

TELOMERIZATION OF 3,3,3-TRIFLUOROPROP-1-ENE AND FUNCTIONALIZATION OF ITS TELOMERS

Georges Kostov, Bruno Ameduri, Stephan M. Brandstadter

▶ To cite this version:

Georges Kostov, Bruno Ameduri, Stephan M. Brandstadter. TELOMERIZATION OF 3,3,3-TRIFLUOROPROP-1-ENE AND FUNCTIONALIZATION OF ITS TELOMERS. Collection of Czechoslovak Chemical Communications, 2008, 73 (12), pp.1747-1763. 10.1135/cccc20081747 . hal-00353663

HAL Id: hal-00353663 https://hal.science/hal-00353663v1

Submitted on 16 Jan 2009 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TELOMERIZATION OF 3,3,3-TRIFLUOROPROP-1-ENE AND FUNCTIONALIZATION OF ITS TELOMERS

George K. Kostov^{1*}, Bruno Ameduri^{1*}, Stephan Brandstadter²

¹Institut Charles Gerhardt, UMR CNRS 5253, Laboratoire « Ingénierie & Architectures Macromoléculaires», Ecole Nationale Supérieure de Chimie de Montpellier, 8, Rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France ; <u>georges.kostov@enscm.fr</u>; bruno.ameduri@enscm.fr.

²Great Lakes-Chemtura, P.O. Box 2200, West Lafayette, IN 47996-2200, USA; stephan.brandstadter@chemtura.com

(Dedicated to our friend Prof. Oldrich Paleta on the occasion of his 70th birthday in recognition of his outstanding contributions to the area of organofluorine chemistry)

SUMMARY

The synthesis of four 3,3,3-trifluoroprop-1-ene telomers ($R_F - (C_3H_3F_3)_nI$, n=1, 2, $R_F = n-C_6F_{13}$ - or ($CF_3)_2CF$ -) and their allyl derivatives $R_F - (C_3H_3F_3)_nCH_2CH=CH_2$ are presented. The allyl telomers were prepared by a three-step reaction. The first step involved the thermal and peroxide- induced bulk telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with heptafluoro-2-iodopropane or tridecafluoro-6-iodohexane leading to monoadduct and diadduct, the ratio of which depends on the $R_0 = [R_FI]_0/[TFP]_0$ initial molar ratio and the reaction temperature. The amount of monoadduct increased up to 50-60 % and of the diadduct to 25-30 % at temperatures up to 180 °C (thermal-initiated) and 150 °C (initiated with di-*tert*-butyl peroxide, DTBP), R_0 up to 1.5. It was observed that the addition of the (CF_3)₂ CF^{\bullet} radical onto the = CH_2 of TFP was regioselective

leading to selective formation of a single isomer in contrast to the addition of the *n*- C_6F_{13} radical. Then, the telomers reacted with allyl acetate yielding

 $R_F(C_3H_3F_3)$ _nCH₂CH(I)CH₂OCOCH₃ (n=1, 2) in 50-80% yields. The third step consisted of a deiododeacetatization of these iodo-acetates into R_F -($C_3H_3F_3$)_n CH₂-CH=CH₂ (C,n) giving 50-80 % yields. All the intermediates were characterized by ¹H, ¹⁹F and products by ¹³C NMR spectroscopy.

<u>KEY WORDS</u>: 3,3,3-trifluoroprop-1-ene; Radical addition; Perfluoroalkyl iodides; Thermal and peroxide telomerisation; fluoroallylic monomer; ¹H, ¹⁹F and ¹³C NMR spectroscopies.

I.INTRODUCTION

Telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with various transfer agents was pioneered by Haszeldine after its synthesis in 1951 by dehydroiodination of

 $CF_3CH_2CH_2I$ ¹⁻³ (Table 1). Various ways of initiating the telomerization were investigated. The photochemical or thermal addition of HBr or CF_3I to TFP yielded exclusively $CF_3CH_2CH_2Br$ or $CF_3[CH_2CH(CF_3)]_nCH_2CHICF_3$, respectively. Low et al.⁴ investigated this reaction under UV radiation at various temperatures and obtained a mixture of normal and reverse isomers for the monoadduct. They observed that a higher proportion of products of reverse addition was formed at higher temperatures and the formation of higher adducts at ca. 175 °C. In addition for other transfer agents, diiodoperfluoroalkanes, silanes, phosphonates, disulfides react with TFP, yielding the monoadduct predominantely (Table 1)⁵⁻¹².

Insert Table 1

Pertinent studies of TFP telomerization were performed by Russian teams using initiation with a peroxide or γ -rays (Table 1). Terentev et al.⁹ studied the cotelomerization of TFP with 2-methyl-1,3-dioxolane and obtained cyclic telomers accompanied by rearrangement of transient radical intermediates by 1,5 -H migration. Zamislov et al.¹³ used C₁-C₄ alcohols as telogens in TFP telomerization under γ -irradiation to get different fluoroalcohols. Vassileva et al.¹⁴⁻¹⁹ used different telogens such as C₆H₅CH₂Cl, CBr₄, CHBr₃, CH₂Br₂ (but not CHCl₃ and CBrCl₃) with the initiating system Fe(CO)₅- DMF or hexamethylphosphoramide (HMPA) (Table 1). In the presence of Fe(CO)₅-DMF, a radical mechanism was proved to take place and chain transfer constants of the telogens involved in telomerizations were determined. Keim et al.¹⁶ studied the transition-metal-catalyzed C-C coupling reaction of TFP with CCl₄ in the presence of copper salts and obtained new telomers.

Systematic studies of telomerization reactions of fluorinated monomers, in particular fluoroalkenes, with various transfer agents were performed by Ameduri and Boutevin, published in several papers ²⁰ and more recently collected in a book ²¹.

Two patents^{22, 23} of Pennsalt Chem. Corp. claim the production of fluorinated organic telomers by heating at 150-250 °C unsaturated fluorinated compounds with an R_FX telogen, where R_F and X are a perfluoroalkyl group and a halogen (Br or I), respectively. The degree of telomerization of the halogen-containing low-molecular-weight linear telomers ranged from 3 to 7. Rondestvedt ²⁴ described the preparation of perfluoroalkyl iodide telomers with a general formula $R_F[C(R^1)_2CR^1R^2]_7I$ where R^1 is H or F, R^2 is H, F and R_F represents a perfluoroalkyl group containing 2-22 carbon atoms. A Japanese patent ²⁵ claimed the synthesis of fluoroalkyl iodide telomers

 $C_nF_{2n+1}(CR^1R^2CRR^1)_mI$ where R=H, alkyl, R¹=H, halogen, m=2-6, n=3-20, but the produced telomers were not characterized.

