
HAL Id: hal-00353797
https://hal.science/hal-00353797v1

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounding the Optimum for the Problem of Scheduling
the Photographs of an Agile Earth Observing Satellite

Djamal Habet, Michel Vasquez, Yannick Vimont

To cite this version:
Djamal Habet, Michel Vasquez, Yannick Vimont. Bounding the Optimum for the Problem of Schedul-
ing the Photographs of an Agile Earth Observing Satellite. Computational Optimization and Appli-
cations, 2010, 47 (2), pp.307-333. �10.1007/s10589-008-9220-7�. �hal-00353797�

https://hal.science/hal-00353797v1
https://hal.archives-ouvertes.fr

Bounding the optimum for the problem of scheduling
the photographs of an Agile Earth Observing Satellite

Djamal Habet1 · Michel Vasquez2 · Yannick Vimont2

1 LSIS - UMR CNRS 6168, Domaine Universitaire de Saint-Jérôme, Avenue
Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
2 École des Mines d’Alès, LGI2P Research Center, Site EERIE, Parc scientifique
Georges Besse,30035 Nîmes cedex 01, France

Abstract The problem of managing an Agile Earth Observing Satellite consists of
selecting and scheduling a subset of photographs among a set of candidate ones that
satisfy imperative constraints and maximize a gain function. We propose a tabu search
algorithm to solve this NP-hard problem. This one is formulated as a constrained op-
timization problem and involves stereoscopic and time window visibility constraints;
and a convex evaluation function that increases its hardness. To obtain a wide-ranging
and an efficient exploration of the search space, we sample it by consistent and sat-
urated configurations. Our algorithm is also hybridized with a systematic search that
uses partial enumerations. To increase the solution quality, we introduce and solve a
secondary problem; the minimization of the sum of the transition durations between
the acquisitions. Upper bounds are also calculated by a dynamic programming algo-
rithm on a relaxed problem. The obtained results show the efficiency of our approach.

Keywords Tabu search · Consistent neighborhood · Scheduling · Agile satellite ·
Dynamic programming

D. Habet (�)
e-mail: Djamal.Habet@lsis.org

M. Vasquez
e-mail: Michel.Vasquez@ema.fr

Y. Vimont
e-mail: Yannick.Vimont@ema.fr

mailto:Djamal.Habet@lsis.org
mailto:Michel.Vasquez@ema.fr
mailto:Yannick.Vimont@ema.fr

1 Introduction

The mission of an Earth Observing Satellite (EOS) is to acquire photographs on the
Earth’s surface, in response to observation requests. The management problem of an
EOS is to select and to schedule a subset of weighted images among a set of candidate
ones which must satisfy imperative constraints and at the same time maximize a given
profit function.

The new generation of EOS, like those studied in the French PLEIADES project,
are Agile Earth Observing Satellites (AEOS). This means that, while the single on-
board camera remains fixed on the satellite, the whole satellite is mobile along three
axes (roll, pitch and yaw). This mobility potentially increases the efficiency of the
whole system. Indeed, the number of ways of acquiring a given area of the Earth’s
surface is potentially infinite, since the azimuth and the starting time of a given im-
age acquisition are free. However, managing an AEOS becomes significantly more
difficult because the search space is considerably larger.

Both EOS and AEOS management problems are NP-hard [3, 15] and several
methods have been proposed to tackle them. Four methods for solving the AEOS
management problem were investigated [15]: a fast greedy algorithm, a dynamic
programming algorithm, a constraint programming method, and a local search al-
gorithm based on the insertion and removal of images in a schedule. The selection
and scheduling problem for a non-agile satellite, like SPOT5, is stated in [3] and vari-
ous methods have been used to solve it. The best results are obtained in [20] by using
a tabu search algorithm and very good upper bounds are calculated by an original
partition method [21]. A scheduling problem involving a satellite equipped with a
radar instrument, very agile on the pitch axis but slow on the roll axis, is stated and
solved in [12] by a partial enumeration algorithm. We will present later more works
related to the subject of our interest.

In this paper, we propose a tabu search algorithm to solve the problem of selecting
and scheduling the photographs of an AEOS. The search space is based on consistent
and possibly saturated configurations. On the one hand, we ensure the consistency of
the configurations by propagating efficaciously the problem constraints. In the other
hand, the saturation characterizes the optimal solutions. It deals with the fact that it is
not possible to improve the quality of a configuration by the selection of a new image
and at the same time without the removal of some already selected images. The satu-
ration will be formally defined in Sect. 4.2. During the search, a partial enumeration
algorithm is used to solve a large number of decisional problems. Furthermore, we
introduce a secondary problem which is the minimization of the sum of the transition
durations between two image acquisitions. This problem is handled by a second tabu
search algorithm based on exchanging the image orders and also on the inversion of
the acquisition direction of the images. Its resolution allows to the first tabu algorithm
to improve the quality of the solutions that it produces as it will be explained later.
Moreover, we calculate upper bounds by means of a dynamic programming algorithm
for a relaxed problem and a linearized objective function. This algorithm is inspired
by the work presented in [14] on the Vehicle Routing Problem with Time Windows
(VRPTW).

The paper is structured as follows. It starts with a description of the AEOS man-
agement problem in Sect. 2. We report the related works on several satellite manage-
ment problems in Sect. 3. The components of our tabu search algorithm are described
in Sect. 4. The secondary optimization problem is handled in Sect. 5 and the compu-
tation method of the upper bounds is explained in Sect. 6. The obtained results are
presented and compared in Sect. 7 and Sect. 8 concludes the paper.

2 AEOS problem description

Earth observing satellites are platforms that orbit the planet and are equipped with
optical instruments. Over a period of several days they perform a cycle of orbits of
the Earth. Each orbit is phased out with respect to the preceding one but the trajectory
is cyclic in the sense that the satellite recovers its initial position after a number of
orbits. A full cycle enables the satellite to view each area of the planet. In the course
of their mission, satellites take photographs of specific areas of the Earth in function
of requests from a number of users including governments, research institutes, and
companies. Each request generates a profit or a gain. Typically, the number of re-
quests exceeds what can be feasibly be accomplished during a mission. The problem
is to select and schedule a subset of requests yielding a maximal gain, subject to op-
erational constraints. The present work focuses on maximizing the profit associated
with a single orbit of the satellite.

A request can either be a target or a polygon. A target consists of a single strip
(rectangular shape) whereas a polygon may cover a wide geographical area. Because
of their size, polygons cannot usually be photographed in a single shot. For this rea-
son, they are partitioned into strips of equal width but possibly unequal lengths and
the time required to acquire a strip is proportional to its length. In the course of a sin-
gle orbit, the satellite may be able to photograph several strips of the same polygon.
Because of its agility, it is also able to acquire a strip using two opposite azimuths
(direct and indirect) according to the satellite rotation sense. Hence, two shots (or
images) per strip are possibles. The starting date of the acquisition of each shot must
be in accordance with its visibility time window. Moreover, some requests are mono
while others are stereo. A mono request consists of a single shot of each strip in the
polygon. A stereo request consists of two shots of each strip at different angles but in
the same direction. A strip from a stereo request is considered to have been acquired
only if its twin strip has also been acquired. Finally, for each pair of shots, the satellite
requires a minimum transition time to maneuver the camera from the end of the first
strip to the start of the second one. Readers interested in a full description of the the
AEOS management problem can refer to [15].

The input of an AEOS management problem is a set of candidate strips, from
the current set of requests, that could be acquired. The problem to be dealt with is
twofold: to select a set of strip acquisitions that maximize the total gain, and to order
them in time. Formally, the problem can be described as follows [1]:

2.1 Data

A problem with n strips involves 2n possible acquisitions since for each strip i two
shooting directions are possibles. These shots are numbered 2i − 1 (an odd number

for a shot acquired in the direct azimuth) and 2i (an even number for a shot acquired
in the indirect azimuth). For each strip i ∈ [1, n] let:

– tw(i) be the index of its stereo twin strip, 0 if i is mono.
– d(i) be its shooting duration.
– su(i) be its corresponding surface.

For each shot (image) j ∈ [1, 2n] let:

– es(j) and ls(j) be its earliest and latest start dates respectively.
– ee(j) and le(j) be its earliest and latest end dates respectively.

For each shot pair (i, j), i �= j ∈ [1, 2n], t (i → j) denotes the minimum transition
time between the end of i to the beginning of j . We assume that t (i → j) ≥ es(j) −
le(i) (otherwise it is obviously underestimated). Four variables are associated to each
shot i ∈ [1, 2n]:
– xi ∈ {0, 1} equals 1 if and only if shot i is selected.
– y0→i ∈ {0, 1} equals 1 if and only if shot i is the first of the selection.
– yi→2n+1 ∈ {0, 1} equals 1 if and only if shot i is the last of the selection.
– ti is the shooting start date of i. The value of this variable is irrelevant when xi = 0.

