
HAL Id: hal-00353685
https://hal.science/hal-00353685

Preprint submitted on 16 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplicity of the group of compactly supported area
preserving homeomorphisms of the open disc and

fragmentation of symplectic diffeomorphisms
Frédéric Le Roux

To cite this version:
Frédéric Le Roux. Simplicity of the group of compactly supported area preserving homeomorphisms
of the open disc and fragmentation of symplectic diffeomorphisms. 2009. �hal-00353685�

https://hal.science/hal-00353685
https://hal.archives-ouvertes.fr


Simplicity of Homeo(D2, ∂D
2, Area) and fragmentation

of symplectic diffeomorphisms

Frédéric Le Roux∗

Laboratoire de mathématiques, UMR 8628
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Résumé

In 1980, Albert Fathi asked whether the group of area-preserving homeo-
morphisms of the 2-disc that are the identity near the boundary is a simple
group. In this paper, we show that the simplicity of this group is equivalent
to the following fragmentation property in the group of compactly suppor-
ted, area preserving diffeomorphisms of the plane : there exists a constant
m such that every element supported on a disc D is the product of at most
m elements supported on topological discs whose area are half the area of D.

Résumé

En 1980, Albert Fathi pose la question de la simplicité du groupe
des homéomorphismes du disque qui préservent l’aire et sont l’identité
près du bord. Dans cet article, nous montrons que la simplicité de ce
groupe est équivalente à une propriété de fragmentation dans le groupe des
difféomorphismes du plan, préservant l’aire et à support compact, à savoir :
il existe une constante m telle que tout élément à support dans un disque D
est le produit d’au plus m éléments dont les supports sont inclus dans des
disques topologiques dont l’aire est la moitié de l’aire de D.

AMS classification: 37E30, 57S99, 28D15.
Keywords: simple group; surface homeomorphism; hamiltonian dynamics;

fragmentation; symplectic diffeomorphisms.

This paper is concerned with the algebraic study of the group

G = Homeo(D2, ∂D
2,Area)

of area-preserving homeomorphisms of the 2-disc that are the identity near the
boundary. The central open question is the following.

Question 1 ([Fa80]). Is G a simple group?

∗This work was partially supported by the ANR Grant “Symplexe” BLAN 06-3-137237.
However, the author does not support the French research policy represented by the ANR, which
promotes post-doctoral positions at the expense of permanent positions and project funding at
the expense of long-term funding.
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The study of the simplicity of groups of homeomorphisms goes back as far
as 1935. Indeed in the famous Scottish Book ([SB57]), S. Ulam asked if the
identity component in the group of homeomorphisms of the n-sphere is a simple
group. This question was answered in the affirmative by Anderson and Fisher in
the late fifties ([An58, Fi60]). In the seventies lots of (smooth) transformation
groups were studied by D. Epstein, M. Herman, W. Thurston, J. Mather, A.
Banyaga, and proved to be simple (see the books [Ba97] or [Bo08]). Let us give
some details on the group Gdiff = Diffeo(D2, ∂D

2,Area), which is the smooth
analog of our group G. This group is not simple, since there exists a morphism
from Gdiff to R, called the Calabi invariant. But Banyaga proved that the kernel
of the Calabi invariant coincides with the subgroup [Gdiff, Gdiff ] generated by
commutators, and is a simple group. Thus the normal subgroups of Gdiff are
exactly the inverse images of the subgroups of R under the Calabi morphism.
The analog of question 1 is also solved in higher dimensions. Indeed A. Fathi
proved the simplicity of the group of volume preserving homeomorphisms of the
n-ball which are the identity near the boundary, when n ≥ 3. However, Question 1
remains unsolved (see [Fa80]).

Actually some normal subgroups of G have been defined by E. Ghys ([Gh07],
see [Bo08]), and by S. Müller and Y.-G. Oh ([MO07]). But so far no one has been
able to prove that these are proper subgroups: they might turn out to be equal
to G. In this text, I propose to define still another family of normal subgroups
{Nϕ} of G. I have not been able to prove that these subgroups are proper, but
we can prove that they are good candidates.

Theorem 1. If some normal subgroup of the family {Nϕ} is equal to G, then G
is simple.

The present work has its origin in Fathi’s proof of the simplicity in higher
dimensions. Fathi’s argument has two steps. The first step is a fragmentation
result: any element of the group can be written as a product of two elements, each
of which is supported on a topological ball whose volume is 3

4 of the total volume.
The second step shows how this fragmentation property, let us call it (P1), implies
the perfectness (and simplicity) of the group. While the second step is still valid
in dimension 2, the first one fails. In the sequel we propose to generalise the
fragmentation property (P1) by considering a family of fragmentation properties
(Pρ) depending on the parameter ρ ∈ (0, 1] (a precise definition is provided in
section 1). A straightforward generalisation of Fathi’s second step will prove that
if the property (Pρ) holds for some ρ, then G is simple (Lemma 3.1 below). On
the other hand, we notice that if none of the properties (Pρ) holds, then the
subgroups Nϕ are proper, and thus G is not simple (Lemma 2.1). Thus we see
firstly that Theorem 1 holds, and secondly that Question 1 is translated into a
fragmentation problem, namely the existence of some ρ such that property (Pρ)
holds. Christian Bonatti drew my attention to the possibility of formulating this
fragmentation problem in terms of a single property (P0). This property, which
may be seen as the limit of the properties (Pρ) as ρ tends to zero, is the following:
there exists a constant m such that any homeomorphism of the plane, supported
on a disc having area equal to one, is the composition of m homeomorphisms
supported on some topological discs having area equal to one half.

This discussion is summarised by the next theorem.

2



Theorem 2. The following properties are equivalent:

1. the group G is simple,

2. there exists some ρ ∈ (0, 1] such that the property (Pρ) holds,

3. property (P0) holds.

