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Deligne-Beilinson cohomology and abelian link
invariants: torsion case.

F. Thuillier

LAPTH, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux cedex, France.

Abstract

For the abelian Chern-Simons field theory, we consider the quantum functional in-
tegration over the Deligne-Beilinson cohomology classes and present an explicit path-
integral non-perturbative computation of the Chern-Simons link invariants in SO(3) ≃
RP 3, a toy example of 3-manifold with torsion.

1 Introduction

In a quite recent paper [1], we have shown how Deligne-Beilinson cohomology [8, 9, 10,
11, 12, 16] within Chern-Simons QFT framework [2, 3, 4, 5, 6, 7, 19, 20] can be used
to provide a non perturbative way to compute abelian link invariants on some three
dimensional manifolds, such as S3, S2 ×S1 etc. In particular, quantization of the Chern-
Simons parameter k as well as the charges q of the links was a straightforward consequence
of the use of Deligne-Beilinson cohomology, and the standard regularization via framing
was directly interpreted as the problem of regularizing the product of two distributional
Deligne-Beilinson cohomology classes.

Actually this former article was only dealing with torsion free (oriented) 3-manifold.
We are going to mend this lake of generality by explaining how to extend our approach
to (oriented) 3-manifolds with torsion. As a school case, we will consider the oriented
3-manifold SO(3) ≃ RP 3.

In a first section we will recall some basic facts concerning Deligne-Beilinson coho-
mology and how it relates to the functional measure based on the abelian Chern-Simons
action. In a second section we will deal with Wilson lines themselves.
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Here are the three results we will obtain:
1) The Chern-Simons level parameter k has to be be even;
2) Trivial cycles give the same result than in S3;
3) Torsion cycles must hold an even charge,

in perfect agreement with surgery methods.

All along this paper we will use the notation =
Z

, standing for equality modulo Z.

2 Deligne-Beilinson cohomology: constraints on the

level k of the abelian Chern-Simons theory.

Let us remind that Deligne-Beilinson (DB) cochains can be seen as generalizations of
U(1)-connections on U(1)-principal bundles over smooth manifolds, their classes classify-
ing the corresponding objects, i.e. U(1)-gerbes with connections [12, 17]. Concentrating
on the case of an oriented 3-manifold M , its DB cohomology space H1

D (M, Z) is canoni-
cally embedded into the following exact sequence [12, 15]:

0 −→ Ω1 (M)
/

Ω1

Z
(M) −→ H1

D (M, Z) −→ Ȟ2 (M, Z) −→ 0 , (2.1)

where Ω1 (M) is the space of smooth 1-forms on M , Ω1
Z

(M) the space of smooth closed 1-
forms with integral periods on M and Ȟ2 (M, Z) is the second integral Čech cohomology
group of M . Actually, H1

D (M, Z) can also be embedded into ([15])

0 −→ Ȟ1 (M, R/Z) −→ H1

D (M, Z) −→ Ω2

Z
(M) −→ 0 , (2.2)

where Ȟ1 (M, R/Z) is the first R/Z-valued Čech cohomology group of M and Ω2
Z

(M)
the space of smooth closed 2-forms with integral periods on M . Each one of these two
exact sequences has its own interest to describe H1

D (M, Z), but both give this space
the structure of an affine bundle, with (discrete) base Ȟ2 (M, Z) and translation group
Ω1 (M)/Ω1

Z
(M) from the former sequence, and with base Ω2

Z
(M) and translation group

Ȟ1 (M, R/Z) from the latter one.
The other important DB space we will need is H3

D (M, Z). However, the exact se-
quences of the previous type into which this space is embedded both lead to H3

D (M, Z) ≃
R/Z.

A (graded) pairing between DB cohomology spaces can be introduced. In our partic-
ular case of interest, it reduces to a commutative product:

∗D : H1

D (M, Z) × H1

D (M, Z) −→ H3

D (M, Z) ≃ R/Z . (2.3)

The ”DB square” of a class [ω] ∈ H1
D (M, Z) :

cs1([ω]) ≡ [ω] ∗D [ω] . (2.4)
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canonically identifies with the abelian Chern-Simons (CS) lagrangian, while the level k
CS lagrangian simply reads

csk([ω]) ≡ k · cs1([ω]) = k · [ω] ∗D [ω] . (2.5)

