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Consistency checking within local search applied to the frequency assignment with polarization problem

Introduction

The ever-increasing demand for communication, coupled with the limited number available spectra, have made frequency assignment more and more difficult to accomplish effectively. Optimization of this process has therefore become a major issue for network administration and deployment, both civil and military. The Frequency Assignment Problem with Polarization (FAPP) can be formalized as a Max-CSP which is known to be NP-hard.

Because the data problem to be optimized was very large, we decided to adopt a local search method. From among all the existing algorithms, we chose Tabu Search, introduced by Glover in [START_REF] Glover | Tabu Search[END_REF]. The specific structure of the FAPP constraint net-work led us to apply local filtering techniques. Consequently, an arc-consistency procedure, AC, was embedded in the Tabu Search framework to reduce the search space. Hence, the consistency checking concept occurred twice (during the resolution): firstly in the filtering pre-processing, and secondly in the kernel of the neighborhood design.

After presenting the physical and formal definitions of the FAPP problem in Section 2, we describe in Section 3 our general approach to solve it. Finally, a large number of experimental results are discussed and compared in Section 4, in order to highlight the advantages obtained by combining a constraint programming tool with the local search heuristic.

Problem definition

Physical description

The FAPP consists in finding an optimal frequency allocation in hertzian telecommunication networks. The network is composed of a set of sites in which the transmission devices (antennae connected to emitters or receptors) are located. A hertzian connection joins two geographic sites by one or more paths. A path is a uni-directional radio-electric bond, established between antennae at distinct sites, which has a given frequency and polarization.

A frequency resource is therefore a (frequency, polarization) pair in which the components are respectively associated to the carrying frequency of the transmitted signal, and the wave polarization. The polarization is simply either positive or negative. Accordingly, we define the path domain as a set of available resources. This set contains the frequency domain F i , and the polarization information P i , which may include a required polarization.

A frequency allocation consists in assigning a (f i , p i ) pair for each path i which satisfies certain radio-electric compatibility constraints (1, 2, and 3), and minimal distance constraints to avoid interference (4):

1. frequencies equality or not across paths i and j:

f i = f j or f i = f j ; 2. distance between frequencies: |f i -f j | = ε ij or |f i -f j | = ε ij ; 3.

polarization equality or not across paths:

p i = p j or p i = p j ; 4. minimal distance between frequencies: |f i -f j | ≥ γ ij if p i = p j δ ij if p i = p j .
In the constraints (4), the required distance between frequencies depends on their polarizations: the distance is obviously smaller if the polarizations are different

(γ ij ≥ δ ij ).
A feasible solution is an allocation for each path that satisfies the full set of constraints. Unfortunately, most problems do not have any such feasible solution, because the domains are too restrictive or the requirements are too numerous. The operator must therefore search for a "good quality" solution in terms of interference, rather than a feasible one. For this purpose, two constraint classes are introduced:

-CI: strong or imperative constraints (1, 2, and 3 above); -CEM: constraints of type 4 where progressive relaxation is authorized and controlled by 11 relaxation levels. Level 0 corresponds to no relaxation. Increasing from level k to k + 1 involves relaxation of some or all the frequency distances defining each constraint, the maximum level being 10:

|f i -f j | ≥ γ 0 ij ≥ γ 1 ij ≥ ... ≥ γ k ij ≥ ... ≥ γ 10 ij if p i = p j δ 0 ij ≥ δ 1 ij ≥ ... ≥ δ k ij ≥ ... ≥ δ 10 ij if p i = p j .
In this context, a feasible solution at level k is an allocation of each path satisfying all the strong constraints CI and all the CEM constraints at level k, noted CEM k . Such a problem is said to be k-feasible. Assuming that a good quality solution minimizes interference, and that the smaller k is the fewer CEM constraints are relaxed, the hierarchical objective function is dependent on k: first minimizing k, secondly minimizing the number of unsatisfied CEM k-1 constraints, and finally minimizing the number of unsatisfied CEM constraints at the levels below k -1.