Furthermore we will prove that the simplicity of G is also equivalent to the
similar fragmentation property on the smooth subgroup Gdiff (see Lemma 4.1 and
Theorem 3 in section 4 below). We will see in section 6 that Entov-Polterovich
quasi-morphisms, coming from Floer homology, implies that the fragmentation
property (Pρ) do not hold for ρ ∈ (1

2 , 1]. Whether it holds or not for ρ ∈ [0, 1
2 ]

remains an open question.
The definitions and precise statments are given in section 1, as well as the

links between properties (P0) and (Pρ) for ρ > 0. The proofs of Theorem 1
and 2 are given in sections 2 and 3. Sections 4 and 5 provide the link with
diffeomorphisms. Some more remarks, in particular the connection with other
surfaces, are mentionned in section 7. Sections 5, 6 and 7 are independant.

Acknowledgments I am pleased to thank Etienne Ghys for having introduced
the problem to me (in La bussière, 1997); Albert Fathi, Yong-Geun Oh and
Claude Viterbo for having organised the 2007 Snowbird conference that cast a
new light on the subject; the “Symplexe” team for the excellent mathematical
atmosphere, and especially Vincent Humilière, Emmanuel Opshtein and Pierre
Py for the Parisian seminars and lengthy discussions around the problem; Pierre
Py again for his precious commentaries on the text; Christian Bonatti for his “je
transforme ton emmental en gruyère” trick; and Sylvain Crovisier and François
Béguin for the daily morning coffees, with and without normal subgroups.

1 The fragmentation norms

In the whole text, the disc D
2 is endowed with the normalised Lebesgue measure,

denoted by Area, so that Area(D2) = 1. The group G is endowed with the
topology of uniform convergence (also called the C0 topology), that turns it into
a topological group. We recall thatG is arcwise connected: an elementary proof is
provided by the famous Alexander trick ([Al23]). We will use the term topological
disc to denote any image of a euclidean closed disc under an element of the group
G. As a consequence of the classical theorems by Schönflies and Oxtoby-Ulam,
any Jordan curve of null area bounds a topological disc (see [OU41]). Remember
that the support of some g ∈ G is the closure of the set of non-fixed points.
For any topological disc D, denote by GD the subgroup of G consisting of the
elements whose support is included in the interior of D. Then each group GD is
isomorphic to G, as shown by the following “re-scaling” process. Let Φ ∈ G be
such that D = Φ−1(D0) where D0 is a euclidean disc. Then the map g 7→ ΦgΦ−1

provides an isomorphism between the groups GD0
and GD. We may now choose

a homothecy Ψ that sends the whole disc D
2 onto D0, and similarly get an

isomorphism g 7→ ΨgΨ−1 between G and GD0
.
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Definition of the fragmentation metrics

Let g be any element of G. We define the size of g as follows:

Size(g) = inf{Area(D),D is a topological disc that contains the support of g}.

Let us emphasize the importance of the word disc: an element g which is sup-
ported on an annulus of small area surrounding a disc of large area has a large
size. Also note that if g has size less than the area of some disc D, then g is
conjugate to an element supported in D.

The following proposition says that the group G is generated by elements of
arbitrarily small size. It is an immediate consequence of Lemma 6.5 in [Fa80]
(where the size is replaced by the diameter).

Proposition 1.1 (Fathi). Let g ∈ G, and ρ ∈ (0, 1]. Then there exists some
positive integer m, and elements g1, . . . gm ∈ G of size less than ρ, such that

g = gm · · · g1.

We now define the family of “fragmentation norms”.1 For any element g ∈ G
and any ρ ∈ (0, 1], we consider the least integer m such that g is equal to the
product of m elements of size less than ρ. This number is called the ρ-norm of g
and is denoted by ||g||ρ. The following properties are obvious.

Proposition 1.2.

||hgh−1||ρ = ||g||ρ, ||g−1||ρ = ||g||ρ, ||g1g2||ρ ≤ ||g1||ρ + ||g2||ρ.

As a consequence, the formula

dρ(g1, g2) = ||g1g
−1
2 ||ρ

defines a bi-invariant metric on G.

The normal subgroups Nϕ

Given some element g ∈ G, we consider the ρ-norm of g as a function of the
size ρ:

ρ 7→ ||g||ρ,

and call it the complexity profile of g. Let ϕ : (0, 1] → R
+ be any non-increasing

function. We define the subset Nϕ containing those elements of G whose com-
plexity profile is essentially bounded by ϕ:

Nϕ = {g ∈ G, ||g||ρ = O(ϕ(ρ))}

where the notation ψ(ρ) = O(ϕ(ρ)) means that there exists some K > 0 such
that ψ(ρ) < Kϕ(ρ) for every small enough ρ. The following is an immediate
consequence of proposition 1.2.

Proposition 1.3. For any non-increasing function ϕ : (0, 1] → R
+, the set Nϕ

is a normal subgroup of G.

The reader who wants some examples where we can estimate the complexity
profile may jump to section 5, where we will see that commutators of diffeomor-
phisms have a profile equivalent to the function ϕ0 : ρ 7→ ρ−1. This will imply
that Nϕ0

is the smallest non-trivial subgroup of our family {Nϕ}.

1The definition of the fragmentation norm is not new, see example 1.24 in [BIP07].
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The fragmentation properties (Pρ)

Let ρ ∈ (0, 1]. We now define our fragmentation property (Pρ) by asking for a
uniform bound in the fragmentation of elements of size less than ρ into elements
of a smaller given size.

(Pρ) There exists some number s ∈ (0, ρ), and some positive integer m, such
that any g ∈ G of size less than ρ satisfies ||g||s ≤ m.

Here are some easy remarks. Let us denote by P (ρ, s) the property that there
exists a bound m with ||g||s ≤ m for every element g of size less than ρ. Fix some
ρ ∈ (0, 1] and some ratio k ∈ (0, 1). Assume that property P (ρ, kρ) holds. Then
by re-scaling we get that property P (ρ′, kρ′) also holds for any ρ′ < ρ (with the
same bound m). In particular we can iterate the fragmentation to get, for every
positive n, property P (ρ, knρ) (with the bound mn). This shows that property
P (ρ, s) implies property P (ρ, s′) for every s′ < s. The converse is clearly true, so
that property P (ρ, s) depends only on ρ and not on s. In particular we see that
property (Pρ) is equivalent to the existence of a number m such that every g of
size less than ρ satisfies

||g|| ρ
2

≤ m.