The ti values allow to order and to schedule the shots in time.

Let m be the number of polygons. The kth polygon is characterized by:

– s(k) its total area surface.
– gk its gain when fully acquired.
– p(k) ⊂ [1, 2n] the set of shots that it contains. We recall that each polygon is

divided into a set of strips. Moreover, two shots are possibles per strip according
to the sense of its acquisition.

Two continuous variables are associated to each polygon k ∈ [1, m]:
– Sk ∈ [0, 1] is the percentage of the surface covered by the selected strips.
– Gk ∈ [0, 1] is the corresponding percentage of the polygon gain.

Finally, one binary variable is defined for each pair of acquisitions i �= j ∈ [1 ,2n]:
– yi→j ∈ {0, 1} equals 1 if and only if the shot j is immediately acquired after the

shot i.

2.2 Constraints

The equations constraining these variables are listed below. The acquisition of the
same strip in both directions is forbidden by (1). Equation (2) states the stereo con-
straints: simultaneous selection with identical direction. The time window for the
starting time of a shot is imposed by (3). Shooting dates of consecutive images must
respect minimum transition times (4). These last two equations correspond to the time
constraints.

∀j ∈ [1, n], x2j−1 + x2j ≤ 1, (1)

∀j ∈ [1, n], if tw(j) �= 0 then (x2j−1 = x2tw(j)−1 and x2j = x2tw(j)), (2)

∀i ∈ [1, 2n], if xi = 1 then ti ∈ [es(i), ls(i)], (3)

∀i �= j ∈ [1, 2n], tj − ti ≥ (d(i) + t (i → j)) · yi→j

+ (es(j) − ls(j)) · (1 − yi→j). (4)

We denote by C4 the set of shot pairs (i, j) that satisfy the condition (4).
Furthermore, there is at most one first shot and one last shot (5) and each selected

acquisition has exactly one predecessor and one successor (6).

∑

i∈[1,2n]
y0→i ≤ 1 and

∑

i∈[1,2n]
yi→2n+1 ≤ 1, (5)

∀i ∈ [1, 2n],
∑

j∈[0,2n+1]
j �=i

yj→i = xi =
∑

j∈[0,2n+1]
j �=i

yi→j . (6)

In the rest of this paper, we assume that the constraints (5) and (6) are always satisfied.

2.3 Objective function

The criterion to maximize is a global gain G defined by the sum of the gains associ-
ated to the complete or partial acquisition of each polygon k and formulated by:

G =
m∑

k=1

gk × Gk such as:

– ∀k ∈ [1, m], Sk = 1

s(k)

∑

i∈p(k)

su(i) · xi .

– Gk = f (Sk).
– f : [0, 1] → [0, 1] is a non-linear function, piecewise linear and defined by the

points {(0,0), (0.4,0.1), (0.7, 0.4), (1,1)}.
In order to tackle quickly the problem of selecting and scheduling photographs for an
AEOS, the local search methods seem highly appropriate and we chose a Tabu Search
(TS) metaheuristic [10]. Our TS algorithm is inspired by a tabu resolution methodol-
ogy, presented in [19], working on a consistent neighborhood. It is combined with a
systematic resolution by the means of partial enumerations. Furthermore, a secondary
optimization problem is introduced and solved by a second TS algorithm. Before de-
scribing the different phases of our resolution, let us in the next section give some
works concerning the satellite management problems and nigher ones.

3 Related work

Compared to other optimization problems, the Earth Observing Satellite manage-
ment problem has received a limited attention. For the AEOS problem and in the
context of the ROADEF’2003 Challenge, various methods were proposed. In [17],

J.F. Cordeau and G. Laporte have proposed a tabu search algorithm which borrows
from the Unified Tabu Search Algorithm [4] developed for the Vehicle Routing Prob-
lem with Time Windows (VRPTW). An important feature of their algorithm is the
possibility of exploring infeasible solutions during the search by allowing the vio-
lation of the time window constraints. Thus, the value of a solution is defined by
f (s) = G(s) − αw(s), where w(s) is the total time window constraints. The para-
meter α is initially set at 1 and self-adjusts during the course of the search to allow a
mixture of feasible and infeasible solutions. The moves switch between the insertion
and the removal of mono and stereo shots with respect to all the constraints except the
time window one which is relaxed. Moreover, the algorithm uses two diversification
mechanisms. The first one is a continuous diversification scheme which introduces
penalties on poor solutions. These penalties drive the search process toward the less
explored regions of the search space whenever a local optimum is reached. The sec-
ond diversification mechanism perturbs the solution under certain circumstances. If
the best known solution has not improved after a certain number of iterations then the
search stops and restarts from the best reached solution. However, this best solution
is perturbed by removing a portion of randomly selected shots.

E.J. Kuipers [17] proposed a local search algorithm based on two stages. In the
first one, the most promising solutions are constructed then further optimized in the
second stage. These two parts use Simulated Annealing (SA) algorithms. The neigh-
borhood is constructed in two steps. In the first one, 1, 2, 3 or 4 requests (or parts of
requests) are removed from the current solution, and in the second step 1, 2, 3 or 4
requests (or parts of requests) are added to the solution resulting from the first one.
The number of the added or removed requests (1, 2, 3 or 4) in both steps is randomly
chosen. Moreover, a library is constructed to file the best ways of ordering a set of 5
strips in terms of transition durations. This library is updated at each new insertion
and used by the two SA algorithms. Other additional schemes are added to attempt
the speeding up of the optimization process of the first stage (for instance, a limita-
tion on the number of the strips treated according to their gain). However, the second
stage considers all the strips during the neighborhood construction.

In addition, a number of variants of the AEOS problem have been studied in the
literature. The paper [11] presents the space mission problem which consists of se-
lecting and scheduling a set of jobs on a single machine among a set of candidates
jobs. Each candidate job has a fixed duration, a given time window and a weight.
The aim is to select a feasible sequence of jobs that maximizes the sum of weights.
The space mission problem is NP-hard and it is very close to the AEOS manage-
ment problem with the following simplifications: null transition times, no unique
strip acquisition and stereoscopic constraints, and a linear objective function. Several
interesting greedy algorithms and an optimal algorithm for solving the space mission
problem are proposed. The optimal algorithm is based on a Dynamic Programming
scheme. Upper bound formulations are presented, based on a preemptive relaxation
(a job can be fragmented) and a lagrangian relaxation. The proposed algorithms are
tested on 30 randomly generated instances with up to 200 candidate jobs.

The selection and scheduling problem for the SPOT5 satellite concerns a non-agile
satellite with only one moving axis (rolling). A consequence of this lack of manoeu-
vrability is that the starting time of each candidate image is fixed. This feature would

result in a very simple (polynomial) problem if there were only one imaging instru-
ment on the board of the satellite, but there are 3 instruments. Nevertheless, it is
possible to pre-compute binary and ternary constraints which model the compatibili-
ties between candidate images. Each candidate image is weighted and the problem is
to find a feasible subset of the candidate images maximizing the sum of weights. This
optimization problem is NP-hard and can be formulated in the general Valued Con-
straint Satisfaction Problem model [18]. The paper [3] fully describes the problem
and proposes some instances benchmark. Some results with dedicated exact and ap-
proximate methods are given in [2, 3] and the column generation technique has been
used to compute upper bounds on the benchmark instances [8]. Very good results on
these instances were obtained by M. Vasquez and J.K. Hao using a dedicated Tabu
Search algorithm [20]. These authors have also obtained very good upper bounds
by means of an original partition method assessing the quality of their previous re-
sults [21]. Note that for some instances the optima values are still unknown.

The work presented in [9] concerns a selection and scheduling problem of a semi-
agile satellite. The differences with respect to the AEOS problem are as follows:
(a) the criterion to be maximized is the number of selected images (images are not
weighted), (b) the satellite is slightly mobile in two axes (pitch and roll), but remains
fixed during an image acquisition; so, there is only one possible azimuth for an ac-
quisition, (c) the satellite’s kinematics do not allow for a given strip to be acquired
twice during the same track, and (d) there are no stereoscopic requests, hence no
corresponding stereo constraints.