The aim of this work is to synthesize and to characterize 3,3,3 – trifluoroprop-1-ene telomers (mostly mono- and diadducts) with perfluoroalkyl iodides R_FI ($R_F=n-C_6F_{13}$ or (CF_3)₂CF) and their further modification to obtain new highly fluorinated monomers. The structure of the synthesized products, their main properties and telomerization mechanism were also studied.

II.RESULTS AND DISCUSSION

II-1) Telomerization of 3,3,3-trifluoroprop-1-ene (TFP)

Any radical telomerization requires radicals; in this study, the TFP telomerization involves various initiating systems (thermal, photochemical (UV), radical, metal complexes) and a perfluoroalkyl iodide $R_{\rm FI}$ (preferably *n*-C₆F₁₃I and i-C₃F₇I) as the telogen (or chain-transfer agent) as shown in Scheme 1.

$$R_{F}-I + n CH_{2}=CH \xrightarrow{In} R_{F} + CH_{2}-CH \xrightarrow{I}_{n} I \quad (n=1,2) \quad (1)$$

$$CF_{3} \xrightarrow{CF_{3}} CF_{3}$$

A,n

Scheme1. Radical telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with perfluoroalkyl iodide

Furthermore, the photochemical reaction and reactions of metal- complexes were carried out in batch conditions in Carius tubes. Thermal and peroxide initiations were carried out under pressure, in autoclave; at temperature ranging from 60 to 180 °C depending on the initiators used (the reaction temperature was chosen as a temperature of which their half-life was close to 1 h). The initial telogen $[T]_0$ /monomer $[M]_0$ molar

ratio (R_0) varied from 0.25 to 1.50 and the reaction time ranged from 4 to 22 h. The main results are displayed in Table 2.

(Insert Table 2)

The product mixture was analyzed by GC and, after distillation, the fractions were characterized by 1 H, 19 F and 13 C NMR. The yield of mono- (n=1) and diadducts (n=2), of normal and reverse-addition product ratios as a function of reaction conditions are also shown in Table 2.

The most suitable initiators were: di-*tert*-butyl peroxide (DTBP) and 2,5-bis(*tert*-butylperoxy)-2,5-dimethylhexane (Trigonox101). The yields (Y) of the diadducts were higher than 65 % for R_0 =0.5 and of monoadducts higher than 50 % for R_0 =1.4.

The structure of the telomers and the mechanism of radical telomerization of TFP were proved by NMR analysis. The NMR characteristics are detailed in the Experimental part. ¹⁹F NMR spectrum of n-C₆F₁₃[CH₂-CH(CF₃)]I as an example of monoadduct is shown in Fig.1.

(Insert Figure 1)

There was no signal at -59 ppm, assigned to CF₂I end-group of the reacted telogen. Two peaks were observed in the range from -67 to -72 ppm. The first one, at -67.2 ppm (b, CF₃ of TFP), is related to the reverse addition (only 4.5 mol %). The major product (a, CF₃ of TFP at -70.2 ppm) has a structure with a normal addition (95.5 mol %). All other signals are assigned to the *n*-C₆F₁₃ group of the telogen. The expected signal at -81.5ppm (t, *J*=9.5 Hz) is assigned to the α CF₃ of *n*-C₆F₁₃. The other signals are: λ (-113.7, m, CF₂CH₂), ϵ (-121.6 ppm, CF₂CF₂CH₂), δ (-122.8, m, C₂F₅CF₂CF₂), γ (-123.6, m, C₂F₅CF₂) and β (-126.6, m, CF₃CF₂). The ¹H NMR spectra of both monoadducts show the presence of the characteristic quintet of the AB-X system: 4.8 ppm, C*H-, ${}^{3}J_{HF} = {}^{3}J_{HHA} \sim 15$ Hz; ${}^{3}J_{HHB} = 7$ Hz and a multiplet at 3.25-2.65 ppm, centered at 2.9 ppm (m, H_A, H_B in AB system R_FCH₂).

In addition, the ¹³C NMR spectrum exhibits a quartet at 133.35, 127.88, 122.41, 116.93 ppm, assigned to CF₃ (${}^{1}J_{CF} = 275.4 \text{ Hz}$) and a triplet at 36.59, 36.17, 35.75 ppm for CH₂ of TFP (${}^{3}J_{CF} = 20.8 \text{ Hz}$). The quartet with negative intensity at 7.07, 6.42, 5.74, 5.06 ppm is assigned to asymmetric carbon C*H (${}^{2}J_{CF}=33.5 \text{ Hz}$) while that at -15.3 ppm is related to a reverse addition product (~3.0 mol %) of the CH₂-I terminal group. Interestingly, the reverse monoadduct was not produced from i-C₃F₇I giving a more electrophilic and bulky perfluoroisopropyl radical, which hence reacted selectively at the CH₂ of TFP (more "nucleophilic" and less hindered than the =CH site).

The NMR spectra of TFP diadducts of the *n*-C₆F₁₃I telogen and those of $(CF_3)_2$ CFI are described in Experimental part (Runs 2, 7 and 8, Table 3) and DEPT ¹³C NMR spectrum of $(CF_3)_2$ CFCH₂-CH(CF₃)I monoadduct is illustrated in Fig. 2.

(Insert Figure 2)

Mechanism of TFP telomerization

Two alternatives of the mechanism can be proposed: the first one is the classical mechanism of telomerization in which the $R_F CH_2$ -CH(CF₃)[•] radical produced may undergo either telogen transfer or initiate the propagation of TFP. In the latter case, the reverse addition product can be formed in the propagation step (Scheme 2).

(Insert Scheme 2)

However, a stepwise mechanism may operate in which $R_F CH_2$ -CH(CF₃)I formed by $R_F I$ transfer acts as a telogen in further telomerization of TFP as shown in Scheme 2.

II-2) Synthesis of iodo-acetate compounds of TFP telomers, R_F[CH₂-CH(CF₃)]_nI, n=1,2.

This type of reactions was studied earlier ²⁶ and more recently described ²⁷.

Various peroxides such as dibenzoyl peroxide, *tert*-pentyl peroxypivalate, DTBP, AIBN, etc. can be used. Because of the great exothermicity of the reaction, the initiator used was of high importance; its activity is associated with its low decomposition temperature. It was previously observed that when the starting temperature was higher than 90 °C (e.g. ,when initiated with dibenzoyl peroxide) the reaction temperature rose to 160 -180 °C and at such high temperature the produced ω -perfluoroiodoacetate undergoes a thermal rearrangement to R_FCH₂CH(OAc)CH₂I ^{26, 28}.