Also note that property P (ρ0) implies property P (ρ1) if ρ1 < ρ0 (again by re-
scaling). Thus property Pρ is more and more likely to hold as ρ decreases from 1
to 0.

The fragmentation property (P0)

In this paragraph we introduce the fragmentation property (P0), and prove that
it is equivalent to the existence of some ρ > 0 such that property (Pρ) holds.
Consider, just for the duration of this section, the group

Homeoc(R
2,Area)

of compactly supported, area preserving homeomorphisms of the plane. Any
image of a euclidean closed disc under some element of this bigger group will
again be called a topological disc. We also define the size of an element of the
group as in G. Property (P0) is as follows.

(P0) There exists some positive integer m such that any g ∈ Homeoc(R
2,Area)

of size less than 1 is the composition of at most m elements of
Homeoc(R

2,Area) of size less than 1
2 .

Since each piece of the fragmentation provided by property (P0) is supported on
a disc with area 1

2 , the union of the supports has area at most m
2 , but this gives

no bound on the area of a topological disc containing this union. However, if
the union of the supports surround a region with big area, then we may find a
new fragmentation by “bursting the bubble”, i.e. conjugating the situation by
a map that contracts the areas of the surrounded regions and preserves the area
everywhere else. This is the key observation, due to Christian Bonatti, to the
following lemma.

Lemma 1.4. Property (P0) holds if and only if there exists some ρ ∈ (0, 1] such
that property (Pρ) holds.
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Proof. Let us prove the easy part. Suppose (Pρ) holds for some ρ > 0, let m be
a bound for ||g|| ρ

2

for those g ∈ G of size less than ρ. Let g ∈ Homeoc(R
2,Area)

of size less than 1. Choose some element of the group that sends the support of
g into the euclidean unit disc D

2, and compose it with the homothecy that sends
D

2 onto a disc of area ρ included in D
2; we denote by Ψ the resulting map. Then

ΨgΨ−1 is an element of G of size less than ρ. According to hypothesis (Pρ), we
may write this element as a composition of m elements of G of size less than
ρ
2 . We may conjugate these elements by Ψ−1 and take the composition to get a
fragmentation of g into m elements of size 1

2 . Thus (P0) holds.
Now assume that (P0) holds, and let m ≥ 2 be given by this property. We

will prove that property (Pρ) holds for ρ = 2
m

. Consider, in the plane, a euclidean
disc D of area 1

ρ
. By the same re-scaling trick as before, it suffices to prove that

any g ∈ Homeoc(R
2,Area) with size less than 1 and supported in the interior of

D may be fragmented as a product of m elements of Homeoc(R
2,Area) with size

less than one half and supported in the interior of D. Property (P0) provides us
with a fragmentation g = g′m ◦ · · · ◦ g′1 by elements of size less than one half, but
maybe not supported in D. Now comes the “bursting the bubbles” trick. Let
D′ be a topological disc whose interior contains all the supports of the g′i’s. The
union of the supports has area less than 1

ρ
. Thus we may find some topological

discs K ′
1, . . . K

′
ℓ, included in the interior of D′, that are pairwise disjoint and

disjoint from the supports of the g′i’s, such that

Area



D′ \
ℓ

⋃

j=1

K ′
j



 <
1

ρ
.

Denote by D0 the support of our original map g. Note that D0 is included in
the union of the supports of the g′i’s, thus it is disjoint from the K ′

j ’s. Since D

has area 1
ρ
, the previous inequality ensures the existence of some pairwise disjoint

discs K1, . . . Kℓ in the interior of D, disjoint from D0, such that

Area



D \
ℓ

⋃

j=1

Kj



 = Area



D′ \
ℓ

⋃

j=1

K ′
j



 .

Using Schönflies and Oxtoby-Ulam theorems, we can construct a homeomorphism
Ψ of the plane satisfying the following properties:

1. Ψ is the identity on D0,

2. Ψ(D′) = D, Ψ(K ′
j) = Kj for each j,

3. the restriction of Ψ to the set D′ \ ∪ℓ
j=1K

′
j preserves the area. 2

The first item shows that ΨgΨ−1 = g. Now for each i we define gi = Ψg′iΨ
−1.

Then the second item guarantees that the gi’s are supported in D, and the third
item entails that they preserve area and have size less than one half. The product
of the gi’s is equal to g, which provides the desired fragmentation.

2 Having in mind the smooth case (Lemma 4.1 below), we notice that we may further demand
that the map Ψ is a C∞-diffeomorphism on the interior of D′ \ ∪ℓ

j=1K
′

j . Actually, we may even
choose the sets D′, Kj and K′

j to be smooth discs, and then the map Ψ may be chosen to be a
C∞-diffeomorphism of the plane.
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2 Simplicity implies fragmentation

Lemma 2.1. Assume that none of the properties (Pρ), ρ ∈ (0, 1] holds. Let
ϕ : (0, 1] → R

+ be any function. Then the normal subgroup Nϕ is proper, i. e. it
is not equal to G. In this case the group G is not simple.

If we consider any element f 6= Id in G, and the function ϕf : ρ 7→ ||f ||ρ, then
the normal subgroup Nϕf

contains f and thus is not equal to {Id}. Hence the
non-simplicity of G will be a consequence of the non-triviality of the subgroups
Nϕ.

Proof. According to the easy remarks following the definition of property (Pρ),
the hypothesis of the lemma reads the following way:

(⋆) for every ρ ∈ (0, 1] and every positive integer m there exists some element
g of size less than ρ such that ||g|| ρ

2

> m.