Formal definition

From this physical description, modelling the FAPP as a Maximal Constraint Satisfaction Problem (Max-CSP), consists in defining the constraint network X , D, C , and the formal criterion to minimize f : -associating a variable x i to each path: X = {p i , i = 1, ..., n}; -associating to x i a domain D i = F i × P i , where F i is the set of the allowed frequencies for the path x i and P i is one of the following sets {-1}, {1}, or {-1, 1}, D = i=1,...,n D i ; -adding several imperative constraints CI between two paths x i and x j :

f i = f j or f i = f j , |f i -f j | = ε ij or |f i -f j | = ε ij , p i =
p j or p i = p j ; -adding CEM constraints where progressive relaxation is authorized:

|f i -f j | ≥ γ 0 ij ≥ ... ≥ γ k ij if p i = p j δ 0 ij ≥ ... ≥ δ k ij if p i = p j
where the index k, increasing from 0 to 10, indicates the relaxation level of the CEM constraints. C = CI ∪ CEM; -let V (k) be the set of unsatisfied CEM k constraints. The hierarchical objective function to be minimized is:

f = k, V (k-1) , i<k-1 V (i)
where k is such that the problem is k-feasible. The formal criterion f is directly related to the hierarchical optimization problem. We must therefore successively minimize k, V (k-1) then Σ i<k-1 V (i) .

Where necessary, for simplicity, we also define:

-C k = CI ∪ CEM k the whole constraint set at level k; -CI(i, j) ⊂ CI the imperative constraints involving the paths i and j; -CEM k (i, j) ⊂ CEM k the relaxed constraints involving the paths i and j.

3. General approach for solving the FAPP Among all of the dedicated algorithms to solve frequency assignment problems [START_REF] Aardal | Algorithms for Frequency Assignment Problems[END_REF][START_REF] Dorne | Étude des méthodes heuristiques pour la coloration, la T-coloration et l'affectation de fréquences[END_REF][START_REF] Jiang | Méthodes Approchées pour le Problème de Coloriage Généralisé Application au Problème d'Allocation de Fréquences Multiservices dans l'Aviation Civile[END_REF], only heuristic based approaches can produce good quality solutions in reasonable computing time for realistically sized instances. The described algorithm here is also a meta-heuristic one. Although it may seem unworkable to attempt to use a pre-processing filtering operation on an optimisation problem, our Tabu Search procedure is reinforced by a consistency technique that reduces the search space and increases the overall efficiency of the neighborhood exploration. Indeed:

-let n be the path number of a FAPP instance; -let S be the non constrained search space: S includes all the configuration vectors s = ((

f 1 , p 1 ), ..., (f n , p n )) such as f i ∈ F i and p i ∈ P i .
The initial size of S, equal to n 1 |F i | × |P i |, is huge, even for the smallest FAPP instances (200 ≤ n ≤ 3000 and 19 ≤ |F i | ≤ 500). To cope with this difficulty, we restrict the F i domains by a filtering process.

The two expected advantages of such a reduction in domain size are: firstly to decrease the time complexity of the neighborhood evaluation, and secondly to avoid exploring wrong areas in the search space. That is why we hybridize our Tabu Search algorithm with an Arc-Consistent (AC) filtering process.

Another important feature of this approach, with the aim of reducing computing complexity, is that only the first component k of the objective function f is considered within the move heuristic. Consequently, the optimization process is transformed into a sequence of decision problems verifying the existence of a kfeasible configuration, where k decreases from 11 to k * (best k found). The search for a lower value of k is started only if a (k + 1)-feasible configuration has been found. Hence, we solve several CSPs rather than one Max-CSP.

To summarize, if AC is the filtering function of the frequency domains, and Tabu the exploring function of the search space using the meta-heuristic Tabu Search, we have the general pattern described in Algorithm 1.

Algorithm 1. AC-Tabu begin k ← 11 while AC(k) = T rue do if Tabu(k) = T rue then k ← k * -1 end
This is a very straightforward iterative procedure. When either AC(k) or Tabu(k) fails then AC-Tabu returns k * = k + 1 as the best k * -feasible solution found. If AC(k -1) fails and Tabu(k) finds a solution, then k is the optimal value. Indeed, AC provides the Lower Bound of k, and Tabu the Upper one.