To avoid such an undesired transformation, we chose AIBN as the initiator added ²⁷. In this case, no exotherm was observed and the GC yield increased up to 80-82 wt% or 75 wt % after distillation.

A,n + CH₂=CHCH₂OAc
$$\xrightarrow{\text{AIBN}}$$
 R_F $(CH_2 - CH_2) \xrightarrow{\text{CH}}$ CH₂-CH-CH₂OCOCH₃ (2)
 $|CF_3 |$ I
B,n

Scheme 3.Radical addition of TFP telomers onto allyl acetate The main results are presented in Table 3.

(Insert Table 3)

The structure of different iodo-acetates was studied by ¹H and ¹⁹F NMR spectroscopy (Runs 3, 4, 9, 10 in Experimental part). The signals at 4.2 ppm are assigned to protons of CH₂OAc groups of normal structure. However, the rearranged iodo-acetate (the signal of CHOAc at 5.10 ppm) was not observed. The multiplet at 4.3-4.5 ppm is related to the CHI group, the multiplet of CH₂CHI at 2.1-2.2 ppm and a singlet at 2.02

ppm is attributed to CH_3 of the acetate. The other signals at 2.25-2.60 ppm (m, $CFCH_2$) and at 2.8-3.1 ppm (m, $*CH(CF_3)$) are assigned to TFP protons.

For the diadduct, 1H NMR spectra are more complex due to a new multiplet in the range of 1.6-1.9 ppm (*C-CH₂-C*).

The ¹⁹F NMR spectra are similar to those of the starting telomers.

II-3) Synthesis of fluoroallylic monomers CH₂=CH-CH₂(C₃H₃F₃)_nR_F

As described previously $^{27-29}$, fluorinated allyl monomers C,n can be obtained by deiododeacetatization reaction from **B**,n (Scheme 4)

$$\mathbf{B,n} \xrightarrow{\text{Zn/CH}_{3}\text{OH}} \text{CH}_{2}=\text{CH}-\text{CH}_{2}\left(-\text{CH}-\text{CH}_{2}\right)_{n}R_{F}$$
(3)
CH₂=CH-CH₂(-CH-CH₂) (3)
CF₃

Scheme 4. Synthesis of fluorinated allylic monomers based on TFP

The iodo-acetate **B**,n was added to a two-fold excess of activated Zn in MeOH. The reaction was rather exothermic and was monitored by GC. The conversion of **B**,n was complete. The overall yield of the reaction product **C**,n was close to 75 % after distillation.

Both allylic monomers with *n*-C₆F₁₃ or $(CF_3)_2CF$ groups were characterized by ¹H and ¹⁹F NMR spectroscopies. The ¹H NMR spectrum of $(CF_3)_2CFCH_2$ -CH(CF₃) - CH₂CH=CH₂ exhibits two multiplets in the 5.0-5.4 ppm and at 5.6-5.9 ppm regions, assigned to the protons of the double bond CH=CH₂ and CH₂=CH (Fig. 3). The multiplet at 2.6-3.0 ppm is related to the proton of asymmetric carbon,*CH (CF₃) and that at 2.2-2.6 ppm to both methylene protons of the CH₂CH=CH₂ and CFCH₂ and CFCH₂ structures.

(Insert Figure 3)

The ¹³C NMR spectrum also confirms the structure of the allylic monomers. Hence, the signals at 132.2 ppm (=CH, 1C) and 119.4 ppm (s, CH=CH₂, 1C) are assigned to both carbon atoms of the double bond. Both quartets centered at 128 and 120 ppm are assigned to CF₃- of TFP (${}^{1}J_{CF}$ =279.7 Hz) and (CF₃)₂ of telogen (${}^{1}J_{CF}$ =284.7 Hz, ${}^{2}J_{CF}$ =27.2 Hz), respectively. The doublet (${}^{1}J_{CF}$ =206.3 Hz) of septuplet (${}^{2}J_{CF}$ =32.0 Hz) centered at 90 ppm is characteristic of the CF group adjacent to both CF₃ end-groups while the quartet (${}^{2}J_{CF}$ =27.2 Hz) centered at 37.1 ppm is assigned to *CH (CF₃) group. The other signals are characteristic of the allyl carbon atoms with the doublet of CFCH₂, (${}^{2}J_{CF}$ =19.1 Hz) at 25.5 ppm. Of course, the 13 C NMR spectra of diadducts are more complex (see Experimental part). The 19 F NMR spectra are similar to those of corresponding telomers and some of them were already discussed. The details of these spectra are presented in Experimental.

III.CONCLUSION

This work described the synthesis of four new highly fluorinated telomers based on 3,3,3-trifluoroprop-1-ene (n=1 and 2) and their functionalization to obtain allylic monomers containing TFP unit(s), by a three step-reaction for further applications. The first step involved a simple bulk addition of perfluoroalkyl iodide R_FI ($R_F=n-C_6F_{13}$ or i- C_3F_7) onto TFP and showed that DTBP at 150 °C was a suitable initiator to get 50-60 % yield for n=1 or 2 depending on the R_0 ratio. For $n-C_6F_{13}I$ as the telogen, both normal and reverse additions took place, but no reverse addition product was obtained with i- C_3F_7I . The second step involved radical addition of $R_F(C_3H_3F_3)_nI$ onto allyl acetate using AIBN initiator added portionwize. The thermal rearrangement was not observed,

and the yield was satisfactory (50-80 %). In the third step, the deiododeacetatization took place to produce allylic fluorine-containing monomer in 50-80% yield. All the compounds synthesized were characterized by GC and ¹H, ¹⁹F, and ¹³C NMR spectroscopies. The obtained products could be suitable intermediates in preparation of new fluorinated products utilized as coating materials, surfactants, block copolymers, hybrid fluorosilicones.

IV.EXPERIMENTAL

IV-1) Reactants

3,3,3-trifluoroprop-1-ene (TFP) and heptafluoro-2-iodopropane (i- C_3F_7I) were kindly supplied by the Great Lakes Chemical Corporation (now Chemtura ,West Lafayette, IN., USA), tridecafluoro-6-iodohexane (n- $C_6F_{13}I$) by Elf Atochem (Pierre Benite, France), 2,5-bis(*tert*-butylperoxy)-2,5-dimethylhexane (Trigonox101) by Akzo Nobel, acetonitrile by SDS, AIBN and di-*tert*-butyl peroxide (DTBP) by Aldrich, and were used as received.