We fix any function ϕ : (0, 1] → R
+, and we will construct some element g in

G that does not belong to Nϕ. Let us define D0 = D
2. We pick two sequences

of discs (Ci)i≥1 and (Di)i≥1 converging to a point, such that for every i (see
figure 1),

– Ci and Di are disjoint and included in Di−1,

– the area of Di is less than half the area of Ci.

D0 = D

D1

D2

C1

C2

. . .

. . .

g1

g2

Figure 1: Construction of g

We denote the area of Ci by ρi. We will construct a sequence (gi)i≥1, with
each gi supported in the interior of Ci, and then g will be defined as the (infinite)
product of the gi’s. Note that since the discs Ci’s are pairwise disjoint this product
has a meaning, and since the sequence (Ci) converges to a point it actually defines
an element of G. Since all the gj ’s with j > i will be supported in the interior of
the disc Di whose area is less than ρi/2 we will get

||g|| ρi
2

≥ ||gi . . . g1|| ρi
2

− 1. (1)

The sequence (gi) is constructed by induction. Assume g1, . . . , gi−1 have been
constructed. Using hypothesis (⋆), we may choose gi supported on Ci such that
||gi|| ρi

2

is arbitrarily high, more precisely we demand the following inequality:

||gi|| ρi
2

≥
1

ρi
ϕ

(ρi

2

)

+ ||gi−1 . . . g1|| ρi
2

+ 1. (2)
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Using inequality (1), the triangular inequality and inequality (2) we get

||g|| ρi
2

≥ ||gi . . . g1|| ρi
2

− 1

≥ ||gi|| ρi
2

− ||gi−1 . . . g1|| ρi
2

− 1

≥
1

ρi
ϕ

(ρi

2

)

.

This proves that the complexity profile of g is not equal to O(ϕ). In other words
g does not belong to Nϕ.

3 Fragmentation implies simplicity

Lemma 3.1. Assume that property (Pρ) holds for some ρ ∈ (0, 1]. Then G is
simple.

This lemma is just a slight generalisation of Fathi’s argument showing that,
under property (P1), the groupG is perfect: any element decomposes as a product
of commutators. Then perfectness implies simplicity: this is due to “Thurston’s
trick”, for completeness the argument is included in the proof below.

Proof. We assume that there exists a number ρ ∈ (0, 1] and a positive integer m
such that any element of size less than ρ may be written as the product of m
elements of size less than ρ

2 .
Let C1 be a small disc. By usual fragmentation (proposition 1.1), any element

of G is a product of elements supported in a disc of area less than that of C1,
and any such element is conjugate to an element supported in the interior of C1.
Thus to prove perfectness it is enough to consider some element g supported in
the interior of C1 and to prove that g is a product of commutators.

Let us first prove that such a g is a product of two commutators when con-
sidered in the group Homeo(D2, ∂D

2), that is, let us forget for a while about the
area (this is a “pedagogical” step). Choose two sequences of discs (Ci)i≥1 and
(Di)i≥1 converging to a point, such that (see figure 2)

– the interior of Di contains both Ci and Ci+1,

– the Ci’s are pairwise disjoint,

– the D2i’s (resp. the D2i+1’s) are pairwise disjoint.

D1
D2

C1 C2

Figure 2: The sequences (Ci)i≥1 and (Di)i≥1
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For any i ≥ 1 choose some hi ∈ Homeo(D2, ∂D
2), supported on Di, that sends

Ci onto Ci+1. We let g1 := g, thus g1 is supported on C1, and define inductively
gi+1 := higih

−1
i ; thus gi is a “copy” of g, supported on Ci, and the gi’s are

pairwise commuting. Let

K := g2g
−1
3 g4g

−1
5 · · · , K ′ := g1g

−1
2 g3g

−1
4 · · ·

so that KK ′ = K ′K = g. The map K = [g2, h2][g4, h4] · · · may be seen as an
infinite product of commutators, but we need a finite product. Now define

G := g2g4 . . . , H := h2h4 · · · , G′ := g1g3 · · · , H ′ := h1h3 · · ·

and observe that K = [G,H] and K ′ = [G′,H ′]: indeed these equalities may be
checked independently on each disc Di. Thus g = [G,H][G′,H ′] is a product of
two commutators in Homeo(D2, ∂D

2).
Now let us take care of the area. We will use sequences (Ci) and (Di) as

before, and we will get around the impossibility of shrinking Ci onto Ci+1 inside
the group G by using the fragmentation hypothesis. We may assume, for every
i, the equality

Area(Ci+1) =
1

2
Area(Ci).

Moreover, by fragmentation, we may assume this time that g is supported in
the interior of a disc C ′

1 ⊂ C1 of area ρArea(C1). We use the fragmentation
hypothesis re-scaled on C1 to write

g = f1,1 . . . f1,m

(see figure 3) with each f1,j supported in the interior of a topological disc included
in C1 and whose area is

ρ

2
Area(C1) = ρArea(C2).

We choose a disc C ′
2 ⊂ C2 whose area also equals ρArea(C2) and, for each j =

1, . . . ,m, some h1,j ∈ G supported on D1 and sending the support of f1,j inside
C ′

2. We define

g2 :=
∏

j=1,...,m

h1,jf1,jh
−1
1,j

which is supported on C ′
2 (see figure 3). We apply recursively the (re-scaled)

g1 = g
f1,i

h1,i g2

C1

C2

C′
2

Figure 3: Fragment and push every piece inside the small disc...
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fragmentation hypothesis to get a sequence (gi)i≥1 with each gi supported in the
interior of a disc C ′

i ⊂ Ci having area ρArea(Ci) and sequences (fi,j)i≥1,j=1,...,m

and (hi,j)i≥1,j=1,...,m with fi,j supported on Ci and hi,j supported on Di, such
that

gi =
∏

j=1,...,m

fi,j and gi+1 =
∏

j=1,...,m

hi,jfi,jh
−1
i,j .