On the other hand, if Tabu(k) finds a feasible solution, that solution may be k * -feasible, with k * < k. This means that Tabu can jump more than one k-level.

Filtering with AC

Arc-consistency is a widely studied topic in constraint programming [START_REF] Bessière | Arc-consistency and Arc-consistency again[END_REF][START_REF] Bessière | Refining the Basic Consistency Propagation Algorithm[END_REF][START_REF] Mackworth | Consistency in Networks of Relations[END_REF][START_REF] Mohr | Arc and Path Consistency revisited[END_REF]. AC eliminates variable values with no support, since such values cannot lead to a feasible solution.

As FAPP constraints are binary, it is easy to check for every path i (1 ≤ i ≤ n) and for every value couple (f i , p i ), if for each neighbor j of i, there is a couple (f j , p j ) such that CI(i, j) and CEM k (i, j) are satisfied. This elimination process, eliminate(F i , P i , k), is repeated until there is no change in the domain of any variable: in this case eliminate returns F alse, otherwise it returns T rue. For more details about such algorithms, please refer to [START_REF] Bessière | Arc-consistency and Arc-consistency again[END_REF][START_REF] Bessière | Refining the Basic Consistency Propagation Algorithm[END_REF][START_REF] Mackworth | Consistency in Networks of Relations[END_REF]. The main features of the following AC(k) procedure are:

-managing a list of updated variable domains, in order to check, at the next iteration, only the variables for which their domains have changed; -for each f i and p i values, and for each constraint C(i, j), the eliminate (F i , P i , k) function checks another value in the domain D i as soon as it has found a pair f j ∈ D j and p j ∈ P j satisfying C(i, j). Designing a good Tabu Search requires that its main characteristics should be well defined: the effective search space and therefore the definition of the visited configurations, the neighborhood structure, the move heuristic, and the tabu list management. In our approach, the search space is defined over partial configurations expressed by s = (v 1 , v 2 , ..., v ni ), where v i = (f i , p i ) and n i variables are instantiated (with n i = |s|). To conform with the standard representation by n-ary vectors, we add a new value u (for uninstantiated ) to each domain D i , for indicating that x i is free. Accordingly, the evaluation criterion of a configuration is the number of instantiated variables in s.

This improvement enabled us to work on a consistent neighborhood N (s). At each level k, the visited configurations in N (s) respect the CI and the CEM k constraints. In order to build this original neighborhood, a move(s,s'), replacing the current configuration s by s ∈ N (s), is achieved in two steps: an instantiation of a free variable (i.e. set to u), followed by consistent reparations, which are simply deinstantiations of the conflicting variables with respect to the C k constraints. Consequently, the selected move must improve the configuration (i.e. increase |s|). Hence, the evaluation heuristic of moves from s to s ∈ N(s), is simply ∆(s, s ) = |s | -|s|. Note that the ∆ evaluation is carried out very quickly using efficient incremental techniques, which are now well known [START_REF] Fleurent | Genetic and Hybrid Algorithms for Graph Coloring[END_REF][START_REF] Galinier | Étude des métaheuristiques pour la résolution du problème de satisfaction de contraintes et de coloration de graphes[END_REF][START_REF] Vasquez | Résolution en variables 0-1 de problèmes combinatoires de grande taille par la méthode tabou[END_REF][START_REF] Vasquez | A "Logic-Constrained" Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite[END_REF].

The tabu list is needed to prevent cycling, which notably occurs when we attempt to instantiate the last free variables. To avoid undoing the recent instantiation (x i , v i ), we penalize all the conflicting pairs (x j , v j ) where x j are the neighbors of x i in the constraint network, regarding the CI(i, j) and the CEM k (i, j). In this way, we maintain a table counting the number of times a resource v l is assigned to a path x i (f req [i][l]++). So, the tabu tenure is a dynamic function based on the flip frequencies:

tabu[i][l] = f req[i][l] + iter,
where iter is the current iteration number.

The stop-criterion is either if a solution is found, or if computing time has elapsed.

With the specifications, we thus present the general Tabu algorithm in 3.