We now describe some related problems. In the first one which is named the Max-
imum Shot Sequencing Problem (MSP), the aim is to select and to schedule a set of
images over several consecutive tracks (a given image can be acquired from two or
more tracks), so several possible disjoint time windows are given for each image. In
the second problem, named the Maximum Shot Orbit Sequencing Problem (MSOP),
only one track is processed, so a single time window is associated to each candidate
image. MSOP and MSP are also NP-hards and several algorithms are proposed and
based on graph theoretic concepts. In a first approach, the time is discretized. The con-
straints (given by the satellite kinematics) are such that MSOP amounts to a longest
path problem. With time discretization, MSP amounts to find a maximal indepen-
dent set in an incompatibility graph, and can be solved by an approximate algorithm
based on a near-optimal partition into cliques. Due to the nature of the objective,
an interesting upper bound is available. Exact and approximate algorithms are also
presented for the continuous time model to solve both MSP and MSOP. The exact
algorithm is a branch-and-bound algorithm with graph-based heuristics and bounds.
The approximate algorithm is a kind of greedy algorithm also based upon graph prop-
erties. Experiments are conducted on a set of randomly generated instances, allowing
the proposed algorithms to be assessed against upper bounds and the impact of the
discretization to be measured.

The paper [12] describes a scheduling problem concerning a satellite equipped
with a radar instrument which is very agile on the pitch axis but slow on the roll axis.
Only one azimuth is available for acquiring images. This problem is equivalent to
the space mission problem [11] with transition times. The authors describe a partial
enumeration algorithm for this problem and give preliminary results for randomly
generated instances.

The work reported in [22] describes the so-called Window-Constrained Packing
problem (WCP). It differs from the problems presented above in the fact that the eval-
uation function is a priority-weighted sum of observation durations under suitability
functions. In other words, observations have non-fixed durations (ranging between a
maximum and a minimum) and preference is given to higher priority observations
(with longer durations) and to the observations which are well-placed inside their
time window. There are no transition times between observations. This problem is
similar to the space mission problem [11], with a particular gain function, depend-
ing on the starting times of the observations. The authors present some approximate
algorithms for solving the WCP problem. A first one is a fast but not very accurate
greedy algorithm. A second one is similar to the first, but it includes some look-
ahead. It is a little better but has expensive computation times. These algorithms have
been tested on randomly generated instances. Actually, the WCP problem is a sim-
plified short-term version of the real scheduling problem. The paper investigates the
associated mid-term and long-term scheduling problems and their connections, as
well as different objective functions.

4 A Tabu Search algorithm for AEOS problem

In this section, we first review the the principles of the Tabu Search then we will
describe point by point all the components of our tabu resolution.

4.1 Review of TS

A Tabu Search (TS) is a meta-heuristic designed to tackle hard combinatorial opti-
mization problems. By contrast with random approaches, TS is based on the belief
that an intelligent search should include more systematic forms of guidance based
on adaptive memory and learning. TS can be described as a form of neighborhood
search with a set of critical and complementary components. For a given optimiza-
tion instance (S,f) characterized by a search space S and an objective function f ,
a neighborhood N is introduced. It associates to each configuration s in S, a non-
empty subset N (s) of S. A typical TS algorithm begins with an initial configuration
s0 ∈ S, then repeatedly visits a series of the best local configurations following the
neighborhood function. At each iteration, one of the best neighbors s′ ∈ S is selected
to become the current configuration, even if s′ does not improve the current configu-
ration in terms of the cost function.

To avoid the problem of cycles occurring and to allow the search to go beyond
local optima, a tabu list is introduced. This adds a short term memory component
to the method. A tabu list maintains a selective history H (short term memory),
composed of previously encountered configurations or, more generally, pertinent at-
tributes of such configurations. A simple TS strategy consists in preventing config-
urations of H from being considered on the next k iterations, called the tabu tenure.
This can vary according to different attributes, and it is generally problem dependent.
At each iteration, TS looks for the best neighbor from this dynamically modified
neighborhood N (H, s), instead of N (s) itself. Such a strategy prevents the search

from being trapped in short term cycling and makes the process more rigorous. When
attributes of configurations, instead of configurations themselves, are recorded in a
tabu list, some unvisited, but nonetheless interesting configurations may be prevented
from being considered. Aspiration criteria may be used to overcome this problem.
A widely used aspiration criterion consists in removing a tabu status from a move
when it leads to a configuration better than the best one obtained so far. Two other im-
portant ingredients of TS are intensification and diversification. On the one hand, the
intensification consists in focusing the search to exploit regions of the search space,
or characteristics of solutions, that the search history suggests that they are promis-
ing. On the other hand, the diversification undertakes to explore regions that differ in
significant respects from regions previously visited.

Therefore, a TS is described by specifying its main elements: the configuration
representation, the cost function to evaluate the configurations, the neighborhood
function, the tabu list management, the aspiration criteria, and finally the intensifi-
cation and diversification phases.

4.2 Search space definition

Definition 1 The unconstrained search space S consists of all the vectors of the pairs
(xi, ti), i = 1, . . . ,2n:

S = {((x1, t1), (x2, t2), . . . , (x2n, t2n))/ ∀i ∈ [1, 2n] : xi ∈ {0,1} and ti ∈ R}.
In this formulation, i is a shot number among the 2 × n possible ones issued from
the n strips (2 shots per strip). ti is the (unconstrained) beginning time acquisition of
the shot i. The size of S is highly huge and increases as the value of n and the size
of the ti intervals increase. Each element s ∈ S is a configuration that does not satisfy
necessary the problem constraints. However, a solution must satisfy the constraints
defined by (1) to (4).

Definition 2 The totally constrained search space X is a subset of vectors in S that
satisfy all the imperative constraints (1) to (4):

X = {s ∈ S/ all the elements of s satisfy the constraints (1) to (4)}.
Each vector s ∈ X is a consistent configuration (all the constraints are satisfied),
which is evaluated by its corresponding gain G(s) = ∑m

k=1 gk ×
f (1

s(k)

∑
i∈p(k) su(i) · xi) (see Sect. 2). We denote by |s| the number of the shots

that are selected in s (|s| = ∑
i=1,...,2n xi). This constrained search space is used by

our TS algorithm. However, it is equally possible for an algorithm to work with an
intermediate search space where some constraints are relaxed. For this propose, we
define a partially constrained search space C.

Definition 3 The partially constrained search space C is a subset of vectors of S

satisfying only the imperative constraints (3) and (4):

C = {s ∈ S/ all the elements of s satisfy the constraints (3) and (4)}.

This search space, where the stereo and uniqueness acquisition constraints are re-
laxed, will be used in order to compute upper bounds for the simplified problem.

Definition 4 The saturated and the totally constrained search space M is a subset
of X (M ⊆ X) such that:

M = {s ∈ X\ for any i ∈ [1, 2n] such as xi = 0 in s, setting xi = 1 violates

systematically some of the constraints (1) to (4)}.

In other words, each vector s ∈ M is a consistent and a saturated configuration where
no more images can be added without violating some imperative constraints. The
principle here is that TS algorithm will explore the totally constrained search space
X and try to stay on the border of this saturated (promising) area. This saturation is
one of the features of the optimal solution.

4.3 Consistent and saturated neighborhood

Now, we introduce the neighborhood function N over the totally constrained search
space X. This function N : X → (2X − ∅) is defined as follows:

Let s = ((x1, t1), (x2, t2), . . . , (x2n, t2n)) be a consistent configuration, s′ =
((x′

1, t ′1), (x′
2, t ′2), . . . , (x′

2n, t ′2n)) is a neighbor of s, i.e. s′ ∈ N (s), if and only if
the following conditions are checked:

1. ∃!i ∈ [1, 2n] \ xi = 0 and x′
i = 1. Moreover, if tw(i) �= 0 then xtw(i) = 0 and

x′
tw(i) = 1 (we try to insert exactly one shot in s, and its twin if it exists).

2. For any shot i that satisfies the condition 1 and a shot j ∈ [1, 2n] such as i and j

are issued from the same strip, we have xj = x′
j = 0. Moreover, if tw(i) �= 0 then

xk = x′
k = 0 such as the shots tw(i) and k are also issued from the same twin strip.

This condition forbids the acquisition of a strip (and its twin if it exists) in two
directions and deals with the first constraint of the AEOS problem.

3. For any shot i that satisfies the condition 1, we have ti ∈ [es(i), ls(i)]. Moreover,
if tw(i) �= 0 then ttw(i) ∈ [es(tw(i)), ls(tw(i))]. This condition deals with the time
window visibility constraint.

4. For each shot i that satisfies the condition 1, ∀k ∈ [1, 2n] such that (i, k) �∈ C4
and xk = 1 we have x′

k = 0 and if tw(k) �= 0 then x′
tw(k) = 0. Moreover, if tw(i) �= 0

then ∀l ∈ [1, 2n] such that(tw(i), l) �∈ C4 and xl = 1 then x′
l = 0. In addition, if

tw(l) �= 0 then x′
tw(l) = 0.