IV-2) Apparatus

After reaction and evaporation of the solvent, the product mixture was analyzed by gas chromatography (GC) using a Delsi apparatus (model 330) equipped with a SE 30 column, 2 m x 1/8 in. (i.d.). The nitrogen pressure at the inlet of the column was maintained at 1 bar and the detector and injector temperatures were 240 °C and 235 °C, respectively. The temperature programmer started from 50 °C and reached 200 °C at a heating rate of 10 °C/min. The GC apparatus was connected to a Hewlett Packard integrator (model 3390). The structures of the telomers were determined by NMR spectroscopy at room temperature. The ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on a Bruker AC-250 or Bruker 400 MHz instruments using deuterated chloroform or acetone and tetramethyl silane or CFCl₃ as the solvent and internal references, respectively. The experimental conditions for recording ¹H (or ¹⁹F) NMR spectra were the following : flip angle 90° (30°) ; acquisition time 4.5 s (0.7 s) ; pulse delay 2 s (5 s) ; 36 (64) scans and pulse width 5 µs for ¹⁹F NMR. Abbreviations used: s- singlet, d- double, t- triplet, q- quartet, qn- quintet, sex- sextet; sept- septuplet; m- multiplet

er - erythro ; tr -threo

IV-3) Reactions

IV-3a) Telomerization of TFP with R_FI to obtain $R_F(TFP)_nI$

In a 160 or 500 cm³ Hastelloy autoclave equipped with a manometer, a magnetic stirrer, and safety valve, R_FI and the initiator (in amounts depending on initial molar ratios R_0 and C_0) were introduced and purged with Ar for 15 min. The reactor was closed and checked for the leak at 30 bar of N₂. The reactor was placed in acetone/liquid nitrogen to cool the contents. Then, 5-7 vacuum-Ar cycles were applied to remove oxygen from the liquid. The required amount of TFP, depending on the R_0 was condensed in the autoclave. The autoclave was heated up to 150 °C and the telomerization was carried out at 150 ± 5 °C for 4 h. According to the TFP amount, the pressure was increased and pressure and temperature were recorded during the reaction. A sharp decrease in the pressure at almost constant temperature (150 °C) for the first hour and then a small pressure change were observed. After the reaction stopped, the autoclave was cooled and then placed in an ice bath. The unreacted monomer was expelled by purging and the conversion of telomerization was determined by double weighing (~90-95 %). The

crude product was analyzed by GC and then washed with a saturated solution of $Na_2S_2O_5$ in aqueous NaOH to remove the iodine produced. The reaction mixture was distilled to separate the adducts. The retention time (RT) and boiling point (b.p.) of the products are listed in Table 3.

Characteristics of the products

<u>Run 1, Table 3</u>; Monoadduct: $n-C_6F_{13}(C_3H_3F_3)-I$;

2-iodo-2H,3H,3H-perfluorononane - normal adduct- 96 %,

1-iodo-1H,1H,2H-2-(trifluoromethyl)perfluorooctane- reverse adduct- 4 %.

¹⁹F NMR (acetone- d₆) (Fig. 1): δ, ppm: -67.2 (b, CF₃ of TFP – *reverse* adduct) ; -70.2
(a, CF₃ of TFP, normal adduct, 3F) ; -81.5 (t, J=9.5 Hz, CF₃ of n-C₆F₁₃I, α, 3F) ; -113.7

 $(m, CF_2CH_2, \lambda, 2F)$; -121.6 $(m, CF_2CF_2CH_2, \varepsilon, 2F)$; -122.8 $(m, C_2F_5CF_2CF_2, \delta, 2F)$;

-123.6 (m, $C_2F_5CF_2$, γ , 2F); -126.6 (m, CF_3CF_2 , β , 2F).

¹**H** NMR (acetone- d_6) δ , ppm: 4.8 (qn, AB-X system, C*-**H**, ${}^{3}J_{\text{HF}}={}^{3}J_{\text{HHA}}\sim15$ Hz ; ${}^{3}J_{\text{HHB}}=7$ Hz), 3.25-2.65, 2.9 (m, **H**_A,**H**_B in AB system R_FCH₂, 2H).

¹³**C NMR** (acetone- d_6) δ , ppm:133.35 ; 127.88 ; 122.41 ; 116.93 (q, CF₃, ${}^{1}J_{CF} = 275.4$ Hz) ,36.59 ; 36.17 ; 35.75 (t, CH₂, ${}^{3}J_{CF} = 20.8$ Hz) , 7.07 ; 6.42 ; 5.74 ; 5.06 (q, negative intensity C*H, ${}^{2}J_{CF} = 33.5$ Hz), -15.3 (CH₂-I)~2.5 % *reverse* adduct.

<u>Run 7, Table 3;</u> Monoadduct: $(CF_3)_2CF(C_3H_3F_3)-I$

2-iodo-2H,3H,3H-4-(trifluoromethyl)perfluoropentane

¹⁹**F NMR** (CDCl₃) δ, ppm: -71.3 (m, CF₃ of TFP, 3F); -77.7 and -78.5[d t, (CF₃)₂, 6F), -188.9 (t,C**F**, 1F).

¹H NMR (CDCl₃) δ, ppm: 2.75-3.40 (m, CH₂, 2H), 4.3-4.7 (m, *CH, 1H).

¹³C NMR (CDCl₃) (Fig. 2): δ, ppm : 132.1; 126.7; 121.2; 115.7; (q, CF₃ of TFP,
 ¹J_{CF}=275.6 Hz, 1C), 129.2; 123.5; 117.9; 112.2 [q of d, (CF₃)₂₋, ¹J_{CF}=285.04 Hz,

 ${}^{2}J_{CF}$ =25.3 Hz , 2C], 92.08-87.91 [dsept, C(F), ${}^{1}J_{CF}$ =210 Hz, ${}^{2}J_{CF}$ =32.5 Hz, 1C], 33.6-33.2 (d, CH₂ of TFP, ${}^{2}J_{CF}$ =17.8 Hz, 1C), 7.5; 6.8; 6.2; 5.5 [q, CH(CF₃), ${}^{2}J_{CF}$ =33.0 Hz, 1C].

<u>Run 2, Table 3;</u> Diadduct: $n-C_6F_{13}(C_3H_3F_3)_2-I$

2-iodo-2H,3H,3H,4H,5H,5H-4-(trifluoromethyl)perfluoroundecane-

normal adduct- 72 %;

1-iodo-1H,1H,2H,3H,4H,4H,-2,3-bis(trifluoromethyl)perfluorodecanereverse adduct- 28 %.