Obviously gi and gi+1 are equal up to a product of commutators whose number
of terms depends only on m. More precisely, we have

gig
−1
i+1 =

∏

j=1,...,m

fi,j

∏

j=m,...,1

hi,jf
−1
i,j h

−1
i,j

= [fi,1, P ]





∏

j=2,...,m

fi,j

∏

j=m,...,2

hi,jf
−1
i,j h

−1
i,j



 [fi,1, hi,1]

where P is equal to the term between parentheses, and we see recursively that
gig

−1
i+1 is a product of 2m commutators of elements supported in Di; we write

gig
−1
i+1 =

∏

j=1,...,2m

[si,j, ti,j ].

It remains to define the infinite commutative products

K := g2g
−1
3 g4g

−1
5 · · · , K ′ := g1g

−1
2 g3g

−1
4 · · ·

Sj := s2,js4,j . . . , Tj := t2,jt4,j · · · , S′
j := s1,js3,j · · · , T ′

j := t1,jt3,j · · ·

and to check that

K =
∏

j=1,...2m

[Sj , Tj ], K ′ =
∏

j=1,...2m

[S′
j , T

′
j ], and g = KK ′

is a product of 4m commutators. This proves that G is perfect.
Let us recall briefly, according to Thurston, how perfectness implies simplicity.

Let D be a disc and g, h ∈ G be such that the discs D, g(D), h(D) are pairwise
disjoint. Let u, v ∈ G be supported in D. In this situation the identity

[u, v] = [[u, g], [v, h]]

may easily be checked, and shows that [u, v] belongs to the normal subgroup
generated by g. Now given any g 6= Id in G, one can find an h ∈ G and a disc D
such that the above situation takes place. If G is perfect then so is the isomorphic
group GD, hence every f supported in D is a product of commutators supported
in D, and by the above equality such an f belongs to the normal subgroup
generated by g. By fragmentation this subgroup is thus equal to G. This proves
that G is simple, and completes the proof of the lemma.

4 Fragmentation of diffeomorphisms

Here we further translate Question 1 into the diffeomorphisms subgroup Gdiff.
Let Gdiff = Diffeo(D2, ∂D

2,Area) be the group of elements of G that are C∞-
diffeomorphisms. Note that for every topological disc D the group of elements
supported in the interior of D,

Gdiff

D := Gdiff ∩GD,

10



is isomorphic to Gdiff , even when D is not smooth: indeed we may use Riemann
conformal mapping theorem and Moser’s lemma to find a smooth diffeomorphism
Φ between the interiors of D

2 and D with constant Jacobian, and the conjugacy
by Φ provides an isomorphism (see [GS79] for the non-compact version of Moser’s
lemma). As in the continuous case, we define the ρ-norm ||g||diff

ρ of any element
g ∈ Gdiff as the minimum number m of elements g1, . . . , gm of Gdiff , having size
less than ρ, whose composition is equal to g. The fragmentation properties (P diff

ρ )
are defined as in the continuous setting.

(Pdiff

ρ ) (for ρ ∈ (0, 1]) There exists some number s ∈ (0, ρ), and some positive
integer m, such that any g ∈ Gdiff of size less than ρ satisfies ||g||diff

s ≤ m.

(Pdiff

0
) There exists some positive integer m such that any g ∈ Diffeoc(R

2,Area) of
size less than 1 is the composition of at mostm elements of Diffeoc(R

2,Area)
of size less than 1

2 .

Here Diffeoc(R
2,Area) is the group of C∞-diffeomorphisms of the plane that are

compactly supported and preserve the area. The smooth version of Lemma 1.4
holds, with the same proof (using footnote 2).

Lemma 4.1. Property (P diff

0 ) holds if and only if there exists some ρ ∈ (0, 1] such
that property (P diff

ρ ) holds.

We now turn to the equivalence between fragmentation properties for home-
omorphisms and diffeomorphisms.

Theorem 3. For any ρ ∈ (0, 1], the properties (Pρ) and (P diff

ρ ) are equivalent.

The proof of this equivalence requires two ingredients. The first one is the
density of Gdiff in G; this is a classical result, see for example [Si]. The second
one is the uniformity of the fragmentation in G, and in Gdiff , inside some C0-
neighbourhood of the identity. This is provided by the following proposition,
which is proved below.

Proposition 4.2. For any ρ ∈ (0, 1), there exists a neighbourhood Vρ of the
identity in G with the following properties.

– Any g in Vρ satisfies ||g||ρ ≤ 2
ρ
;

– any g in Vρ ∩G
diff satisfies ||g||diff

ρ ≤ 2
ρ
.

As a consequence of this proposition we get the following comparison between
the norms ||.||diff

ρ and ||.||ρ on Gdiff.

Corollary 4.3. Any g ∈ Gdiff satisfies

||g||ρ ≤ ||g||diff

ρ ≤ ||g||ρ +
2

ρ
.

Proof of the corollary. The first inequality is clear. To prove the second one
consider some g ∈ Gdiff , and let m = ||g||ρ. By definition there exists some
elements g1, . . . , gm in G of size less than ρ such that g = gm · · · g1. Since Gdiff

is C0-dense in G, for any topological disc D the subgroup Gdiff

D is also C0-dense
in GD. Thus we can find elements g′1, . . . , g

′
m in Gdiff, still having size less than

11



ρ, whose product g′ = g′m · · · g′1 is a diffeomorphism arbitrarily C0-close to g.
According to the second item in proposition 4.2 we get

||g′g−1||diff

ρ ≤
2

ρ
.

Since ||g′||diff

ρ ≤ m the triangular inequality gives ||g||diff

ρ ≤ m+ 2
ρ
, as wanted.

Proof of Theorem 3. Let us fix ρ ∈ (0, 1]. The fact that (Pρ) implies (P diff

ρ ) im-
mediatly follows from the corollary. We prove the converse implication. Assume
that (P diff

ρ ) holds: there exists some s ∈ (0, ρ) and m > 0 such that the quantity
||g′||diff

s is bounded by m on the elements g′ of Gdiff of size less than ρ. Choose
any g ∈ G of size less than ρ. According to the first item in proposition 4.2, and
using the density of Gdiff in G, we get some g′ ∈ Gdiff having size less than ρ,
and sufficiently close to g so that ||g′g−1||s ≤ 2

s
. Since (P diff

ρ ) holds we also have

||g′||diff

s ≤ m, and thus ||g′||s ≤ m, from which we get ||g||s ≤ m + 2
s
. Thus (Pρ)

also holds.