5. For any shot i that satisfies the condition 1, −3 ≤ |s′| − |s| ≤ 1. Also, if tw(i) �= 0
then −6 ≤ |s′| − |s| ≤ 2.

6. For any shot i that satisfies the condition 1 and such that its insertion in s requires
at most the removal of two shots j , k ∈ [1, 2n] with their twin shots if they
exist (−3 ≤ |s′| − |s| ≤ −1, xj = xk = 1, x′

j = x′
k = 0 and j �= tw(k)) then even

yj→k = 1 or yk→j = 1 in s (k and j are acquired one behind the other in s).

Thus, the neighborhood of s is obtained by adding a free shot i (not yet sched-
uled, xi = 0) by flipping xi from 0 to 1 (condition 1), then removing some shots k

(by flipping xk from 1 to 0) to repair the violated constraints (condition 4). In fact,
inserting a new shot may require to drop a certain number of the already fixed ones to
maintain the consistency of constraints (1) to (4) described in Sect. 2.2. However, the
condition 5 enforces a maximum of 2 shot removals if all the dropped shots are mono
and 4 if they are stereo (in order to maintain the consistency of the stereo constraint,
if a stereo shot is removed then its twin is removed too).

According to the conditions mentioned above, the best case is the insertion of a
stereo shot and its twin without any removal (|s′| − |s| = 2). Oppositely to this case,
the worst one corresponds to two insertions (stereo shot plus it twin: +2), such as
each of these two insertions needs the removal of 2 stereo shots plus their twins: −4
(|s′| − |s| = +2 − 4 − 4 = −6). Moreover, this choice heuristic is also restricted to
the removal of successive shots as described in the condition 6.

Hence, each configuration reached from s and according to the condition 1 to 6 is
also consistent and may be saturated (it is impossible to insert a new shot without any
removal). Consequently, the elaborated neighborhood N (s) is consistent and can be
saturated.

4.3.1 Partial enumerations for the neighborhood evaluation

We evaluate N (s) according to the gain criterion. For this purpose, consider a con-
figuration s = ((x1, t1), (x2, t2), . . . , (x2n, t2n)) where |s| images are selected and an
image j such that xj = 0 (i.e. j is not yet selected). The shot j can be inserted in s

through |s|+ 1 positions: before the first shot, after the last shot, or between two suc-
cessive shots on the schedule s. Hence, the insertion of the shot j in each of the |s|+1
positions is tested by allowing successive image removals (as explained above). If a
position is tested positively then a neighborhood configuration s′ is reached by in-
serting j at this position is s (and dropping some others images, if necessary). We
evaluate s′ by computing its corresponding gain value G(s′) (see Sect. 2.3). Among
all the feasible insertions of j , the one that maximizes the gain value is selected. Con-
sequently, at each step of the TS algorithm, we solve the decision problem of finding
the best insertion position for each free shot in s according to the gain function. These
insertion tests correspond to partial enumerations under s.

4.3.2 Incremental evaluation of the neighborhood

TS algorithm uses an aggressive search strategy to exploit its neighborhood, i.e. at
each iteration, it examines the value of G(s′) for each candidate neighbor s′ ∈ N (s)

and chooses the one with the highest gain. Those operations are very time consuming.
For example, let us consider a problem without stereo strips and the possibility to
remove 0, 1 or 2 shots to perform a move. Table 1 gives the computing costs of the
insertion of a free shot (among the 2 × (n − |s|) free ones).

Such insertion requires the test of 2|s|2 − |s| + 2 positions, and the total cost of
an iteration is 2 × (n − |s|) × (2|s|2 − |s| + 2), which is also the complexity (at the
worst case) of the decision problem of a shot insertion. In order to overcome this
complexity, incremental computing techniques are used [7]. The main idea is to use
a specific data structure containing for each possible move the corresponding gain
and the resulting configuration if the insertion is really performed. Each time a move

Table 1 Computing complexity
for one image insertion # removals # sub_schedules # insertion tests

0 1 |s| + 1

1 |s| |s|2
2 |s| − 1 (|s| − 1)2

Algorithm 1: Evaluate–N (s)

begin
Lcand ← ∅;
best_gain ← −∞;
Ds ← Generate-sub-schedules(s); % Ds = {s, s1, s2, . . .} ;
for all i, such that xi = 0 do

for l = 1 to |Ds | do
for m = 0 to |sl | do

if Insert(sl, i,pm) = True then
[1] if (Gain(sl, i,pm) > g∗) or (sl is not tabu) then

if Gain(sl, i,pm) > best_gain then
Lcand ← ∅;
best_gain ← Gain(sl, i,pm) ;
Lcand ← {(sl, i,pm)} ;

else
if Gain(sl, i,pm) = best_gain then

Lcand ← Lcand ∪ {(sl, i,pm)} ;

return (Lcand, best_gain)

end;

is carried out, the elements of this data structure which are affected by the move are
updated accordingly.

The neighborhood is evaluated in accordance to Algorithm 1. The used notations
are as follows:

– Lcand is the list of the candidate moves among the neighbors of the current config-
uration.

– best_gain is the best gain associated to the configuration obtained by the insertion
of a free shot in the current configuration s and contained in Lcand .

– Generate-sub-schedules(s) is the function which generates sub-schedules from s

by removing 0, 1 or 2 successive images (and their twins if necessary).
– The set of the sub-schedules produced by the function Generate-sub-schedules(s)

is denoted by Ds . The first element of Ds is s (no removal). We denote by |Ds | the
number of sub-schedules in Ds and by sl the lth sub-schedule in Ds .

– pm denotes the position numbered by m and situated between two shots which are
scheduled respectively at the orders m and m + 1 according to their shooting start
date. In particular, p0 is the position before the first acquired shot and p|sl | is the
position after the last acquired shot in sl .

Example 1 Consider sl = {(x1 = 1, t1 = 60), (x2 = 0, t2 = ∞), (x3 = 0, t3 =
∞), (x4 = 0, t4 = ∞), (x5 = 1, t5 = 40), (x6 = 0, t6 = ∞), (x7 = 1, t7 =
50), (x8 = 0, t8 = ∞)}. If we order the selected shots 1, 5 and 7 (x1 = x5 = x7)
in sl according to their shooting start date then we obtain shot 5 < shot 7 < shot 1
(t5 < t7 < t1). Hence, we can express the different positions pm as follows:
p0 − shot 5 − p1 − shot 7 − p2 − shot 1 − p3.
– p0 is the position before the shot 5.
– p1 is the position between the shots 5 and 7.
– p2 is the position between the shots 7 and 1.
– p3 is the position after the shot 1.

– g∗ is the gain associated to the best schedule already reached s∗ from the beginning
of the resolution, g∗ = G(s∗).

– Insert(sl, i,pm) is a function which returns True if the insertion of the shot i at
position pm in a sub-schedule sl is feasible regarding to the problem constraints,
False otherwise.

– Gain(sl, i,pm) is the associated gain to the configuration resulted from the inser-
tion of the shot i in sl at the position pm.

In Algorithm 1, we start by generating the set Ds of the sub-schedules obtained by
removing some shots. Then we try to insert each free shot i in those sub-schedules.
If an insertion is successful then we calculate its corresponding gain. Afterward, this
insertion becomes candidate, the list of the best candidates is saved in Lcand and their
associated gain value is best_gain. If a candidate move improves the current best
gain then Lcand will contain only this move. The list Lcand will be used in the move
heuristic as it will be explained in the next sections.

4.4 Tabu list management and move heuristic

We define a move by the insertion of a free shot i (flipping xi from 0 to 1) followed
by the removal of the conflicting shots that do not satisfy the problem constraints (for
each conflicting shot j , we flip xj from 1 to 0). Now, we explain both the management
of the tabu list and the heuristic used to select one of the move candidates.

4.4.1 Tabu list management

The role of a tabu list is to prevent short-term cycling. In this order, when a shot i is
selected and scheduled (a move is carried out), this shot is classified tabu (forbidden
for any change) for a certain time called the tabu tenure. In our TS algorithm, this
tenure is dynamically formulated by:

tabu(i) = iter + α × freq(i), where:

– iter is the number of the current iteration of the tabu algorithm.
– freq(i) counts the number of times that the shot i has been selected by the tabu

algorithm (note that a shot can be inserted at a given iteration and be dropped
some iterations later, then reselected after and so on).

– α is a variable parameter used to weight tabu(i) according to freq(i).