Diversification

The aim of the diversification phase is to enable Tabu to escape from attractive zones of the search space. For this purpose, we introduce penalties in the move heuristic. More precisely, each time a configuration s such as ∀s ∈ N (s), |s | ≤ |s| is reached, we add a penalty to all the allocated paths having an unallocated neighbor in the constraint graph. This penalty value is then included in the move heuristic during the diversification phase. Hence, the line [START_REF] Aardal | Algorithms for Frequency Assignment Problems[END_REF] in Algorithm 3 is replaced by the following code, where nogood min is the threshold value, and penalty is the effective penalty value of the move.

if (∆(s, s ) > ∆(s, s max )) ∨ (∆(s, s ) = ∆(s, s max ) ∧ penalty < nogood min ) then s max ← s nogood min ← penalty

Numerical experimentation

The algorithms were coded in C programming language. The running tests were carried out on an NT PC station with a Pentium III 600 MHz cpu. The results are presented in four parts. The first describes the reduction of the search space by the filtering step. The second describes the best qualitative results obtained by the hybrid approach AC-Tabu. The next section then compares the results produced by our Tabu and the hybrid AC-Tabu algorithm. This section ends with a comparison between several methods proposed for the ROADEF-2001 challenge. More information about this competition is available on the web site http://www.prism.uvsq.fr/∼vdc/ROADEF/CHALLENGES/2001/

Cutting frequency domains

This first table shows some characteristics of the fapp instances, their size is given in the second part of their name: up to 3000 variables (paths). These Apart from the fapp16 0260 problem, these benchmarks can be divided into two subsets. The first one (from 01 to 15 ) contains the instances where the domain size is reduced by nearly half. In the second one (from 17 to 30 ), domains are reduced more than 90%.

Hybrid approach results

This part begins with the results obtained by the hybrid approach after 1 computing hour. Only one run (with the 0 random seed) was carried out in this experiment.

For each instance, the Table 2 specifies:

-k, the lowest level where a solution is found. This value is underlined when AC-Tabu proves its optimality; -V k-1 , the number of unsatisfied CEM constraints at level k -1; -V k-2 , the sum of the unsatisfied CEM constraints under the k -1 level; -t 1 , the elapsed time in seconds required to reach the best value of k; -and t 2 , the elapsed time required to obtain the best configuration (considering the three components of the objective function).

Table 2. AC-Tabu results after 1 computing hour. Regarding the feasibility level, most of the k are proved optimal (25 of the 30 instances). Obviously, the instances for which no k * is found are those belonging to the first subset described above. Now, we shall see what happens if we give more cpu time to the hybrid algorithm process. Table 3 shows only the improved solutions reached after 3 computing hours. Unfortunately, no improvement has been obtained for the majority of the instances. Nevertheless, we can see again that it only concerns problems belonging to the first subset of fapp instances. Elsewhere, two new optimal values of k are proved (for the 12 1500 and the 13 2000 problems).

fapp k V k-1 V k-2 t1 t2 fapp k V k-1 V k-2 t1

Tabu versus AC-Tabu

This section compares the behaviors of Tabu alone and the hybrid AC-Tabu algorithm. These algorithms were executed 8 times with seed values varying from 0 to 7, and one hour of computing time.

Table 4 focuses on the k-feasibility level and gives the best (k min ) and the worst (k max ) solutions found by the Tabu and hybrid AC-Tabu processes. The gap between k min and k max is higher for Tabu, than for AC-Tabu, notably on the second subset of the benchmark. In conclusion, the behavior of AC-Tabu is more stable than that of Tabu alone.

Note that the results of fapp12 1500, fapp13 2000 and fapp14 2500 do not contradict those from Table 3: it simply means that AC-Tabu finds a better solution in 3 hours with 0 random seed than in 8 × 1 hour with different random seeds.

Comparison with others methods

We will now present the results obtained during the ROADEF-2001 challenge, which took place in FRANCORO III, in the city of Québec (Canada).

The three compared algorithms (apart from ours) were developed by Caseau (MH+PPC), the Bisaillon team (Tabu), and the Michelon junior team (LNS+PPC).