Of course, due to the Z-module structure of DB spaces, csk([ω]) is belonging to H3
D (M, Z)

if and only if k ∈ Z.
In fact, DB classes are another point of view for what is called Cheeger-Simons Dif-

ferential Characters (see for instance [13, 14, 12, 15, 16]). This implies that any DB
cohomology class can be integrated over any (integral) cycle of M of the corresponding
dimension. However, the result takes values in R/Z, and not R like in standard integra-
tion. Integral 3-cycles on an oriented 3-manifold are just integer multiples of M . Hence,
the lagrangian csk([ω]) defines the well known level k CS action

CSk([ω]) ≡ k

∫

M

cs1([ω]) = k

∫

M

[ω] ∗D [ω] . (2.6)

which takes values in R/Z if and only if k ∈ Z. We now have all the necessary ingredients
to try to define the functional ”CS measure” on H1

D (M, Z), denoted by

µk ([ω]) ≡ D [ω] · exp

{

2iπk

∫

M

[ω] ∗D [ω]

}

. (2.7)

Let us point out that (2.7) imposes quantization of the level k, that is to say

k ∈ Z , (2.8)

for the exponential to be well defined. The procedure giving a meaning to (2.7) was
detailed in [1]. To make it short let us say that, if we choose the exact sequence (2.1) as
defining H1

D (M, Z), the measure will be made of a discrete sum indexed by elements of
Ȟ2 (M, Z); then, we pick up an origin on every (affine) fiber and for each of these fibers
we consider a (formal) measure over the translation group Ω1 (M)/Ω1

Z
(M). As already

noted and extensively used in [1], the CS measure satisfies

µk ([ω] + ᾱ)) = µk ([ω]) · exp

{

2iπk

∫

M

(2 [ω] ∗D ᾱ + ᾱ ∗D ᾱ)

}

. (2.9)

for all ᾱ ∈ Ω1 (M)/Ω1
Z

(M), which is similar to the Cameron-Martin property cylindrical
functional measures verify.

In addition to the product ∗D, integration of elements of H1
D (M, Z) over 1-cycles on

M is also providing a pairing:
∮

: H1

D (M, Z) × Z1 (M) −→ R/Z , (2.10)
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where Z1 (M) denotes the abelian group of (integral) 1-cycles on M . This pairing al-
lows us to see 1-cycles on M as elements of H1

D (M, Z)∗ ≡ Hom (H1
D (M, Z) , R/Z), the

Pontrjagin dual of H1
D (M, Z). This dual space is itself embedded into dual sequences

([15]):

0 −→ Ȟ1 (M, R/Z) −→ H1

D (M, Z)∗ −→ Hom
(

Ω1 (M)
/

Ω1

Z
(M), R/Z

)

−→ 0 , (2.11)

and

0 −→ Hom
(

Ω2

Z
(M) , R/Z

)

−→ H1

D (M, Z)∗ −→ Ȟ2 (M, Z) −→ 0 , (2.12)

both being very similar to the original sequences (2.1) and (2.2). On the other hand, the
DB product (2.3) is also allowing us to canonically identify H1

D (M, Z) as a subspace of
H1

D (M, Z)∗ via integration over M , what is also legitimated by the sequences above. But
since Z1 (M) ⊂ H1

D (M, Z)∗, one is naturally led to consider the possibility to associate
to each 1-cycle, z, on M a (distributional) DB class, [ηz]. Details of this association can
be found in [16]. These arguments look totally similar to how smooth functions can be
considered as distributions via standard integration, and how chains can be seen as de
Rham currents, except that everything is done with respect to R/Z and not R.

The usefulness of the Pontrjagin dual in our problem is deeply related to the fact that,
in Quantum Field Theory, the Quantum Configuration Space is made of distributional
objects, and not just smooth ones. The first consequence will be an attempt to extend
the CS measure to H1

D (M, Z)∗ . However, while the DB product (2.3) obviously extends
to

∗D : H1

D (M, Z) × H1

D (M, Z)∗ −→ R/Z , (2.13)

it is hopeless to try to extend it straightforwardly to

∗D : H1

D (M, Z)∗ × H1

D (M, Z)∗ −→ R/Z , (2.14)

since we will face the problem of defining product of distributions (or currents). Actually,
we won’t really need to give a meaning to the products of any two elements of H1

D (M, Z)∗.
We will only need to define products like [ηz]∗D[ηz], where [ηz] is the DB representative of a
1-cycle, z, on M . For the rest, we just need to assume that there is a functional measure on
the Quantum Configuration Space (⊆ H1

D (M, Z)∗) which satisfies the Cameron-Martin
like property (2.9) (see [1] and references therein concerning this point).