Moreover, a sequence of shots is tabu if all its shots are tabu, and not tabu if it con-
tains at least one non-tabu shot. Likewise, we state that a sub-schedule obtained from
a current schedule by removing a tabu sequence is also tabu, otherwise it is not
tabu. Additionally, the direct azimuth corresponds to the natural move direction of
the satellite and changing azimuth between two shootings is very costly in the terms
of transition time. Consequently, the acquisitions in the direct azimuth are preferred
over the indirect ones. This preference is expressed by setting α = 2 × β for the
shots acquired in a direct azimuth and α = β for the indirect ones (the value of β

is fixed empirically). Hence, if i is odd then tabu(i) = iter + 2 × β × freq(i) else
tabu(i) = iter + β × freq(i). Recall that in Sect. 2.1 we use odd and even numbers to
differentiate the shots regarding to their acquisition directions.

4.4.2 Move heuristic

Once the neighborhood is evaluated, the selected shot (move) is the one that max-
imizes the gain value and does not remove a sequence of tabu shots. However, if a
move strictly improves the best gain then the aspiration criterion is employed to can-
cel the tabu status of a sub-schedule. Therefore in Algorithm 1, the condition labeled
[1] corresponds to either the best gain g∗ is strictly improved (aspiration criterion) or
the sub-schedule sl is not tabu. To summarize, we start by constructing Lcand , we se-
lect randomly one candidate move (sl, i,pm) from Lcand , then we insert the shot i in
sl at the position pm to obtain the neighbor configuration s′ that replaces the current
one, which completes the move.

As described above, if some moves lead to the same gain value then one of them
is randomly chosen. However, this selection criterion is not the most effective one.
For this reason and to tone down the random effect, we introduce a second objec-
tive function which is the minimization of the sum of the transition durations in a
configuration s. We denote this sum by T dT (s).

4.5 A secondary optimization problem: minimization of T dT

Some moves may lead to the same gain value. In this case and to make a better choice
than a random one, a second objective function is defined by the minimization of the
sum of transition durations that separate the acquisition of the shots. This minimiza-
tion is done according to the constraints (1) to (4) of the original AEOS problem:

MinT DT (s) =
2n∑

i=1

2n∑

j=1

j �=i

xi · xj · yi→j · d(i → j)

subject to:

(1) For any strip j ∈ [1, n], x2j−1 + x2j ≤ 1.
(2) For any stereo strip j ∈ [1, n] and tw(j) �= 0, we have (x2j−1 = x2tw(j)−1 and

x2j = x2tw(j)).

(3) For any shot i ∈ [1, 2n], if xi = 1 then ti ∈ [es(i), ls(i)].
(4) ∀i �= j ∈ [1, 2n] (i and j are shots), tj − ti ≥ (d(i)+ t (i → j)) ·yi→j + (es(j)−

ls(j)) · (1 − yi→j).

The enhanced aspiration criteria

Before solving this second optimization problem, we improve the aspiration criterion
as follows. The tabu status of a sub-schedule is canceled if one of the two conditions
below is verified:

1. if a move leads to a configuration s′ better than the best configuration s∗ found so
far, i.e. G(s′) > G(s∗) = g∗,

2. if a move leads to a configuration s′ with the same gain value of s∗ but with a
lower T dT value than T dT (s∗), i.e. G(s′) = G(s∗) and T dT (s′) < T dT (s∗).
In order to tackle the T dT minimization problem, we design a second tabu algo-

rithm based on the inversion of the acquisition direction of the strips and the exchange
of the order of the shots in the considered configuration. This resolution is the subject
of Sect. 5.

4.6 Intensification and diversification phases

The tabu mechanism may lead to a state where no move is admissible (all moves are
tabu). This occurs when each possible move has been tried a large number of times
without improving the best configuration already reached s∗. In this case, we launch
an intensification phase. This one is based on a heuristic using a long-term informa-
tion [10]. To this end, when the gain cannot be improved (all the shots are tabu and
the aspiration criterion is not satisfied) the intensification phase attempts to overcome
this situation by exploiting the best schedule s∗ as follows:

First step: The minimization of the sum of the transition durations of s∗ is tackled
by a dedicated TS algorithm (see Sect. 5). The minimization of T dT (s∗) is called the
smoothing step. If it succeeds (i.e. the T dT (s∗) value is decreased) then the tabu sta-
tus of all the shots are set to 0, and the tabu exploration is restarted from the smoothed
s∗. This step is very important. In fact, we have observed that during the experimental
process if this first step has been achieved successfully then we may insert a free shot
without any removal and consequently improve the best gain g∗.

Second step: When the smoothing step fails, we decrease the β value by dividing
it by 2, β ← β/2. Hence, the tabu durations are reduced (recall that β is a variable
parameter of the tabu tenure of a shot, see Sect. 4.4). Accordingly, if β >1 then the
tabu status of all the shots are set to 0 and the tabu exploration is restarted from the
best solution s∗.

As described above, the intensification phase alternates between two exclusive
steps. In fact, the execution of the fist step (respectively, the second step) inhibits the
execution of the second one (respectively, the first one). Its aim is to focus the explo-
ration around the elements of the best solution by either reordering its selected strips

and inverting their acquisition directions (T dT (s∗) minimization) or by decreasing
the tabu tenure of the shots. However, if the intensification phase does not improve
the best gain then a diversification process is applied.

The role of diversification is to escape from the attractive zones of the search space
corresponding to the local minima. For this reason, when both the tabu exploration
and the intensification phase fail, we generate a new starting point (first schedule)
different from the last one used at the beginning of the tabu exploration, we set the
tabu status of all the shots to 0 and the β parameter to a new value fixed empirically,
then we restart the tabu search from this new point.

4.7 A greedy algorithm for the AEOS problem

To produce quickly a first feasible solution for the AEOS problem, we design and
use a greedy algorithm. This one is based on a simple operation of inserting a shot
that does not require the removal of the already selected shots. Also, each shot i ∈
[1, 2n] is weighted according to the number of times that it was selected by the
greedy algorithm. We denote by wg(i) this weight which is initialized to 0.

When it is launched, the greedy algorithm starts by sorting the 2n shots in the
increasing order of their weights wg. This treatment is accomplished by the function
SortShots() in Algorithm 2 and the result is stored in the list Q (Qj is the number
of the shot that is ordered at the position j in Q according to its wg(Qj) value). The
first element of Q is the least selected shot by greedy() and the last one is the most
selected one. Hence, acquiring the shots according to their weights aims to favor the
acquisition of the less selected shots by the greedy algorithm.

In Algorithm 2, y is a configuration where any shot is selected (∀i ∈ [1, 2n],
xi = 0). In the loop “for”, we try to acquire each shot Qj by satisfying all the prob-
lem constraints. Moreover and oppositely to the move heuristic that we have defined
before, we forbid removing the shots that are already fixed in y. In fact, if the condi-
tion at the line [1] is not checked then we simply skip the current shot and handle the
following one in Q.

Algorithm 2: greedy()

begin
let be y a configuration where ∀i ∈ [1, 2n] we have xi = 0;
% Q is the list of the 2 ×n shots sorted in the increasing order of the wg values
Q ← SortShots();
% Qj is the j th element of Q

for j = 1 to 2n do
[1] if setting xQj

= 1 in y satisfies the constraints (1) to (4) then
xQj

← 1;
wg(Qj) ← wg(Qj) + 1

return y

end;

Regarding to the weights wg and to their corresponding sorted shots list Q, two
executions of Algorithm greedy() will return two different configurations in terms of
the selected strips. This feature allows us to deal with the diversification step that
needs different starting points (see last paragraph of Sect. 4.6).

4.8 Global tabu resolution

The TS algorithm follows a general scheme consisting of three iterative phases: ex-
ploration, intensification and diversification. All these resolution steps are given in
Algorithm 3. It starts by initializing the different structures that it uses, such as the
wg, freq and tabu values. The greedy algorithm returns a first feasible solution s0
constructed by successive image insertions without any removal. |s0|+ is the number
of the selected shots in s0 and which are acquired in the direct azimuth. The instruc-
tion labeled [2] tunes the value of the parameter α according to the shooting direction
of an image and as explained in Sect. 4.4: we recall that an odd (even) number in-
dicates a shot that is acquirable on the direct (indirect) azimuth. The Tabu–T dT (s∗)
function (label [3]) corresponds to the tabu algorithm dedicated to the minimization
of T dT (s∗) value. Finally, the stop criterion is a limited execution time.

The diversification phase is launched when the intensification step fails. Hence,
we execute a new iteration of the most external loop repeat . . . until by generating
a new starting point s0 by the means of the greedy algorithm and executing the tabu
search, . . .

The different phases (exploration, intensification and diversification) use the same
tabu search engine. Each one is triggered and stopped automatically by the tabu list
management, i.e. whenever no more move is admissible.