The (MH+PPC) algorithm combines some constraint propagation with metaheuristics. More precisely, the algorithm increases the level, and at each one it shaves by strong consistency, shuffles by a Large Neighborhood Search (LNS) [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF], which gives a non-feasible solution, and finally tries to obtain a feasible solution by a Limited Discrepancy Search (LDS) [START_REF] Harvey | Limited Discrepancy Search[END_REF], such as a Variable Neighborhood local search (VNS) [START_REF] Hansen | Variable Neighborhood Search[END_REF].

The second approach (Tabu) [START_REF] Galinier | Solving the Frequency Assignment Problem with Polarization by Local Search and Tabu[END_REF] is a local search approach based on Tabu Search that includes some original features, including a specialized neighborhood, heuristics to determine critical variables and values, different diversification techniques, an auto-adaptative mechanism to set the tabu list and finally, a pre-processing operation based on consistency techniques inherited from constraint programming. It is used to treat three different problems:

-Constraint Satisfaction Problem to find a solution at level k; -the problem which satisfies all the constraints at level k + 1, and as much as possible at level k; -problem which satisfies all the constraints at level k + 1, and minimizes the objective function.

The Michelon junior team solves the FAPP by using a meta-heuristic based on a Large Neighborhood Search [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF] and Constraint Propagation. Also, they relax certain constraints to obtain a Maximal Cover Tree. Indeed, their algorithm works in three phases: first it computes a lower bound of k, then it searches for a solution at this level k, and finally it improves this solution with respect to the two last points of the objective function. So as to compare several methods, in terms of quality, we have just given the three values of the objective function: k (underlined when the method proves optimality), the unsatisfied constraint number at level k -1, and the sum of the unsatisfied constraints at the levels below k -1.

The AC-Tabu column gives the results obtained by our method during the challenge. Note that they have been improved since the competition. Indeed, we have polished the code, and experiments are made on different computers. More details about the challenge, benchmarks and all the results can be found on the web site http://www.prism.uvsq.fr/∼vdc/ROADEF/CHALLENGES/2001/ The main test condition is a computing time limited to one hour on a Pentium III, 500 Mhz, 128 Mo.

Regarding only the level k, MH+PPC found the optimal k 26 times, Tabu 27 times, LNS+PPC 27 times, and AC-Tabu 28 times. It seems that there is a problem with the LNS+PPC method, because in 4 instances, it could not find a solution (k = 12) and in several others it found no solution better than 11.

Regarding the two other components of the objective function, Tabu without AC gave the best results 27 times, although it could not prove optimality. In fact, the time spent on the PPC techniques in the other methods, was spent to improve the full objective function.

This method comparison reveals that the most difficult instances of the benchmark were 12 1500, 13 2000 and 14 2500.

To conclude, Table 5 highlights the effectiveness of approximate methods combined with some arc-consistent processes on very large instances. 

fapp k V k-1 V k-2 k V k-1 V k-2 k V k-1 V k-2 k V k-1 V k-

Conclusion

In this paper we have presented a hybrid approach to solve the Frequency Assignment Problem with Polarization. AC-Tabu combines some arc-consistent techniques and an original Tabu Search process, with a large neighborhood exploration by means of maintaining consistency. It produces very good results on large-sized FAPP instances.

Tabu alone proves its own worth. Indeed, it provides most of the best results but at the same time, some of the worst ones. There are two main reasons that justify the filtering step: the behavior regularity of the hybrid search algorithm, and the proven optimality of the k-feasibility level, for most of the FAPP instances. Some improvements to this approach are still to be expected. Two perspectives for future work can be identified. Firstly, making AC faster by studying the most recent AC algorithms [START_REF] Bessière | Refining the Basic Consistency Propagation Algorithm[END_REF] and adapting to the FAPP constraint semantic. Secondly, considering the two other objective function components V k-1 and i<k-1 V i in the Tabu procedure.

Algorithm 2 . 3 . 2 .

 232 AC(k) begin change ← T rue while change do change ← F alse for i ∈ [1, n] do if eliminate(Fi, Pi, k) then if Fi = ∅ or Pi = ∅ then return F alse change ← T rue end Exploring with TabuContrary to the random local search, where randomness is extensively used, the meta-heuristic Tabu Search is based on the belief that an intelligent search should include more systematic forms of guidance based on adaptive memory and learning.

Table 1 .