¹⁹**F NMR** (CDCl₃) δ, ppm: -68.8 (s, CH(CF₃)I -reverse, b , 3F) , -71.4 (CH₂-C*H(CF₃)-CH₂ normal, a , 3F) , -69.6 and – 72.2 (C*H(CF₃)-C*H(CF₃), 6F) , -81.2 (t, *J*=9.5 Hz, α, CF₃, 3F) , -113.7 (m, CF₂CH₂, λ, 2F) , -121.6 (m, CF₂CF₂CH₂, ε, 2F) , -122.8 (m, C₂F₅CF₂CF, δ, 2F) , -123.6 (m, C₂F₅CF₂ , γ, 2F) , -126.6 (m, CF₃CF₂ , β, 2F) ¹H **NMR** (CDCl₃) δ, ppm: 2.18-2.28 (t, ³*J*_{HH}=4.1 Hz) , 2.29 –2.33 (³*J*_{HH}=6 Hz, C*-CH₂-C* , AB system, 2H), 2.5 (td, ³*J*_{HF}=11 Hz, ³*J*_{HH}=6 Hz, R_FCH₂, 2H), 3.0-3.2 (m, ³*J*_{HH}=9 Hz, CH₂I reverse, 2H) , 4.4 (m, 1HH_A, 1HH_B *J*=6.1 Hz, C*H(CF₃), 1H).

¹³ **C NMR** (CDCl₃) δ , ppm: 130.7 (130.5); 127.9 (127.7); 125.2 (124.9); 122.4 (122.3) (q of d (two stereoisomers), CF₃ of TFP between two CH₂ groups in the *normal* adduct, ¹*J*_{CF} = 279.4 Hz, 1C), 128.3 (128.15) ; 125.6 (125.4) ; 122.8 (122.7) ; 120.1 (119.9) (q of d , CF₃ of TFP adjacent to I , ¹*J*_{CF} = 275.9 Hz ,1 C) , 122-105 (complex system assigned to *n*-C₆F₁₃-), 37.32 ; 37.05 ; 36.77 ; 36.49 ; 36.21 (qn (er and tr), C*H(CF₃) from the side of R_F, ²*J*_{CF} = 27.6Hz , 1 C), 35.83-35.40 (*reverse*, negligible), 1*C), 33.88 ; 32.89 (er./tr.), CH₂ between two C*, 1 C), 29.97 (29.92) ; 29.75 (29.70) ; 29.54 (29.48); (t of d (er/tr), R_F-CH₂ , ²*J*_{CF} =20.9 Hz, 1C), 19.94 ; 19.61 ; 17.24 (two q, C*H(CF₃)I , ²*J*_{CF} =32.2 Hz, 1C), 5.62 -4.59 (q of *reverse* adduct, negligible CH₂I, 1C). *Run 8, Table 3; Diadduct: (CF₃)*₂*CF(C*₃*H*₃*F*₃)₂-*I*

2-iodo-2H,3H,3H,4H,5H,5H,-4,6-bis(trifluoromethyl)perfluoroheptane-normal adduct 1-iodo-1H,1H,2H,3H,4H,4H,-2,3,5-tris(trifluoromethyl)perfluorohexane-reverse adduct ¹⁹**F NMR** (CDCl₃) δ, ppm : -69.6; -70.9; -71.5; -72.9 (assigned to CF₃ of both TFP (*normal* and *reverse* adducts, 6F), -77.3; -78.5; -78.8 (t, (CF₃)₂, 6F), -185.5; -187.2 (dt C(F), 1F).

¹**H** NMR (CDCl₃) δ , ppm : 1.9-2.3 (m, *C-CH₂-C*, 2H) , 2.3-2.7 (m, R_F-CH₂, 2H), 2.6-3.2 (m, *CH(CF₃) 25 % of one diastereoisomer overlapping with R_F-CH₂ protons and 75 % in the range of 2.75-3.2 ppm ; negligible reverse adduct (absence of signal at 3.5 ppm, 1H), 4.15-4.45 (m, *CH(CF₃)I, 1H).

¹³C NMR (CDCl₃) δ, ppm:130.8 (130.6) ; 128.0 (127.8) ; 125.2 (125.0) ; 122.4 (122.3); (q of d (coupling of two diastereoisomers) ,CF₃ of TFP between two - CH₂groups in *normal* adduct), ${}^{1}J_{CF} = 279.7$ Hz, 1C) 128.4 (128.16) ; 125.66 (125.42) ; 122.92 (122.68) ; 120.18 (119.94) (q of d, CF₃ adjacent to I in *normal* adduct, ${}^{1}J_{CF}$ =276.7 Hz , 1C), 125.04 (124.94) ; 122.27 (122.10) ; 119.39 (119.26) ; 116.55 (116.43); 124.79 (124.66); 121.95 (121.82); 119.11 (118.99); 116.27 (116.15) (two q of d, CF₃, ${}^{1}J_{CF}$ =285.7 Hz, ${}^{2}J_{CF}$ =28.17 Hz, 6C), 92.63-89.02 (d of sept., C(F), ${}^{1}J_{CF}$ =207.3 Hz ; ${}^{2}J_{CF}$ =32.2 Hz, 1C), 38.10; 37.8; 37.6; 37.3; 37.0; 36.7 (sex , C*H(CF₃) of TFP between two CH₂ groups, ${}^{2}J_{CF}$ =27.17 Hz, 1C] , 35.56; 33.29 (d, CH₂ of TFP-I, 1C), 27.70; 27.51; 27.29; 27.10 (two d of CH₂, ${}^{2}J_{CF}$ =19.1 Hz, 1C), 19.53-18.55 ; 17.23 – 16.30 (d of q (tr/er) *CH (CF₃)I, ${}^{2}J_{CF}$ =29.2 Hz, 1C).

IV-3b) Synthesis of $R_F(C_3H_3F_3)_n$ -CH₂CH(I)CH₂OCOCH₃

In a 250 ml three-necked round-bottom flask equipped with a double condenser and a thermometer were introduced a certain amount of monoadduct or diadduct produced in the previous reaction and a 1.2-fold excess of allyl acetate. Then, the mixture was heated up to 82 °C and stirred. When the temperature reached 80 °C, AIBN (C_0 = 0.015 to 0.050) was introduced step-wise for 10 h- reaction time. No exothermicity was

observed. After 10 h, the reaction was stopped; the crude product was cooled to room temperature, filtered and analyzed by GC. The reaction mixture was distilled to purify the iodo-acetate. The obtained characteristics are shown in Table 3.

Characteristics of the products

<u>Run 3, Table 3;</u> $n-C_6F_{13}(C_3H_3F_3)-CH_2CH(I)CH_2OCOCH_3$

6,6,7,7,8,8,9,9,10,10,11,11,11-tridecafluoro-2-iodo-4-(trifluoromethyl)undecyl acetate

 19 F NMR (CDCl₃) δ , ppm: -81.9 and from -111 to -127 (the same chemical shifts as for

Run 1) -71.39 and -72.59 are assigned to CF₃ of TFP in both diastereoisomers.