5 Tabu algorithm for minimizing T dT

As we have seen previously, the T dT minimization is used in the intensifica-
tion process. We recall that for a given configuration s, we have T dT (s) =∑2n

i=1
∑2n

j=1, j �=i xi · xj · yi→j · d(i → j). The aim is to obtain a shortest schedule
in terms of the sum of the transition durations between the strip shootings. Indeed,
the reduction of this sum can generate visibility time windows sufficiently broad and
usable by the satellite to acquire new shots and without removing those that are al-
ready selected. the minimization of T dT is based on two operations: the exchange
of the order of the shots and the inversion of the acquisition direction of the strips.
The order exchange is inspired by the 2–opt operation [16] which is widely used in
solving the Traveling Salesman Problem (TSP).

As in the last section, we detail the various elements of the TS algorithm dedicated
to solve the T dT minimization problem.

5.1 Neighborhood evaluation

As for the first TS algorithm, the explored search space is totally constrained. Hence,
each visited configuration is consistent and may be saturated. Accordingly, we define
the neighborhood function Nt over X as follows:

Algorithm 3: Tabu–AEOS()

begin
for i = 1 to 2n do wg(i) ← 0; % initialization of the wg weights
repeat

% initialization of the tabu and the frequency values of each shot
for i = 1 to 2n do

xi ← 0; freq(i) ← 0; tabu(i) ← 0;

[1] s ← s0 ← greedy(); % the initial configuration
s∗ ← s; % initialization of the best configuration
g∗ ← G(s∗); % initialization of the best gain
β ← |s0|+; % initialization of the β factor
iter ← 0; % initialization of the iteration number

repeat
(Lcand , best_gain) ← Evaluate-N (s);
if Lcand �= ∅ then

%% Tabu exploration
(sl, i,pm) ← randSelect(Lcand);
s ← propagate_move(sl, i,pm); % Inserts i in sl at pm and propagates all the
constraints
freq(i) ← freq(i) + 1;
iter ← iter + 1;

[2] if (i modulo 2) = 1 then
α ← 2 × β;

else α ← β;
tabu(i) ← iter + α × freq(i);
if (best_gain > g∗) or (best_gain = g∗ and T dT (s) < T dT (s∗)) then

s∗ ← s; g∗ ← best_gain;

else
% intensification: step 1

[3] (z, T dTz) ← Tabu–T dT (s∗);
if T dTz < T dT (s∗) then s∗ ← z;
else

% intensification: step 2
β ← β/2;

for i = 1 to 2n do freq(i) ← 0; tabu(i) ← 0;
s ← s∗;

until (β < 1 or |s∗| = n);
%% If (β < 1) then Diversification phase

until (stop criterion or |s∗| = n);
return (s∗, g∗);

end;

Let s = ((x1, t1), (x2, t2), . . . , (x2n, t2n)) be a current configuration, s′ = ((x′
1, t

′
1),

(x′
2, t

′
2), . . . , (x

′
2n, t

′
2n)) is a neighbor of s, i.e. s′ ∈ Nt (s), if and only if the following

conditions are verified:

1. ∃!i ∈ [1, 2n]/ xi = 0 and x′
i = 1. Moreover, if tw(i) �= 0 then xtw(i) = 0 and

x′
tw(i) = 1.

2. For any shot i that satisfies the condition 1 and a shot j ∈ [1, 2n] such as i and j

are issued from the same strip, we have xj = 1 and x′
j = 0. Moreover, if tw(i) �= 0

then xk = 1 and x′
k = 0 such that tw(i) and k are also issued from the same strip.

The strip, that corresponds to the shots i and j , is acquired according to the direc-
tion of j in s (xj = 1 in s). Setting x′

j to 0 and x′
i to 1 in s′ means that we change

the shooting direction of this strip.
3. The constraints (3) and (4) are satisfied in both s and s′.
4. |s′| = |s|. In other words, the same number of strips is selected in s and s′.

In both the configurations s and s′, the same strips are acquired (no strip is re-
moved from s) as stated by the condition4. However, there is only one strip in s′
(condition 1) plus, if necessary, its twin for which the acquisition direction is inverted
(condition 2). Moreover, to deal with time constraints (3) and (4), the order of the cor-
responding strip can be exchanged in the configuration s′ (in other words, its starting
time changes).

A neighbor configuration s′ of s is evaluated according to the sum of the transition
durations between the shots that it contains. Hence, for each s′ ∈ Nt (s), the value of
T dT (s′) is calculated and the best neighbors are selected through Algorithm 4 which
is given below. We use the following notations:

– Lt
cand is the list of the candidate moves.

– best_T dT is the best T dT value obtained at the end of the evaluation of Nt (s)

Algorithm 4: Evaluate–Nt (s)

begin
Lt

cand ← ∅; best_T dT ← +∞ ;
for i ∈ [1, 2n], such that xi = 1 in s do

s−i ← remove(s, i);
for m = 0 to |s−i | do

if Insert(s−i , j,pm) = True then
if (T dT (s−i , j,pm) < T dT ∗) or ((j,pm) is not tabu) then

if T dT (s−i , j,pm) < best_T dT then
Lt

cand ← ∅;
best_T dT ← T dT (s−i , j,pm) ;
Lt

cand ← {(s−i , j,pm)} ;

else
if T dT (s−i , j,pm) = best_T dT then

Lt
cand ← Lt

cand ∪ {(s−i , j,pm)} ;

return (Lt
cand, best_T dT);

end;

– s−i is the configuration issued from s by removing the shot i (and eventually its
twin) which is already selected (xi = 1 in s and xi = 0 in s−i). |s−i | is the number
of the selected shots in s−i .

– remove(s, i) is the function which removes the shot i from s. The resulted config-
uration is s−i .

– j is the index of the shot issued from the same strip as i but taken in the opposite
direction.

– T dT ∗ is the best T dT value obtained for the whole second TS algorithm.
– T dT (s−i , j,pm) is the T dT value of the schedule obtained by inserting the shot

j in the position pm in s−i .

At each iteration of the Nt (s) evaluation, each selected shot i in s is removed (the
resulting schedule is s−i). Then, we try to insert the shot j in each position pm in
s−i without any shot removal and by satisfying all the constraints (1) to (4). If an
insertion is possible then we calculate the T dT value of the new configuration ob-
tained by adding the shot j to s−i . The best candidate moves with the lowest T dT

value (best_T dT) are stored in Lt
cand which will be used in the phase of the move

selection.

5.2 Tabu list management and move heuristic

For the T dT minimization, the tabu tenure is defined for the pairs (shot, position).
Indeed, each time a shot j is inserted at position pm then the tabu tenure of (j,pm)

is dynamically updated by the formula:

tabu(j,pm) = iter′ + λ × freq′(j,pm), where:

– iter′ is the current iteration of the second tabu process.
– freq′(j,pm) is the number of the times that the shot j was inserted at at the position

pm in s.
– λ is a variable parameter which is fixed empirically.

After the evaluation of the neighborhood Nt , a shot j (which corresponds to the
changing of the acquisition direction of an already scheduled shot i) is inserted at the
position pm if the resulting configuration has the minimum T dT value and the pair
(j,pm) is not tabu. However, an aspiration criterion is employed to cancel the tabu
status when T dT (s∗) (the best value already reached) is decreased. Hence, among
all the candidate moves, one is randomly selected from Lt

cand , the insertion of j in
s−i is performed and the constraints are propagated.

5.3 The general tabu algorithm for the T dT minimization

Combining all the points described above leads us to Algorithm 5 for the T dT min-
imization. This algorithm terminates when no more candidate moves are available
(i.e. Lt

cand = ∅) and it returns the best configuration found s∗ and its corresponding
T dT value, T dT ∗. The value of λ parameter is equal to the number of the acquired
shots in s. The propagate_move function achieves the move and propagates all the

Algorithm 5: Tabu–T dT (s)

begin
for any shot i and position pl do

freq′(i, pl) ← 0; tabu(i, pl) ← 0;

s∗ ← s; T dT ∗ ← T dT (s∗);
iter′ ← 0;
λ ← |s|;
repeat

(Lt
cand , best_T dT) ← Evaluate–Nt (s) ;

if Lt
cand �= ∅ then

(y, j,pm) ← randSelect(Lt
cand) ;

s ← propagate_move(y, j,pm) ;
freq′(j,pm) ← freq′(j,pm) + 1;
iter′ ← iter′ + 1 ;
tabu(j,pm) ← iter′ + λ × freq′(j,pm) ;
if best_T dT < T dT ∗ then

s∗ ← s;
T dT ∗ ← best_T dT ;

until Lt
cand = ∅;

return (s∗, T dT ∗);
end;

constraints of the problem, namely, setting xj = 1 and xi = 0 (i and j are issued from
the same strip) to deal with the first problem constraint, updating the visibility time
windows and updating the starting acquisition date. Note that we have not introduce
in this resolution a diversification and an intensification phases with the aim to have
short execution times of the Tabu–T dT (s) algorithm.