Let us now deal with Wilson lines. We will explicitly consider M = RP 3, although
our treatment is quite oviously general.
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3 Expectation value of Wilson lines with torsion in

the abelian Chern-Simons theory: M = RP 3 case.

The 3-manifold M = RP 3 is among the simplest ones involving torsion. Indeed, and due
to Poincaré duality, we have:

Ȟ2 (M, Z) ≃ Ȟ1 (M, Z) = Z2 (3.15)

Ȟ1 (M, Z) ≃ Ȟ2 (M, Z) = 0 .

The first equation, together with (2.1), implies that H1
D (M, Z) is an affine fiber bundle

with base space Z2 ≡ {0̌, 1̌}, with 2 · 1̌ = 0̌. The fiber over 0̌ clearly contains the zero
U(1)-connection, [0], which plays the role of a canonical origin in this fiber, so that a DB
class [ω0] over 0̌ satisfies

[ω0] = [0] + ᾱ , (3.16)

for some ᾱ ∈ Ω1 (M)/Ω1
Z

(M). Over 1̌ there is unfortunately no such canonical choice.
Nevertheless, from the exact sequence (2.12), we see that H1

D (M, Z)∗ is also an affine
bundle with base space Z2 ≡ {0̌, 1̌}. Thus, the choice of [0] for origin on the fiber over 0̌
still holds. Now, as explained in [GT], and because of the inclusion Z1 (M) ⊂ H1

D (M, Z)∗,
there is a family of ”natural” choices of origin for the fiber over 1̌ provided by 1-cycles,
z, on M , or rather by their DB representatives [ηz]. All we have to assume is that such
an origin also belongs to the Quantum Configuration Space of the theory. We can then
formally write the functional CS measure on H1

D (M, Z)∗:

4



µk ([ω]) ≡ Dᾱ · exp

{

2iπk

∫

M

ᾱ ∗D ᾱ

}

+ (3.17)

+Dᾱ · exp

{

2iπk

∫

M

([η1] + ᾱ) ∗D ([η1] + ᾱ)

}

.

where [η1] is the origin on the fiber over 1̌ associated to some given (and so fixed) torsion
cycle τ1 on M . In the second term of (3.17) there appear the quantity [η1] ∗D [η1] which
is ill defined as being a product of distributions (or rather de Rham currents). This is
where regularization is required. Actually, and as mentioned earlier, regularization is
only required later on when computing expectation values of Wilson lines. However, as
we will see (check [1]), the quantities to regularize are of the type [η1] ∗D [η1]. This is
why we are going to deal with regularization right now.

3.1 Regularization of [η1] ∗D [η1] via framing: linking numbers of

torsion cycles.

When a cycle z is trivial, i.e. z = bc with b the usual boundary operator, one can define
the self linking number of z as the linking number of z with zf , where zf is a framing of
z. This reads:

L(z, z) ≡ L(z, zf ) ≡ c⊤∩ zf , (3.18)

with ⊤∩ denoting the transverse intersection. Of course, the result fully depends on
the chosen framing of z. This also provides a regularization procedure for [η1] ∗D [η1].
Indeed, if z and z′ are two trivial cycles in M without any common points, their DB
representatives, [ηz] and [ηz′ ], satisfy

[ηz] ∗D [ηz′] = [0] + ηz ∧ dηz′ ∈ H3

D (M, Z)∗ ≡ R/Z , (3.19)

where ηz (resp. ηz′) is the de Rham current of the cycle z (resp. z′) such that z = bc
(resp. z′ = bc′). But ηz ∧ dηz′ is the de Rham current representing the intersection
c ⊤∩ z′ = c′ ⊤∩ z. Accordingly,

∫

M
ηz ∧ dηz′ ∈ Z, so that [ηz] ∗D [ηz′ ] = [0]. Note that we

didn’t use any regularizing at this stage. We can now apply this to z and zf , leading to
[ηz] ∗D [ηzf ] = [0]. Thus, the framing procedure can be used to regularize [ηz] ∗D [ηz] into
[0]. It can even be applied for a non trivial (but torsionless) cycle (see [16, 1] for details).