 1 Search Space reduction. Columns k 0 indicate the highest unfeasible level encountered by the AC-Tabu procedure, and columns sec. give the computing time in seconds for the whole iterative filtering process. This table shows that no more than two minutes are required by AC-Tabu to reduce the domains of the largest instances of this benchmark.

	fapp	IDS	F DS	∆%	k0	sec.	fapp	IDS	F DS	∆%	k0 sec.
	01 0200	26 963	12 712 52.85	2	0	16 0260	47 293 46 622	1.42 10	0
	02 0250	36 618	14 759 59.69	1	2	17 0300	64 034	918 98.57	3	0
	03 0300	53 536	28 212 47.30	6	1	18 0350	73 016	1089 98.51	7	0
	04 0300	61 762	21 962 64.44	0	4	19 0350	201 074	3414 98.30	5	6
	05 0350	79 311	54 177 31.69	7	2	20 0420	87 077	1886 97.83	9	0
	06 0500 108 024	53 034 50.91	4	6	21 0500	113 594	7745 93.18	3	1
	07 0600 109 658	69 952 36.21	8	2	22 1750	813 037 10 656 98.69	6	25
	08 0700 134 020	81 933 38.87	4	5	23 1800	455 735	3265 99.28	8	9
	09 0800 121 824	52 948 56.54	2	6	24 2000	567 396	8328 98.53	6	4
	10 0900 197 665 122 050 38.25	5	8	25 2230	610 084 18 867 96.91	2	6
	11 1000 294 634 152 727 48.16	7	15	26 2300	635 123 14 217 97.76	6	4
	12 1500 436 967 164 613 62.33	1	70	27 2550	588188 93 768 84.06	4	8
	13 2000 320 494 144 873 54.80	2	21	28 2800 2 087 947 63 597 96.95	2	66
	14 2500 774 322 320 458 58.61	3	92	29 2900 1 477 634	6435 99.56	5	23
	15 3000 515 606 306 127 40.63	4	24	30 3000 1 942 250 80 703 95.84	6	103
	problems contain up to 2 087 947 total domain values, and up to 67 898 binary
	constraints. Table 1 gives the Initial Domain Size (IDS = (F DS = n 1 |D f i |).	n 1 |D 0 i |) and the Filtered one

Table 3 .

 3 Improved results after 3 hours of computing.

	t2

Table 4 .

 4 Best and worst results for the level of feasibility.

		AC-Tabu	Tabu			AC-Tabu	Tabu	
	fapp	kmin kmax kmin kmax	fapp	kmin kmax	kmin kmax
	01 0200	4	4	4	4	16 0260	11	11	11	11
	02 0250	2	2	2	3	17 0300	4	4	4	4
	03 0300	7	7	7	7	18 0350	8	8	8	8
	04 0300	1	1	1	11	19 0350	6	6	6	9
	05 0350	11	11	11	11	20 0420	10	10	10	10
	06 0500	5	5	5	6	21 0500	4	4	4	5
	07 0600	9	10	9	10	22 1750	7	7	7	11
	08 0700	5	6	5	6	23 1800	9	9	9	11
	09 0800	3	4	3	8	24 2000	7	7	7	11
	10 0900	6	7	6	11	25 2230	3	3	10	11
	11 1000	8	9	8	11	26 2300	7	7	7	10
	12 1500	4	7	6	8	27 2550	5	5	11	11
	13 2000	5	6	6	6	28 2800	3	3	9	11
	14 2500	6	6	7	11	29 2900	6	6	8	12
	15 3000	5	6	7	11	30 3000	7	7	11	11

Table 5 .

 5 Comparison with three other methods.

	MH+PPC	Tabu	LNS+PPC	AC-Tabu

Centre LGI2P, École des mines d'Alès, site EERIE, 30035 Nîmes Cedex 1, France; e-mail: vasquez,dupont,habet@site-eerie.ema.fr

Acknowledgement. Special thanks to Van-Dat Cung (PRiSM-UVSQ), Thierry Defaix (CELAR-DGA) and Maurice Diamantini (ENSTA) for allowing us to use their FAPP definition. Thanks also to Gérard Verfaillie for fruitful discussion about some arc-consistent techniques.