Designing an exact algorithm to solve the AEOS management problem remains a
difficult task even if a column generation approach was proposed but the obtained re-
sults were not so promising [17]. In Sect. 7 we will compare the performances of our
resolution to the best known ones. Moreover, we try to approximate the bounding of
the optima values by calculating upper bounds on a simplified problem as described
in the next section.

6 Upper bounds for the AEOS problem

To calculate upper bounds in a polynomial time, some simplifications on the origi-
nal AEOS problem are mandatory. As described in Sect. 2, the AEOS management
problem is a Shortest Path Problem with Time Windows (SPPTW) (see for example
[6]) with several additional properties increasing its hardness:

– Two scanning directions are possibles for each strip acquisition and mutually ex-
clusive.

– The stereo constraints: some pairs of strips describe two acquisitions of the same
geographical area under different angles. Selecting one without the other is forbid-
den and scanning directions must be identical.

– Requests are grouped into polygons whose gain is a convex piecewise linear func-
tion of the surface covered by the selected strips.

Consider the simplified AEOS management problem where the uniqueness and
stereoscopic acquisition constraints are relaxed (the redundant strip acquisition and
violation of the stereo constraint are allowed) and the evaluation function for poly-
gons is linearized (f (x) = x). Accordingly, each instance of the AEOS management
problem can be represented as a directed graph, in which each vertex i is represented
by the pair (pei, tei), where pei is the geometric point of the end of a strip and tei

is the end time of a strip acquisition. The directed edges represent the possible tran-
sition between vertices (the visibility time windows and the transition constraints are
satisfied). A gain Gei is associated with each vertex i corresponding to the accumu-
lated gain on the path reaching i from a starting vertex. To keep the graph finite, the
time tei must take values only from a discrete set, such as the natural numbers.

An optimal solution of the simplified AEOS management problem is just the
longest path in this graph. Finding such a path deals with SPPTW which is solvable
in a polynomial time. Hence, an adaptation of a dedicated algorithm to SPPTW can
be successfully applied. For this reason, we elaborate a Dynamic Programming (DP)
algorithm (as done in [14] also inspired by [6]) to deal with the simplified problem.

The constructed graph is circuit-free. However, a vertex might still be visited more
than once, i.e. a strip may be acquired more than once on a path (redundancy). In [13],
a method for eliminating 2 cycles (i.e. double acquisition of a single strip) is sug-
gested but cannot easily be generalized to cycles of higher orders. The implemented
DP algorithm incorporates a 2-cycle elimination but it is forced to accept cycles of
higher order.

Now, we outline the main elements of the DP algorithm: the local optimal value
of the quality criterion Ge∗

i at a vertex (pei, tei) can be expressed as:

Ge∗
i = Max

j
{Ge∗

j + gsi, such that constraints (3) and (4) are satisfied}

where gsi is the gain of the strip from which the vertex (pei, tei) is issued. Satisfying
constraints (3) and (4) means the existence of an edge from vertex (pej , tej) to
(pei, tei) in the constructed graph.

Accordingly, we define a dominance rule, for an efficient evaluation of each edge
in the DP algorithm as follows: given two vertices i and j represented by (pei, tei)

and (pej , tej) and characterized by the accumulated gains Gei and Gej respectively
then:

(i dominates j) if and only if (pei = pej and tei ≤ tej and Gei ≥ Gej).

Several strategies to decrease the computation time of the algorithm have been pro-
posed. In [5], the authors suggested a method to decrease the width of the time win-

dow and also proposed using a pulling algorithm instead of the more straightforward
reaching algorithm usually used in DP-algorithms for shortest path problems.

After presenting both algorithms dedicated to the resolution of the AEOS man-
agement problem and the calculation of the upper bounds, we give and discuss the
results obtained on the provided benchmarks.

7 Computational results

The AEOS management problem was the subject of the 3rd international challenge
organized by the French Society of Operations Research and Decision Analysis
(ROADEF’2003), and proposed by the CNES1 and ONERA2 French space agencies.

7.1 Test instances and experimental settings

The provided instances are artificially generated, with the number of requests (m
value) ranging from 2 to 375, and the number of strips (n value) varying from 2 to
534 with a maximum of 113 stereo strips (nstereo value). Table 2 gives the properties
of each of the 20 used instances.3

The TS and DP algorithms are implemented in C/C++ language and compiled us-
ing Visual C++. The experiments were carried on a PIV 1.9 Ghz PC with 512 MB of
RAM. The execution time, corresponding to the stop criterion of Algorithm 3, is fixed
to 1800 seconds in order to evaluate the behavior of the algorithm over a relatively
long computation time. Table 3 gives the obtained results. The TS algorithm was run
10 times per instance with different random seeds and the following information are
collected:

Table 2 Test instance characteristics

Instance m n nStereo Instance m n nStereo

2 9 36 2 2 0 2 21 140 284 420 58

2 9 66 4 7 0 2 21 155 311 472 55

2 13 111 68 106 12 2 21 170 294 450 71

2 15 170 218 295 39 2 21 22 306 455 54

2 26 96 336 483 63 2 21 37 315 477 62

2 27 22 375 534 67 2 21 7 289 410 49

2 9 170 12 25 4 2 21 81 297 436 59

3 25 22 150 342 113 2 21 96 291 437 49

3 8 155 12 28 10 3 21 155 135 295 105

4 17 186 77 147 48 3 21 81 135 283 88

1Acronym of “Centre National d’Etudes Spatiales”
2Acronym of “Office National d’Etudes et de Recherches Aérospatiales”
3Available from the WEB site of the challenge: www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2003

http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2003

Table 3 The results obtained after 1800 seconds running time

Instance Best Worst Average Best known

Gain Ns Time Gain Gain Time Gain

2 9 36 10,423,440 2 <1 10,423,440 10,423,440 <1 10,423,440

2 9 66 115,710,959 7 <1 115,710,959 115,710,959 <1 115,710,959

2 13 111 563,597,071 54 90 563,597,071 563,597,071 90 563,597,071

2 15 170 719,417,220 40 221 719,417,220 719,417,220 561 719,417,220

2 26 96 1,005,301,900 35 1725 985,763,300 989,671,020 443 1,005,301,900

2 27 22 966,643,460 30 57 966,643,460 966,643,460 57 967,910,750

2 9 170 191,358,231 17 <1 191,358,231 191,358,231 <1 191,358,231

3 25 22 425,983,220 28 95 425,983,220 425,983,220 95 425,983,220

3 8 155 121,680,360 12 <1 121,680,360 121,680,360 <1 121,680,360

4 17 186 185,406,200 37 <1 185,406,200 185,406,200 <1 185,406,200

2 21 140 1,030,060,860 32 191 1,027,543,540 1,029,288,814 467 1,029,892,360

2 21 155 1,150,632,847 35 1074 1,129,245,020 1,132,568,329 762 1,150,632,847

2 21 170 914,978,310 40 573 906,992,592 912,183,616 1151 891,060,370

2 21 22 1,160,594,340 32 115 1,160,366,840 1,160,571,590 831 1,160,366,840

2 21 37 954,965,580 37 190 954,605,760 954,821,652 602 954,965,580

2 21 7 842,378,700 33 115 842,378,700 842,378,700 116 842,378,700

2 21 81 986,679,410 30 897 98,424,5930 985,894,172 778 986,679,410

2 21 96 113,4461,030 38 843 1,125,880,120 1,130,197,543 932 1,133,044,250

3 21 155 460,196,570 36 3 460,196,570 460,196,570 3 4,6019,6570

3 21 81 37,3553,350 28 16 373,553,350 373,553,350 16 373,553,350

– Over the 10 runs, the best gain value, the time needed to reach this gain and the
number of the selected strips in the corresponding solution (columns 2, 3 and 4 of
Table 3).

– Over the 10 runs, the worst gain (column 5), and the average gain and time
(columns 6 and 7).

– The best known gains (column 8) issued from the published results during the
ROADEF’ 2003 challenge, in a booklet of abstracts [17] and also available on the
WEB site of the challenge3, but using different test parameters: Sun-Blade-1000
750 MHz/512 MB workstation and 300 seconds running time.