We now turn to the proof of proposition 4.2. The classical proof of fragmen-
tation for diffeomorphisms relies on the inverse mapping theorem and would only
gives uniformity in a C1-neighbourhood of the identity (see [Ba97, Bo08]). Thus
we will rather try to mimic the proof of the fragmentation for homeomorphisms.

Proof of proposition 4.2. The proof of both items (uniformity of local fragmen-
tation for homeomorphisms and diffeomorphisms) are very similar; we will only
provide details for the diffeomorphisms case.

We choose an integer m bigger than 2
ρ
, and we cut the disc into m strips of

area less than ρ
2 : more precisely, we choose m topological discs D1, · · · ,Dm such

that (see figure 4)

1. Area(Di) ≤
ρ
2 ,

2. D
2 = D1 ∪ · · · ∪Dm,

3. Di ∩Dj = ∅ if |j − i| > 1,

4. Di∪Di+1∪· · ·∪Dj is a topological disc for every i ≤ j, and the intersection
of D1 ∪ · · · ∪Di and Di ∪ · · · ∪Dm with the boundary of D

2 is non-empty
and connected for every i.

Now we define the following set Vρ:

Vρ = {g ∈ G such that g(Di) ∩Dj = ∅ for every i, j with |j − i| > 1} .

Note that, due to item 3, Vρ is a C0-neighbourhood of the identity in G. We
will prove that each element of Vρ ∩ Gdiff can be written as a product of m − 1
elements of Gdiff

ρ .
Let g ∈ Vρ ∩ Gdiff . By hypothesis D1 and g(D1) are both disjoint from the

topological disc D3 ∪ · · · ∪Dm. By the classical Lemma 4.4 below, we can find
Ψ1 ∈ Gdiff such that

– Ψ1 = g on some neighbourhood of D1,

– Ψ1 is the identity on some neighbourhood of D3 ∪ · · · ∪Dm.

12



D1

D2

D3

. . .

g

Figure 4: The discs Di and the action of some g in Vρ

The diffeomorphism Ψ1 is supported in the interior of the topological discD1∪D2

whose area is less than or equal to ρ. Let g1 := Ψ−1
1 g, thus g1 is supported in

the interior of D2 ∪ · · · ∪ Dm, and we easily check that this diffeomorphism is
still in Vρ. In particular D1 ∪D2 and its image under g1 are both disjoint from
D4 ∪ · · · ∪Dm. We apply again the lemma to get some Ψ2 ∈ G such that

– Ψ2 = g1 on some neighbourhood of D1 ∪D2,

– Ψ2 is the identity on some neighbourhood of D4 ∪ · · · ∪Dm.

Thus Ψ2 is supported in the interior of D2 ∪ D3. Let g2 := Ψ−1
2 g1; this diffeo-

morphism is in Vρ and is supported in the interior of D3 ∪ · · · ∪Dm. In the same
way we construct diffeomorphisms Ψ1, . . . ,Ψm−1, such that each Ψi is supported
in the interior of Di ∪Di+1, and such that g = Ψ1 ◦ · · · ◦ Ψm−1. This completes
the proof for the diffeomorphisms case.

Lemma 4.4. Let D′
1,D

′
2 be two disjoint topological discs in D

2, and assume that
the intersection of D′

1 (resp. D′
2) with the boundary of ∂D

2 is non-empty and
connected (and thus D

2 \ Int(D′
1 ∪D

′
2) is again a topological disc). Let Φ ∈ Gdiff,

and suppose that Φ(D′
1) is disjoint from D′

2. Then there exists Ψ ∈ Gdiff such
that Ψ = Φ on some neighbourhood of D′

1 and Ψ = Id on some neighbourhood of
D′

2.

Proof of the lemma. By Smale’s theorem ([Sm59]) and Moser’s lemma (see for
example [Ba97] or [Bo08]), the group G is arcwise connected. Let (Φt)t∈[0,1] be
a smooth isotopy from the identity to Φ in G. It is easy to find another smooth
isotopy (gt)t∈[0,1] (that does not preserve area), supported in the interior of D

2,
such that

– for every t, gt(Φt(D
′
1)) is disjoint from D′

2,

– g0 = g1 = Id.

The isotopy (Φ′
t) = (gtΦt) still goes from the identity to Φ. Consider the

vector field tangent to this isotopy, and multiply it by some smooth function
that is equal to 1 on some neighbourhood of ∪tΦ

′
t(D

′
1) and vanishes on D′

2. By
integrating this truncated vector field we get another isotopy (Ψt) such that

– on some neighbourhood of D′
1 we have Ψt = gtΦt for every t, and in par-

ticular Ψ1 = Φ,
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– the support of Ψ1 is disjoint from D′
2.

Thus Ψ1 satisfies the conclusion of the lemma, except that it does not preserve
the area. Let ω0 be the Area form on D

2, and ω1 be the pre-image of ω0 under
Ψ1. Then ω1 = ω0 on some neighbourhood of ∂D

2 ∪D′
1 ∪D

′
2. By Moser’s lemma

we may find some Ψ2 ∈ G, whose support is disjoint from D′
1 and D′

2, and that
sends ω1 to ω0. The diffeomorphism Ψ = Ψ1Ψ

−1
2 suits our needs.

Note that this lemma has a C0-version, which is proved by replacing Smale’s
theorem by Alexander’s trick, the truncation of vector fields by Schönflies’s the-
orem, and Moser’s lemma by Oxtoby-Ulam’s theorem.

5 Profiles of diffeomorphisms

One can wonder what the complexity profile looks like for a diffeomorphism,
both inside the group Gdiff and inside the group G. The following proposition
only partially solves this problem.