For two torsion cycles τ and τ ′ on M we have 2τ = bζ and 2τ ′ = bζ ′. Hence, ζ ⊤∩ τ ′

and ζ ′ ⊤∩ τ are still well defined integers. The linking number of these torsion cycle is
then

L(τ, τ ′) =
1

2
ζ ⊤∩ τ ′ ∈

1

2
Z . (3.20)
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Due to the occurrence of one half factor in (3.20), we immediately conclude that there is
no chance for the framing procedure to regularize [ητ ] ∗D [ητ ] into [0]. Accordingly, the
term [η1]∗D[η1] appearing within (3.17) will plague the CS measure since, by construction,
it is built from a torsion cycle. Fortunately, there is the level parameter k also occurring
in (3.17). Now, if k = 2l, then k[η1] ∗D [η1] = l · 2[η1] ∗D [η1], and hence the framing
procedure consistently applies to 2[η1] ∗D [η1] because the factor one half into (3.20)
is now vanishing. Thus, here comes a new constraint on the CS level parameter for
M = RP 3:

k = 2l, l ∈ Z . (3.21)

Note that one could decide to regularize by using only an ”even” framing, keeping k ∈ Z.
But obviously this would be totally equivalent to consider any framing and k = 2l. This
is this last point of view we will chose and from now on k will be even.

We are now ready to look at Wilson lines.

3.2 Expectation value of a Wilson line on M = RP 3: trivial

cycles and torsion cycles with charge q.

Let z be a 1-cycle on M = RP 3. As previously explained, for any [ω] ∈ H1
D (M, Z)

∫

z

[ω] ∈ R/Z . (3.22)

This integral defines parallel transport of the connection [ω] along the cycle z, and

exp

{

2iπ

∫

z

[ω]

}

. (3.23)

is called the U(1)-holonomy of z with respect to the connection (or to the DB class) [ω].
We also noticed that it is possible to write

∫

z

[ω] =
Z

∫

M

[ω] ∗D [ηz] . (3.24)

for [ηz] ∈ H1
D (M, Z)∗ canonically representing z. As long as [ω] is smooth, formula (3.24)

is well defined, but since we need to go to H1
D (M, Z)∗, once more some regularization will

be required. On the other hand, a fundamental loop is a continuous mapping, f :→ S1M ,
such that f(S1) ≃ S1. A singular decomposition of S1 provides a singular decomposition
of f(S1) so that this last quantity can be considered as a (singular) 1-cycle on M . Then,
we can consider linear combinations:

z =

N
∑

i

qiZi . (3.25)
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where the Zi are fundamental loops without any common points.
¿From now on, we will assume that the functional CS measure is (existing and)

normalized so that:
∫

µk ([ω]) = 1 . (3.26)

The expectation values of the Wilson line for a fundamental loop Z with respect to the
level k CS measure formally reads

〈W (Z)〉k ≡

〈

exp

{

2iπ

∫

Z

[ω]

}〉

≡

∫

µk ([ω]) exp

{

2iπ

∫

Z

[ω]

}

, (3.27)

and for cycle a z = qZ

〈W (z = qZ)〉k =

∫

µk ([ω]) exp

{

2iqπ

∫

Z

[ω]

}

. (3.28)

¿From (3.24) we can equivalently write

〈W (z = qZ)〉k =

∫

µk ([ω]) exp

{

2iπq

∫

M

[ω] ∗D [ηZ ]

}

. (3.29)

finally injecting (3.17) into (3.29) we obtain

〈W (z = qZ)〉k =

∫

Dᾱ exp

{

2iπ

∫

M

ᾱ ∗D (kᾱ + q [ηZ ])

}

(3.30)

+

∫

Dᾱ exp

{

2iπ

∫

M

([η1] + ᾱ) ∗D (k[η1] + kᾱ + q [ηZ ])

}

.

There are two different cases to consider: either Z = bC (trivial cycle), or 2Z = bC ′ but
Z 6= bC (torsion cycle).

When Z = bC and with our choice of origin on the trivial fiber of H1
D (M, Z)∗, we

can write [ηZ ] = βC for some βC ∈ Hom (Ω2
Z

(M) , R/Z). As explained in [16], βC is built
from the de Rham current, βC , of the chain C. Unlike DB classes, βC can be divided
by 2k giving rise to βC/2k ∈ Hom (Ω2

Z
(M) , R/Z). Now, as intensively done in [1], we

perform the shift

ᾱ → χ̄ = ᾱ + q
βC

2k
. (3.31)

in both terms of (3.30), thus obtaining

〈W (z = qZ)〉k =

∫

Dχ̄ exp

{

2iπk

∫

M

χ̄ ∗D χ̄

}

exp

{

−2iπkq2

∫

M

βC

2k
∗D

βC

2k

}

(3.32)