7.2 Result discussion

For the ten first instances (from 2 9 36 to 4 17 186, which we call A instances), all the
best known gains are reached except for instance 2 27 22. These values are obtained
after a maximum of 221 sec, except for instance 2 26 96, which required 1725 sec.
For the ten instances 2 21 140 to 3 21 81 (B instances), all the best values are reached
after less than 200 sec computing time except for the instances 2 21 155 and 2 21
81, which require 1074 and 897 sec respectively. Furthermore, the gains which are

Table 4 Upper bound values
Instance Best UB Gap %

2 9 36 10,423,440 10,423,440 0.00

2 9 66 115,710,959 115,710,959 0.00

2 13 111 563,597,071 750,675,448 24.92

2 15 170 719,417,220 1,007,583,810 28.60

2 26 96 1,005,301,900 1,262,199,140 20.35

2 27 22 966,643,460 1,225,871,727 21.15

2 9 170 191,358,231 191,358,231 0.00

3 25 22 425,983,220 595,723,590 28.49

3 8 155 121,680,360 121,680,360 0.00

4 17 186 185,406,200 233,270,070 20.52

2 21 140 1,030,060,860 1,268,577,920 18.80

2 21 155 1,150,632,847 1,445,129,777 20.38

2 21 170 914,978,310 1,177,206,242 22.27

2 21 22 1,160,594,340 1,478,755,136 21.51

2 21 37 954,965,580 1,281,931,945 25.51

2 21 7 842,378,700 1,060,675,390 20.58

2 21 81 986,679,410 1,315,194,307 24.97

2 21 96 1,133,044,250 1,366,459,404 17.08

3 21 155 460,196,570 604,049,451 23.81

3 21 81 373,553,350 492,952,136 24.22

obtained for the instances 2 21 140, 2 21 170, 2 21 22 and 2 21 96 are improved after
a maximum of 843 sec.

Several comments can be made about these results. First, our TS algorithm is
efficient and robust. In fact, 15 best gains are reached and 4 are improved, even if
the best known gains were obtained on different experimentation conditions and the
optimal gains are unknown. About the robustness of the algorithm, the gap value
between the best gain found and the average gain, calculated using the formula 100×
(Best

Average −1), is equal to 0% for 12 instances (the best known value is always reached),
and less then 1.60% for the rest of the benchmark, which is a poor value. Secondly,
these instances seems highly constrained since only a small number of candidate
strips are selected in the best solutions.

In Table 4, the gaps with the upper bounds are calculated by the formula 100 ×
(1− Best

UB), where the column Best corresponds to the best gain values obtained by our
TS algorithm and the column UB to the gains obtained by the dynamic programming
algorithm on the simplified problem as explained in Sect. 6. For the instances 2 9
36, 2 9 66, 2 9 170 and 3 8 155, our TS algorithm reaches the optimality. For the
other instances the gaps are between 17.08% and 28.60%. Even if these gaps are
not so tight, the results obtained on the simplified problem (by the relaxation of some
constraints and the linearization of the objective function) at least prove the optimality
of four instances.

8 Conclusion

In this paper, we have proposed a tabu search algorithm to solve the problem of se-
lecting and scheduling photographs of an Agile Earth Observing Satellite (AEOS).
This problem is formulated as a constrained optimization problem. The involved con-
straints are both unary and binary and the evaluation function, to be maximized, is
convex which increases the hardness of the problem. The TS algorithm explores a
search space based on consistent and possibly saturated configurations. Consistency
is ensured by an effective constraint propagation for each new move carried out dur-
ing the search process. The resulting neighborhood is quickly evaluated by the use
of incremental techniques. Moreover, the TS algorithm is bridged with systematic
search by means of partial enumerations in order to solve a large number of decisional
problems. In addition and to improve the efficiency of the resolution, we introduced
a secondary problem which is the minimization of the sum of the transition durations
in a schedule. A second tabu search algorithm was developed to tackle it where the
neighborhood construction is based on exchanging the order of the acquired strips in
the treated configuration and inverting their acquisition directions.

Furthermore and as an exact algorithm is hard to design for the AEOS manage-
ment problem, we calculated upper bounds for a simplified problem by relaxing the
uniqueness and stereo acquisition constraints, and the linearization of the objective
function. Then, a dynamic programming algorithm was launched on this less con-
strained problem.

Our resolution was applied on benchmarks provided by the French space agen-
cies for the ROADEF’2003 challenge. The results obtained showed the efficiency of
the TS algorithm. Indeed, all the best known results were reached (except for one
instance) and optimality was proved for 4 instances. Note that those instances seem
highly constrained because of the low number of the selected strips in the obtained
solutions.

Concerning future work, the stereoscopic constraint needs to be handled in a more
efficient way. This constraint, which consumes a large amount of computing time
when it is handled, increases the difficulty of the problem, and unfortunately the pro-
portion of the stereo shots in the solutions is generally very small. In addition, we will
enhance the efficiency of the second optimization problem (the minimization of the
sum of transition durations in a schedule) by using more powerful techniques taken
from the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem with
Time Windows (VRPTW). Finally, the optimal values of the AEOS managing prob-
lem remain unknown. To overcome this weakness, we will study a way to improve
the tightness of the upper bounds. A first possibility is to use the techniques based
on the Lagrangian relaxation.

References

1. Benoist, T., Rottembourg, B.: Upper bounds of the maximal revenue of an Earth observation satellite.
4OR: Q. J. Oper. Res. 2(3), 235 (2004)

2. Bensana, E., Agnèse, G.V.J., Bataille, N., Blumstein, D.: Exact and approximate methods for the daily
management of an Earth observation satellite. In: Proceeding of the 4th International Symposium od
Space Mission Operations and Ground Data Systems (spaceOps–96) (1996)

3. Bensana, E., Lemaître, M., Verfaillie, G.: Earth observation satellite management. Constraints: Int. J.
4(3), 293–299 (1999)

4. Cordeau, J., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems
with time windows. J. Oper. Res. Soc. 59, 928–936 (2001)

5. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing
problem with time window. Oper. Res. 40, 342–354 (1992)

6. Desrochers, M., Soumis, F.: A generalized permanent labelling algorithm or the shortest path problem
with time windows. INFOR 26, 191–212 (1988)

7. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63,
437–461 (1996)

8. Gabrel, V.: Improved linear programming bounds via column generation for daily scheduling of Earth
observation satellite. Technical report, LIPN (1999)

9. Gabrel, V., Moulet, A., Murat, C., Paschos, V.T.: A new model and derived algorithms for the satellite
shot planning problem using graph theory concepts. Ann. Oper. Res. 69, 115–134 (1997)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer, Amsterdam (1997)
11. Hall, N., Magazine, M.: Maximizing the value of a space mission. Eur. J. Oper. Res. 78, 224–241

(1994)
12. Harrison, S.A., Price, M.E.: Task scheduling for satellite based imagery. In Proceedings of the 18th

Workshop of UK Planning and Scheduling Special Interest Group, pp. 64–78 (1999)
13. Houck, D., Picard, J., Queyranne, M., Vemuganti, R.: The travelling salesman problem as a con-

strained shortest path problem: theory and computational experience. Oper. Res. 17(2–3), 93–109
(1980)

14. Kohl, N., Madsen, O.B.G.: An optimization algorithm for the vehicle routing problem with time
windows based on Lagrangean relaxation. Oper. Res. 45, 395–406 (1997)

15. Lemaître, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M., Bataille, N.: Selecting and scheduling obser-
vations of agile satellites. Aerosp. Sci. Technol. 6(5), 367–381 (2002)

16. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Comput. J. 44, 2245–2269
(1965)

17. ROADEF’2003 Challenge: Booklet of Abstracts. ROADEF society, France (2003)
18. Schiex, T., Fargier, F., Verfaillie, G.: Valued constrained satisfaction problems: hard and easy prob-

lems. In Proceedings of IJCAI’95, 14th International Joint Conference on Artificial Intelligence
pp. 631–639 (1995)

19. Vasquez, M., Habet, D., Dupont, A.: Neighborhood design by consistency checking. In the Proceed-
ings of the First International Workshop on Heuristics (IWH’02), vol. 4, pp. 19–27 (2002)

20. Vasquez, M., Hao, J.K.: A logic-constrained knapsack formulation and a tabu algorithm for the daily
photograph scheduling of an Earth observation satellite. J. Comput. Optim. Appl. 20(2), 137–157
(2001)

21. Vasquez, M., Hao, J.K.: Upper bounds for the SPOT5 daily photograph scheduling problem. J. Comb.
Optim. 7, 87–103 (2003)

22. Wolf, W., Sorensen, S.: Three scheduling algorithms applied to the Earth observing systems domain.
Manag. Sci. 46(1), 146–168 (2000)