Proposition 5.1.

– For any g ∈ Gdiff we have ||g||diff

ρ = O( 1
ρ2 ).

– For any g in the commutator subgroup [Gdiff , Gdiff ] we have ||g||diff

ρ = O(1
ρ
).

If the support of g ∈ G has area A, then clearly for any ρ we need at least
A
ρ

elements of Gρ or Gdiff

ρ to get g. Thus, according to the second point, the
profile of any g in [Gdiff , Gdiff ] is bounded from above and below by multiples of
the function ϕ0 : ρ 7→ 1

ρ
; and this holds both in G and Gdiff . In particular we

see that Nϕ0
is the smallest non-trivial subgroup of our family {Nϕ}. I have not

been able to decide whether the first point is optimal, nor whether Gdiff ⊂ Nϕ0

or not (if not, of course, then G is not simple). It might also happens that Gdiff

is included in Nϕ0
but not in the analog smooth group Ndiff

ϕ0
.

We also notice that every non trivial normal subgroup of G contains the com-
mutator subgroup [Gdiff , Gdiff ], and thus the normal subgroup of G generated by
[Gdiff , Gdiff ] is the only minimal non trivial normal subgroup of G. This fact is an
immediate consequence of Thurston’s trick (see the last paragraph of section 3)
and Banyaga’s theorem. Indeed let g be a non trivial element in G, choose h ∈ G
and a disc D such that D, g(D), h(D) are pairwise disjoint. Thurston’s trick
shows that the normal subgroup N(g) generated by g in G contains some non
trivial commutator of diffeomorphisms, let us denote it by Φ. By Banyaga’s the-
orem any element of [Gdiff , Gdiff ] is a product of conjugates (in Gdiff) of Φ and
Φ−1, and thus [Gdiff, Gdiff ] is included in N(g).

Proof of proposition 5.1. Let g ∈ Gdiff, and fix some smooth isotopy (gt)t∈[0,1]

from the identity to g in Gdiff . Let M > 0 be such that every trajectory of the
isotopy has speed bounded from above by M .

We now fix some ρ > 0, and let m be the smallest integer such that m ≥ 2
ρ
.

We consider some discs D1, . . . Dm as in the proof of proposition 4.2; if we choose
the Di’s to be horizontal slices, then for every i, j with |i− j| > 1 we get

d(Di,Dj) >
C

m

14



where d is the euclidean metric of the unit disc and C is some constant (maybe
C = π

2 ). Due to the definition of M , within any interval of time less than C
mM

,
no point moves a distance more than C

m
: for every t, t′ ∈ [0, 1], for every x ∈ D

2,

|t− t′| <
C

mM
=⇒ d(gt(x), gt′ (x)) <

C

m
.

In particular the topological disc gt′g
−1
t (Di) remains disjoint from Dj for every

|i − j| > 1; that is, the diffeomorphism gt′g
−1
t belongs to the neighbourhood Vρ

defined in the proof of proposition 4.2. Thus we can write g as the product of at
most mM

C
+ 1 elements of Vρ,

g = g1 =

(

g1g
−1
1− 1

k

)(

g1− 1

k
g−1
1− 2

k

)

· · ·
(

g 1

k
g−1
0

)

(where k is the integer part of mM
C

+ 1). Each element in Vρ is the product of at
most m− 1 elements whose sizes are less than ρ, thus we get the estimate

||g||diff

ρ ≤ (m− 1)

(

mM

C
+ 1

)

.

When ρ tends to 0, the right-hand side quantity is equivalent to 4M
C

1
ρ2 , which

proves the first point of the proposition.
We turn to the second point. We first prove the result for some special

commutator. Let D be any displaceable disc, say of area 1
3 , and let Φ be any

non trivial element of Gdiff supported in the interior of D. Choose some Ψ ∈ Gdiff

such that Ψ(D) is disjoint from D. Let us define g := [Φ,Ψ]. We claim that for
any ρ we have

||g||diff

ρ ≤
4

3ρ
.

To prove the claim fix some positive ρ. It is easy to find, almost explicitly, some
Ψρ ∈ Gdiff which is a product of less than 2

3ρ
elements of size less than ρ and that

moves D disjoint from itself (see figure 5). Then

|| [Φ,Ψρ] ||
diff

ρ ≤ ||ΦΨρΦ
−1||diff

ρ + ||Ψ−1
ρ ||diff

ρ = 2||Ψρ||
diff

ρ ≤
4

3ρ
.

We now notice that the map g = [Φ,Ψ] is conjugate to [Φ,Ψρ]: indeed we may
find some Θ ∈ Gdiff that is the identity on D and equals ΨρΨ

−1 on Ψ(D) (this
uses a variation on Lemma 4.4), and such a Θ provides the conjugacy. Since the
fragmentation norm is a conjugacy invariant, this proves the claim.

We end the proof of the proposition by using Banyaga’s theorem. Since
the commutator subgroup [Gdiff , Gdiff] is simple, the normal subgroup of Gdiff

generated by g inGdiff is equal to [Gdiff , Gdiff ]. As in the C0 case the set of elements
g′ ∈ Gdiff satisfying ||g′||diff

ρ = O(1
ρ
) is a normal subgroup, since it contains g it

has to contain [Gdiff , Gdiff ]. This proves the second point of the proposition.

6 Solution of the fragmentation problem for ρ > 1
2

In [EPP] the authors describe some quasi-morphisms on the group of symplec-
tic diffeomorphisms on various surfaces that are continuous with respect to the
C0-topology and, as a consequence, extend continuously to the group of area-
preserving homeomorphisms. It turns out that their family of quasi-morphisms
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D

image ofD after stepi

support of the modification

image ofD after stepi+1

Figure 5: How to move a disc disjoint from itself within 2
3ρ

modifications of size
less than ρ: after each modification, the area of the intersection of D with its
image has decreased by almost ρ

2

on the disc provides a solution to the “easiest” half of our fragmentation problems:
properties (Pρ) and (P diff

ρ ) do not hold when ρ > 1
2 . We discuss this briefly.