+

∫

Dχ̄ exp

{

2iπk

∫

M

([η1] + χ̄) ∗D ([η1] + χ̄)

}

exp

{

−2iπkq2

∫

M

βC

2k
∗D

βC

2k

}

,
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where we used: 2kβC/2k =
Z

βC . Note that the result mainly derives from the Cameron-

Martin property of the CS measure. Finally, since

βC

2k
∗D

βC

2k
=
Z

βC

2k
∧ d

βC

2k
=
Z

βC ∧ dβC

4k2
, (3.33)

we derive

exp

{

−2iπkq2

∫

M

βC

2k
∗D

βC

2k

}

= exp

{

−
2iπq2

4k

∫

M

βC ∧ dβC

}

. (3.34)

The product βC ∧ dβC has to be regularized for its integral over M to have a meaning.
Applying the framing procedure to Z, leads to

∫

M

βC ∧ dβC ≡ L(Z, Zf) ≡ C ⊤∩ Zf ∈ Z . (3.35)

We then conclude that

〈W (z = qZ)〉k = exp

{

−2iπ
q2

4k
L(Z, Zf)

}

= exp

{

−2iπ
q2

4k
C ⊤∩ Zf

}

, (3.36)

which is, as expected, the same result as for M = S3. Let us prove that the above
procedure doesn’t depend on our choice of βC . Let C̃ be another chain bounding Z.
Then b(C̃ − C) = 0 which means that C̃ − C is a 2-cycle on M . Since here M = RP 3,
from (3.15) we deduce that C̃ − C = bϑ. Then bϑ ⊤∩ Zf = ϑ ⊤∩ bZf = 0, and
(3.36) will still hold. If M has free homology of degree two, there will also be free
cohomology of degree two (see Universal coefficient theorem), and then the base space
of H1

D (M, Z) (and H1
D (M, Z)∗) will also have a free part so that we have to adapt

our measure. However, it is almost obvious that (3.34) would then produce a term
(C̃ −C)⊤∩ Zf = (C̃ −C)⊤∩ bCf = b(C̃ −C)⊤∩ Cf = 0, since by hypothesis Z, and so Zf ,
is a trivial cycle.

In the torsion case, since 2Z = bC ′, we can obviously write [η2Z ] = 2 [ηZ ] = βC′, with
βC′ built from the de Rham current, βC′, of the chain C ′. However, since Z 6= bC, we
cannot find any de Rham current βC of an integral chain such that [ηZ ] = βC . This is
because DB cohomology is defined over Z and not Q. On the other hand, [η1], the DB
representative of the fixed torsion cycle τ1, has been chosen as origin of the fiber over 1̌,
so we can also write [ηZ ] = [η1] + βy, where βy is made from the de Rham current, βy, of
the chain y relating Z and τ1: Z = τ1 + by. Injecting that into (3.30) gives

〈W (z = qZ)〉k =

∫

Dᾱ exp

{

2iπ

∫

M

ᾱ ∗D (kᾱ + q [η1] + qβy)

}

(3.37)

+

∫

Dᾱ exp

{

2iπ

∫

M

([η1] + ᾱ) ∗D (k[η1] + kᾱ + q [η1]) + qβy

}

.
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Since k is even, the quantity k[η1] ∗D [η1] occurring in the second term of this expression
is consistently regularized into [0] using the framing procedure. Unfortunately, in the
same term we also see the quantity q[η1] ∗D [η1]. It combines with the previous one to
give (k + q)[η1] ∗D [η1]. From the same regularization argument which led us to impose
k to be even, we deduce that (k + q) has to be even too, and thus

q = 2m, m ∈ Z . (3.38)

In other words, charges inherit the same constraint than the level parameter and for
exactly the same reasons. Note that when q is odd then the framing procedure might
produce variations of the relative sign between the two terms of (3.37), depending whether
the framing is odd or even, hence implying that the expectation value wouldn’t be prop-
erly defined. Let us assume for the rest of this section that q = 2m, and let us rewrite
(3.37) accordingly:

〈W (z = qZ)〉k =

∫

Dᾱ exp

{

2iπ

∫

M

ᾱ ∗D (kᾱ + 2m [η1] + 2mβy)

}

(3.39)

+

∫

Dᾱ exp

{

2iπ

∫

M

([η1] + ᾱ) ∗D (k[η1] + kᾱ + 2m [η1]) + 2mβy

}

.