¹**H NMR** (CDCl₃) δ, ppm: 2.05 (s, CH₃, 3H), 2.4-2.6 (m, C*H(CF₃), 1H), 2.8-3.0 (m,

C₆F₁₃CH₂, 2H), 4.1-4.3 (m, CH₂OCOCH₃, 2H), 4.4-4.5 (m, C*H(I), 1H).

<u>Run 9, Table 3</u>; (CF₃)₂CF(C₃H₃F₃)CH₂CH(I)CH₂OCOCH₃

6,7,7,7-tetrafluoroheptyl-2-iodo-4,6-bis(trifluoromethyl) acetate

¹⁹F NMR (CDCl₃) δ, ppm: -71.2 and -72.3 (CF₃ of TFP,(*normal* and *reverse* adducts),
3F), -77.3 and -77.6 (m, (CF₃)₂C(F), ³J_{FF}=69.5 Hz, 6F), -185.8, -187.1 (m, C(F), 1F).
¹H NMR (CDCl₃) δ, ppm : 2.02 (s, CH₃, 3H) , 2.1-2.2 (m, CH₂CH(I), 2H) , 2.25-2.60 (m, C(F)CH₂, 2H), 2.8-3.1 (m, *CH(CF₃), 1H), 4.1-4.25 (m, CH₂OCO, 2H), 4.3-4.5 (m, CH(I), 1H).

<u>Run 4, Table 3</u>; n-C₆F₁₃(C₃H₃F₃)₂-CH₂CH(I)CH₂OCOCH₃ 8,8,9,9,10,10,11,11,12,12,13,13,13-tridecafluoro-2-iodo-4,6-bis(trifluoromethyl)

tridecanyl acetate

¹⁹**F NMR** (CDCl₃) δ, ppm: - 70 to -73 (complex system, 2xCF₃ of TFP, 6F), -81.6 (s, CF₃ of *n*-C₆F₁₃, 3F), -111.8 to -127 (the same assignments as those in Run 1, ¹⁹F NMR). ¹**H NMR** (CDCl₃) δ, ppm: 2.05 (s, CH₃ from OCOCH₃, 3H) , 2.3 (*C-CH₂-*C, 2H) , 2.24 (CH₂CH(I), 2H) , 2.5 (*CH(CF₃) overlapping with 2.58 ppm signal, 1H), 2.58 (m, R_F -CH₂,2H) , 2.8 (m, *CH(CF₃), 1H), 4.2 (m, C*H(I), 1H), 4.4 (m, ester CH₂OCOCH₃, 2H).

<u>*Run 10, Table 3*</u>; (*CF*₃)₂*CF*(*C*₃*H*₃*F*₃)₂*CH*₂*CH*(*I*)*CH*₂*OCOCH*₃

8,9,9,9-tetrafluoro-2-iodo-4,6,8-tris(trifluoromethyl)nonyl acetate

¹⁹F NMR (CDCl₃) δ, ppm : no signal at -67 (no *reverse* product) ; -70.5 to -72.77 (m, 2xCF₃ of TFP, 6F), -77.2 to 78.75 (m, (CF₃)₂, 6F) ; -186.4, -187.14, -187.73 (t, C(F), 1F).

¹**H NMR** (CDCl₃, ppm) δ: 1.6-1.9 (m, *C-CH₂-*C, 2H) ; 2.02-2.25, (CH₃ in CH₃OCO, 3H), 2.25-2.4 (CH₂-CHI, 2H); 2.3-2.5 (R_F-CH₂, 2H) ; 2.6-3.0 (*CH(CF₃), 1H) , 4.2 (m, 1H of CH(I) +1H of *CH(CF₃)) , 4.4 (m, ester CH₂OCOCH₃, 2H).

IV-3c) Synthesis of $R_F(C_3H_3F_3)_n$ -CH₂CH=CH₂

Zn dust was activated with 1.2 g of a mixture of acetic acid/acetic anhydride (1/1), 40 ml of CH₃OH was added and they were introduced into 250 ml two-neck round- bottom flask with a reverse condenser and magnetic stirrer. The temperature was increased to 65 °C while stirring. The iodo-acetate prepared in Run 3, Table 3 (60.05 g, 0.094 mol) in 30 ml MeOH was added dropwise under reflux to a Zn slurry within 3 h with vigorous stirring and then the reaction mixture was stirred for 2 h. A colourless product was obtained. The Zn complex was filtered off, the filtrate was diluted with CH_2Cl_2 (1/1 vol.) and washed with 10 % HCl aqueous solution (100 ml) and washed again with distilled water. The organic phase was added dropwise to anhydrous MgSO₄ under stirring to eliminate traces of water, filtered and twice distilled (Table 3).

Characteristics of the products

<u>*Run 5, Table 3*</u>; *n*-*C*₆*F*₁₃(*C*₃*H*₃*F*₃)-*CH*₂*CH*=*CH*₂

6,6,7,7,8,8,9,9,10,10,11,11,11-tridecafluoro-4-(trifluoromethyl)undec-1-ene

¹⁹**F NMR** (CDCl₃) δ , ppm: The same chemical shifts as those of *n*-C₆F₁₃(C₃H₃F₃)-CH₂CH(I)CH₂OCOCH₃ except for the signal centred at –113 ppm which is simpler and gives only one peak at –72.0 (one diastereoisomer).

¹**H NMR** (CDCl₃)δ, ppm: 2.2-2.6 (m, *n*-C₆F₁₃C**H** and C**H**₂-CH, 4H), 2.6-2.8 (m, *C**H** (CF₃), 1H), 5.1-5.4 (m, C**H**₂=, 2H), 5.6-5.9 (m, C**H**=, 1H).

¹³C NMR (CDCl₃) δ , ppm: 132.18 (132.08) (d (2 diastereoisomers), CH= , 1C), 131.03 ; 128.26 , 125.48 , 122.71 (q, CF₃ of TFP , ¹*J*_{CF}=279.0 Hz, 1C), 120.4 –104.9 (complex system, *n*-C₆F₁₃, 6C), 118.8-118.7 (d, CH₂= , 1C), 36.68-35.86 (q, *CH(CF₃), ²*J*_{CF}=27.2 Hz, 1C), 32.68 (s, CH₂, 1C), 28.18-27.75 (t, CH₂R_F , ²*J*_{CF}=21.13 Hz, 1C).