Remember that a map φ : Gdiff → R is a quasi-morphism if the function

|φ(gh) − φ(g) − φ(h)|

is bounded on Gdiff × Gdiff by some quantity ∆(φ) called the defect of φ. A
quasi-morphism is called homogeneous if it satisfies φ(gn) = nφ(g) for every g
and every integer n. The construction of the continuous quasi-morphisms uses
the quasi-morphisms of Entov and Polterovich on the 2-sphere ([EP03]). This
quasi-morphism is a Calabi quasi-morphism, that is, it coincides with the Calabi
morphism when restricted to those diffeomorphims supported on any displaceable
disc. By embedding D

2 inside the two-sphere as a non-displaceable3 disc ([EP03],
Theorem 1.11 and section 5.6), and subtracting the Calabi morphism ([EPP]),
one can get a family (φρ′)ρ′∈( 1

2
,1] of homogeneous quasi-morphisms on Gdiff. (As

these quasi-morphisms extend to G, see [EPP], we could alternatively choose to
work with G and (Pρ) instead of Gdiff and (P diff

ρ ).) They satisfy the following
properties.

1. φρ′(g
′) = 0 for any g′ ∈ Gdiff whose size is less than ρ′,

2. for every ρ > ρ′ there exists some g ∈ Gdiff of size less than ρ with φρ′(g) 6= 0.

This entails that for every ρ ∈ (1
2 , 1], property (P diff

ρ ) do not hold. To see this,

given some ρ ∈ (1
2 , 1], we fix some ρ′ ∈ (1

2 , ρ), and we search for some g ∈ Gdiff

having size less than ρ and whose ρ′-norm is arbitrarily large (see the easy remarks
at the end of section 1). The first property of φρ′ entails, for every g ∈ Gdiff ,

φρ′(g) ≤ (||g||diff

ρ′ − 1)∆(φρ′).

On the other hand the second property provides some g with size less than ρ
and such that φρ′(g) 6= 0. Since φρ′ is homogeneous, the sequence (φρ′(g

n))n≥0

is unbounded. Thus the sequence (||gn||diff

ρ′ )n≥0 is also unbounded, which proves
that (P diff

ρ ) do not hold.

We are naturally led to the following question.

3Note that when the area of the disc tends to the total area of the sphere, the parameter ρ′

below tends to 1

2
; the bigger the disc, the more useful the quasi-morphism, as far as our problem

is concerned.
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Question 2. Does there exist, for every ρ′ ∈ (0, 1
2 ], some homogeneous quasi-

morphism φρ′ satisfying properties 1 and 2 as expressed above?

A positive answer would imply a negative answer to Question 1.

7 Some more remarks

“Lots of” normal subgroups (if any!)

The proof of Lemma 2.1 can easily be modified to show that, if none of the
properties (Pρ) holds, then there exists an uncountable family F of functions
ϕ such that the corresponding family of normal subgroups (Nϕ)ϕ∈F is totally
ordered by inclusion. The following is another attempt to express that if G is not
simple, then it has to contain “lots of” normal subgroups.

Corollary 7.1. Assume G is not simple. Then every compact subset K of G is
included in a proper normal subgroup of G.

Note that the situation is radically different for the diffeomorphisms group
Gdiff , since (by Banyaga’s theorem [Ba97], and since the centralizer of Gdiff is
trivial) any one-parameter subgroup of diffeomorphisms that is not included in
the commutator subgroup [Gdiff , Gdiff ] normally generates Gdiff . However these
are not purely algebraic statements since they involve the topology of the groups
G and Gdiff.

Proof of the corollary. Consider some ρ ∈ (0, 1]. Let Vρ be the neighbourhood of
the identity given by proposition 4.2: we have ||g||ρ <

2
ρ

for every g ∈ Vρ. By
compactness we may find a finite family g1, . . . , gk such that the sets gi.Vρ cover
K. Thus the fragmentation is also uniform on K, in other words the set K is
bounded with respect to the norm ||g||ρ. Define

ϕK(ρ) := sup {||g||ρ, g ∈ K} .

This defines a non-increasing function, and clearly K is included in the normal
subgroup NϕK

. According to Theorem 1, if G is not simple then NϕK
is a proper

subgroup of G, which completes the proof of the corollary.

Other surfaces

Let S be any compact surface equipped with an area form. Consider the group
of homeomorphisms that preserves the measure associated to the area form, and
denote by G0(S) the (normal) subgroup generated by the homeomorphisms that
are supported inside a topological disc. For example, G0(S

2) is just the group of
orientation and area preserving homeomorphisms of the sphere, and G0(T

2) is the
group of orientation and area preserving homeomorphisms of the torus with zero
mean rotation vector. The group G0(S) may also be seen as the closure of the
group of hamiltonian diffeomorphisms of S inside the group of homeomorphisms.
For every surface S, it is an open question whether the group G0(S) is simple or
not.

Exactly as before, on G0(S) we may define the size of an element supported
in a topological disc, the family of fragmention norms ||.||Sρ , the family of normal

subgroups NS
ϕ , and the fragmentation properties (PS

ρ ). Then Lemma 2.1 still
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holds, with the same proof: the failure of all the properties (PS
ρ ) would entail

that every normal subgroup NS
ϕ is proper, and that G0(S) is not simple. On

the other hand the proof of Lemma 3.1 shows that each property (PD
2

ρ ) forces
the simplicity of G0(S) (alternatively, we could use the original Lemma 3.1 and
Thurston trick to see that the simplicity of G = G0(D

2) implies that of G0(S)).
But property (PS

ρ ) is a priori weaker than (PD
2

ρ ), because on a general surface
one has more space than in the disc to perform the fragmentation. This prevents
us from fully translating the simplicity question into a fragmentation problem on
the other surfaces.

Using a different approach, one might hope to recover this equivalence by
adapting to the C0 context the homology machinery introduced by Thurston in
the smooth category (see [Ba97] or [Bo08], section 2.2).
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