Since [η1] is the DB representative of the torsion cycle τ1, there exist a chain C with de
Rham current γC , such that 2τ = bC, that is to say 2 [η1] = γC . Hence

〈W (z = qZ)〉k =

∫

Dᾱ exp

{

2iπ

∫

M

ᾱ ∗D (kᾱ + mγC + 2mβy)

}

(3.40)

+

∫

Dᾱ exp

{

2iπ

∫

M

([η1] + ᾱ) ∗D (k[η1] + kᾱ + mγC + 2mβy)

}

=

∫

Dᾱ exp

{

2iπ

∫

M

ᾱ ∗D (kᾱ + mρC+2y)

}

+

∫

Dᾱ exp

{

2iπ

∫

M

([η1] + ᾱ) ∗D (k[η1] + kᾱ + mρC+2y)

}

.

where we have introduce ρC+2y = γC + 2βy = γC + 2βy, with ρC+2y being the de Rham
current of C + 2y. Now, let us perform the usual shift

ᾱ → χ̄ = ᾱ + q
ρC+2y

2k
. (3.41)

to obtain

〈W (z = qZ)〉k =

∫

Dχ̄ exp

{

2iπk

∫

M

χ̄ ∗D χ̄

}

exp

{

−2iπkm2

∫

M

ρC+2y

2k
∗D

ρC+2y

2k

}

(3.42)

+

∫

Dχ̄ exp

{

2iπk

∫

M

([η1] + χ̄) ∗D ([η1] + χ̄)

}

exp

{

−2iπkm2

∫

M

ρC+2y

2k
∗D

ρC+2y

2k

}

.
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We are left with proving that the framing procedure is providing a consistent regulariza-
tion of ρC+2y/2k ∗D ρC+2y/2k, giving (3.41) a meaning. Actually, if Zf denotes a framing
of Z:

km2

∫

M

ρC+2y

2k
∗D

ρC+2y

2k
=
Z

m2

4k

∫

M

ρC+2y ∧ dρC+2y =
m2

4k
· (C + 2y)⊤∩ 2Zf , (3.43)

what implies

〈W (z = qZ)〉k = exp

{

q2

4k
·
(C + 2y)⊤∩ Zf

2

}

. (3.44)

We also introduce the 2-chain C ′ such that 2Z = bC ′. Hence, b(C ′ −C − 2y) = 0, which
means that C ′ − C − 2y is a 2-cycle on M . Since the second homology group of RP 3 is
trivial, in this case C ′−C − 2y = bϑ what implies (C +2y)⊤∩ Zf = C ′ ⊤∩ Zf . Once more,
if M had a non trivial second homology group, then we would have (C + 2y) ⊤∩ Zf =
C ′ ⊤∩ Zf + Σ ⊤∩ Zf for some (possibily non trivial) 2-cycle. Yet, since 2Zf = bCf we
would still obtain that (C + 2y)⊤∩ Zf = C ′ ⊤∩ Zf . Finally

〈W (z = qZ)〉k = exp

{

q2

4k
·
C ′ ⊤∩ Zf

2

}

, (3.45)

with 2Z = bC ′, which is exactly the result coming from surgery [18, 20, 21]. This last
series of results also prove that nothing depends on the choice we made for ρC+2y.

Finally, note that (3.45) is actually containing (3.36) since if 2Z = bC ′ and Z = bC
then C ′ = 2C is a possible choice and then C ′ ⊤∩ Zf/2 = C ⊤∩ Zf has expected. And
consistently, we don’t need q to be even within (3.36). One can convince himself that the
factor 2 appearing in (3.44) is nothing but the torsion degree of Z, and thus in the case of
a 3-manifold with torsion cycle of degree p we would see a term like C ′ ⊤∩ Zf/p = C ⊤∩ Zf .
This is also in agreement with the case of trivial cycles which can be seen as torsion
cycles of degree 1.

4 Conclusions

The treatment of abelian Chern-Simons to generate link invariants introduced in [1]
straightforwardly extends to the case of oriented 3-manifolds with torsion. And although
we only considered RP 3, it is clear that our results apply to any oriented 3-manifold
with torsion. In [22], we will show how Deligne-Beilinson cohomology can also be applied
to higher dimensional abelian Chern-Simons theories and links invariants, thus fulfilling
some of the questions left opened in [1].
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