<u>Run 11, Table 3;</u> $(CF_3)_2CF(C_3H_3F_3)CH_2CH=CH_2$

6, 7, 7, 7-tetra fluoro-4, 6-bis (trifluoromethyl) hept-1-ene

¹⁹**F NMR** (CDCl₃) δ, ppm: -72.2 (C**F**₃ of TFP, 3F), -78.8 and -78.4 (dt, (C**F**₃)₂, 6F), -187.1 (m, C (**F**), 1F).

¹**H NMR** (CDCl₃)δ, ppm: 2.2-2.6 (m, CH₂CH=CH₂ + C(F)CH₂, 4H), 2.6-3.0 (m,

*CH(CF₃), 1H), 5.05-5.4 (m, CH=CH₂, 2H), 5.6-5.9 (m, CH₂=CH, 1H).

¹³**C NMR** (CDCl₃) δ , ppm: 132.2 (=CH, 1C), 131.1; 128.3; 125.5; 122.8 (q, CF₃ of TFP, ${}^{1}J_{CF}$ =279.7 Hz, 1C), 125.0; 122.1; 119.0; 116.5 (q of d (CF₃)₂, ${}^{1}J_{CF}$ =284.7 Hz, ${}^{2}J_{CF}$ =27.2 Hz, 6C), 119.4 (s, CH =CH₂), 1C), 90 (d of sept, C(F), ${}^{1}J_{CF}$ =206.3 Hz, ${}^{2}J_{CF}$ =32.0 Hz, 1C), 37.1 (q, *CH(CF₃), ${}^{2}J_{CF}$ =27.2 Hz, 1C), 33.27(q, CH₂=CHCH₂, ${}^{3}J_{CF}$ =2.0 Hz, 1 C), 25.5 (d, C(F)CH₂, ${}^{2}J_{CF}$ =19.1 Hz, 1 C).

<u>Run 6, Table 3;</u> n-C₆F₁₃(C₃H₃F₃)₂-CH₂CH=CH₂

8,8,9,9,10,10,11,11,12,12,13,13,13-tridecafluoro-4,6-bis(trifluoromethyl)tridec-1-ene

¹⁹**F NMR** (CDCl₃) δ , ppm: -71.9 (d, CF₃ adjacent to allyl, 3F), -72.6 (d, CF₃ of TFP to the C₆F₁₃ side, 3F), -82.0 (t, α CF₃ of *n*-C₆F₁₃, 3F), the group of signals from -112 to - 127 ppm belongs to C₅F₁₀ as in Run 1.

¹**H NMR** (CDCl₃) δ, ppm: 1.6-1.8 and 50 % from 1.8-2.2 (qn, *C-CH₂.C*, 2H), 1.8-2.2 (m, CH₂CH=CH₂, 2H), 2.2-2.6 (m, overlap of 2H from CH₂ of R_FCH₂ and 1H from *CH (CF₃)), 2.8 (m, *CH (CF₃), 1H), 5.10-5.18 (m, CH₂=, 2H), 5.58 –5.84 (m, CH=, 1H).

¹³ **C NMR** (CDCl₃) δ , ppm: 133.03 (132.81) (d, (diastereoisomers), CH= , 1C) , 131.73 (131.61) ; 128.96 (128.83); 126.18 (126.06) ; 123.41 (123.28) (q of d (diastereoisomers)) **C**F₃ of TFP on the side of R_F , ¹*J*_{CF}=279.2 Hz, 1C), 131.10 (130.94); 128.32 (128.16); 125.55 (125.39); 122.78 (122.62) (q of t (diastereoisomers) , **C**F₃ of TFP on the side of allyl, ¹*J*_{CF}=279.01Hz , ²*J*_{CF}=31.5 Hz, 1C), 118.40 (118.28) (d, **C**H₂=,1C), 122-105.9 (complex system of **C**₆F₁₃, 6C), 40.46 (40.39) ; 40.20 (40.14) ; 39.95 (39.88) ; 39.69 (39.63) (q of d (diastereoisomers) ***C**H(CF₃) from the side of R_F, ²*J*_{CF}=25.8 Hz, 1C), 35.06; 34.80; 34.52; 34.25; 33.98 (q, ***C**H(CF₃) from the side of allyl, ²*J*_{CF}=27.25 Hz, 1C), 32.60 (32.57); 32.22 (32.20) (**C**H₂ adjacent to vinyl, 1C) , 30.51; 30.09 ; 29.88 (t, R_F**C**H₂, ²*J*_{CF}=21.5 Hz, 1C), 27.52 (s, **C**H₂ from ***C**-**C**H₂-***C**, 1C).

<u>*Run 12, Table3*</u>; $(CF_3)_2CF(C_3H_3F_3)_2CH_2CH = CH_2$

8,9,9,9- tetrafluoro-4,6,8-tris(trifluoromethyl)non-1-ene

¹⁹**F NMR** (CDCl₃) δ, ppm : -71.7; -72.2; -72.5 (t, 2x CF₃ in TFP, 6F), -77.7 to-78.9 (dt, (CF₃)₂, 6F), -186.9; -187.4 (m, C(F), 1F).

¹**H NMR** (CDCl₃) δ , ppm : 1.55-2.2(m, CH₂ from *C-CH₂-C*, 2H) , 2.0-2.2 (m, allyl CH₂ , 2H) , 2.3-2.5 (m, 2H of R_F-CH₂+ 25 % of diastereoisomer *CH(CF₃) from the

side of R_F), 2.9 (m, 1H of *CH(CF₃) from the side of the allyl), 5.20 (m, CH₂=, 2H), 5.7 (m, CH=CH₂, 1H).

¹³C NMR (CDCl₃) δ , ppm : 133.21 (132.89) (d, CH₂=CH-, 1C) , 131.76 (131.61); 128.98 (128.83); 126.20 (126.05); 123.43 (123.28) (q, CF₃ of TFP on the side of R_F, ¹J_{CF}=279.7 Hz, 1C), 131.18 (131.00); 128.40 (128.22); 125.62 (125.45); 122.84 (122.67) (q, CF₃ of TFP adjacent to allyl, ¹J_{CF}=279.7 Hz, 1C), 125.10 (125.06); 124.82 (124.79); 122.26 (122.23); 121.98 (121.95); 116.59 (116.55); 116.30 (116.26) (two qq, (CF₃)₂ , ¹J_{CF}=285.7 Hz, ²J_{CF}=28.17 Hz , 2C), 188.29 (118.24) (d, CH =CH₂, 1C) , 92.74 -88.77 (d of sept, -C(F)-, ¹J_{CF}=206.25 Hz, ²J_{CF}=32.2 Hz, 1C), 40.37-39.38 (qn, *CH(CF₃), ²J_{CF}=25.15 Hz, 1C) , 35.85 - 34.68 (qn of d, *CH(CF₃) adjacent to allyl, ²J_{CF}=27.16 Hz, 1C), 32.78 -32.75 (d, CH₂ adjacent to vinyl, 1C) , 32.10; 32.08; 31.91 (t, CH₂ between 2*C, 1C), 28.94, 27.70 (two d CH₂-R_F, ²J_{CF}=19.12 Hz, 1C).

