AC-Tabu

fapp k Vk−1
∑

Vk−2 k Vk−1
∑

Vk−2 k Vk−1
∑

Vk−2 k Vk−1
∑

Vk−2

01 0200 4 6 279 4 4 56 4 5 210 4 14 233
02 0250 2 18 248 2 7 86 11 1 435 2 20 195
03 0300 7 27 1076 7 10 341 11 1 1211 7 32 892
04 0300 1 164 0 1 31 0 2 1 282 1 184 0
05 0350 11 892 12 364 11 1 372 11 97 3459 11 364 5694
06 0500 5 53 1029 5 12 246 6 1 1086 5 31 811
07 0600 9 132 4419 9 22 714 12 - - 9 106 3375
08 0700 5 53 1359 5 16 266 11 3 2144 5 73 1225
09 0800 3 63 937 3 28 195 4 2 999 3 104 846
10 0900 6 82 2365 6 18 475 11 4 3661 6 103 2003
11 1000 8 119 5206 8 8 1015 11 8 6146 8 119 4191
12 1500 7 180 6538 3 83 1698 11 647 13 797 2 62 1310
13 2000 7 229 7503 3 49 2003 11 671 15 145 5 132 3645
14 2500 8 18 10 661 4 35 3485 11 1209 24 751 5 217 5045
15 3000 7 333 9988 5 15 1569 11 1060 22 898 5 192 4727
16 0260 11 572 5779 11 5 56 11 590 5968 11 514 5189
17 0300 4 4 36 4 4 34 4 4 36 4 4 36
18 0350 8 4 55 8 4 55 8 4 57 8 4 59
19 0350 6 3 79 6 2 51 6 2 60 6 3 70
20 0420 10 6 145 10 5 97 10 5 106 10 7 142
21 0500 4 2 12 4 2 10 4 2 12 4 2 12
22 1750 7 16 356 7 15 187 7 15 292 7 25 503
23 1800 9 17 197 9 16 187 12 - - 9 17 197
24 2000 7 7 90 7 6 71 7 6 77 7 9 91
25 2230 3 7 33 3 7 32 3 7 34 3 7 33
26 2300 7 10 81 7 9 74 7 9 75 7 10 86
27 2550 5 7 46 11 4 64 5 4 22 5 11 54
28 2800 3 32 129 3 13 32 3 14 72 3 42 142
29 2900 6 28 351 6 25 239 12 - - 6 25 310
30 3000 7 17 602 11 1166 12 029 12 - - 7 48 1045

5. Conclusion

In this paper we have presented a hybrid approach to solve the Frequency
Assignment Problem with Polarization. AC-Tabu combines some arc-consistent
techniques and an original Tabu Search process, with a large neighborhood ex-
ploration by means of maintaining consistency. It produces very good results on
large-sized FAPP instances.

Tabu alone proves its own worth. Indeed, it provides most of the best results
but at the same time, some of the worst ones. There are two main reasons that
justify the filtering step: the behavior regularity of the hybrid search algorithm,
and the proven optimality of the k-feasibility level, for most of the FAPP instances.

Some improvements to this approach are still to be expected. Two perspectives
for future work can be identified. Firstly, making AC faster by studying the most
recent AC algorithms [3] and adapting to the FAPP constraint semantic. Secondly,
considering the two other objective function components Vk−1 and

∑
i<k−1 Vi in

the Tabu procedure.

Acknowledgement. Special thanks to Van-Dat Cung (PRiSM-UVSQ), Thierry Defaix
(CELAR-DGA) and Maurice Diamantini (ENSTA) for allowing us to use their FAPP def-
inition. Thanks also to Gérard Verfaillie for fruitful discussion about some arc-consistent
techniques.

References

[1] K.I. Aardal, C.A.J. Hurkens, J.K. Lenstra and S.R. Tiourine, Algorithms for Frequency
Assignment Problems. CWI Quartely 9 (1996) 1-9.

[2] C. Bessière, Arc–consistency and Arc-consistency again. Artif. Intell. 65 (1994) 179-190.
[3] C. Bessière and J.C. Régin, Refining the Basic Consistency Propagation Algorithm, in

the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), Seattle-
Washington, USA (2001) 309-315.

[4] R. Dorne, Étude des méthodes heuristiques pour la coloration, la T-coloration et l’affectation
de fréquences. Ph.D. thesis, Université Montpellier II Sciences et Techniques du Languedoc

(mai 1998).
[5] C. Fleurent and J.A. Ferland, Genetic and Hybrid Algorithms for Graph Coloring. Ann.

Oper. Res. 63 (1996) 437-461.

[6] P. Galinier, Étude des métaheuristiques pour la résolution du problème de satisfaction de
contraintes et de coloration de graphes. Ph.D. thesis, Université Montpellier II Sciences et
Techniques du Languedoc (janvier 1999).

[7] P. Galinier, S. Bisaillon, M. Gendreau and P. Soriano, Solving the Frequency Assignment
Problem with Polarization by Local Search and Tabu, in The 6th Triennal Conference of
the International Federation of Operational Research Societies (IFORS’02), University of
Edinburgh, UK (July 2002) 8-12.

[8] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers (1997).
[9] P. Hansen and N. Mladenovic, Variable Neighborhood Search. Comput. Oper. Res. 24 (1997)

1097-1100.
[10] W.D. Harvey and M.L. Ginsberg, Limited Discrepancy Search, in Proc. of the 14th Inter-

national Joint Conference on Artificial intelligence (IJCAI-95) (1995) 607-613.
[11] M. Jiang, Méthodes Approchées pour le Problème de Coloriage Généralisé Application au

Problème d’Allocation de Fréquences Multiservices dans l’Aviation Civile. Ph.D. thesis,
Université Versailles Saint-Quentin-en-Yvelines (novembre 1996).

[12] A.K. Mackworth, Consistency in Networks of Relations. Artif. Intell. 8 (1977) 99-118.
[13] R. Mohr and T.C. Henderson, Arc and Path Consistency revisited. Artif. Intell. 28 (1986)

225-233.
[14] P Shaw, Using Constraint Programming and Local Search Methods to Solve Vehicle Routing

Problems, in Principle and Pratice of Constraint Programming, CP’98 (October 1998).
[15] M. Vasquez, Résolution en variables 0-1 de problèmes combinatoires de grande taille par la

méthode tabou. Ph.D. thesis, Université d’Angers, UFR de Sciences (December 2000).
[16] M. Vasquez and J.K. Hao, A “Logic-Constrained” Knapsack Formulation and a Tabu Al-

gorithm for the Daily Photograph Scheduling of an Earth Observation Satellite. Comput.
Optim. Appl. 20 (2001) 137-157.