Acknowledgements: The authors thank the Great Lakes (now Chemtura) Company (USA) for sponsoring this work and for the gifts of TFP and i- C_3F_7I , and Elf Atochem for the gift of $C_6F_{13}I$.

V. REFERENCES

- 1. Haszeldine R.N., J. Chem.Soc. 1951, 2495.
- 2. Haszeldine R.N., J. Chem. Soc. 1952, 2504.
- 3. Haszeldine R.N., Steele B.R., J. Chem. Soc. 1953, 1199.
- 4. Low H.C., Tedder J. M., Walton J. C., J. Chem. Soc., Faraday Trans. 1976, 72, 1300.
- 5. Kostov G.K., Ameduri B., Brandstadter S.M., US Pat.60/99284 (to Chemtura) (2007).

- 6. Haszeldine R.N., Newlands M. J, Plumb J. B., J. Chem. Soc., 1965, 2101.
- 7. a) Block H.D., German Patent DE 2,514,640 (to Bayer) (1976); b) Kostov G.K., Ameduri B., Brandstadter S. M., *J. Fluorine Chem.* **2007**, 128, 910.
- 8. Chen J., Zhang Y.-F., Zheng X., Vij A., Wingate D., Meng D., White K., Kirchmeier
- R.L., Shreeve J.M., Inorg. Chem. 1996, 35, 1590.
- 9. Terentev A.B., Pastushenko E.V., Kruglov D.E., Rybininia T.A., *Izv. Akad. Nauk SSSR*, Ser. Khim. **1992**, 2768.
- 10. Harran G., Sharp D.W.A., J. Chem. Soc. Perkin Trans. 1972, 34.
- 11. Feast W.J., Gimeno M., Khosravi E., Polymer, 2003, 44, 6111.
- 12. Ikonnikov N.S., Lamova N. I., Terentev A.B., *Iz. Akad. Nauk SSSR, Ser. Khim.* 1988, 117.
- a) Zamyslov R. A., Shostenko A.G., Dobrov I.V., Myshkin V.E., Zh. Org. Khim.,
 1980, 16, 897; b) Shostenko A.G., Dobrov I .V., Chertorizhskii A.V., Khim. Prom.
 1983, 339; c) Zamyslov R. A., Zh. Vses. Khim. Obshch. Im. D.I.Mendeleeva 1986, 31,
 589; d) Zamyslov R.A., Shostenko A.G., Dobrov I.V., Tarasova N.P., Kinet. Katal.
- **1987**, 28, 977
- 14. Terentev A.B., Vasileva T. T., Ind. Chem. Library 1995; 7, 180.
- 15.Vasileva T. T., Fokina I. A., Vitt S. V., Dostovalova V. I., *Izv. Akad. Nauk SSSR*, Ser. Khim. **1990**, 8, 1807
- 16. Keim W., Raffeis G.H., Kurth D., J. Fluorine Chem. 1990, 48, 229.
- 17. a) Gasanov R.G., Vasileva T.T., Gapusenko S. I., *Kinet. Katal.* 1991, 32,1466; b)Vasileva T.T., Fokina I.A., Vitt S .V., *Izv. Akad. Nauk SSSR, Ser. Khim.* 1991,1384.
- 18.Vasileva T. T., Kochetkova V. A., Dostovalova V. I., Nelyubin B. V., Freidlina R. K., *Izv. Akad. Nauk SSSR, Ser. Khim.* 1989,2558.

- 19.Vasileva T. T., Kochetkova V. A., Nelyubin B. V., Dostovalova V. I., Freidlina R.K., *Izv. Akad. Nauk SSSR, Ser. Khim* .1987, 808.
- 20. a) Balague J., Ameduri B., Boutevin B., Caporiccio G., J. Fluorine Chem. 1995, 70,
- 215; b) Gelin M.P., Ameduri B., J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 160;
- c) Ameduri B., Ladaviere C., Boutevin B., Delolme F., Macromolecules 2004, 37, 7602.
- 21. Ameduri B., Boutevin B.: Well-Architectured Fluoropolymers: Synthesis, Properties and Applications, Chapter 1, pp 1-99, Elsevier, Amsterdam, 2004.
- 22. Pennsalt Chem.Corp. US Pat. 868 494 (1956).
- 23. Pennsalt Chem.Corp. GB Pat. 927403 (1963).
- 24. Rondestvedt C.S. Jr., Fr. Patent 1 521 77 (to Du Pont) (1968).
- 25. Jap. Pat. 49066611 (1974).
- 26.Cirkva V., Ameduri B., Boutevin B., Kvicala J., Paleta O., *J.Fluorine Chem.* 1995, 74, 97.
- 27. Ameduri B., Boutevin B., Kostov G.K., Petrova P., J. Fluorine Chem. 1998, 92, 69.
- 28. Ameduri B., Boutevin B., Nouiri M., Talbi M., J. Fluorine Chem. 1995, 74, 191.

TABLE CAPTIONS

Table 1.Telomerization of 3,3,3-trifluoroprop-1-ene with different chain-transfer agents (or telogens) and initiators

Table 2. Radical telomerization of 3,3,3-trifluoroprop-1-ene with R_FI^a as a telogen at

different reaction conditions

Table 3. Main reaction products and their characteristics

Telogen	Initiator	Telomers	Ref.
CF ₃ I	UV/5 days	$CF_3[CH_2CH(CF_3)]_nI$ n=1,2	2
CF ₃ I	225°C/36 h	$CF_3[CH_2CH(CF_3)]_nI$ n=1-3	2-3
CF ₃ I	UV/various T	Normal and reverse monoadducts	4
		small amounts of n=2	
IC ₆ F ₁₂ I	(<i>t</i> -BuO) ₂ /143 °C	${I[CH_2-CH(CF_3)]_nC_3F_{6-}}_2 n=1-3$	5
Cl ₃ Si-H	UV	$Cl_3Si[CH_2CH(CF_3)]_n H n=1,2$	6
$(C_2H_5O)_2P(O)H$	(<i>t</i> -BuO) _{2/} 130 °C	$(C_2H_5O)_2P(O)CH_2CH_2CF_3$ (39%)	7a
$(C_2H_5O)_2P(O)H$	(<i>t</i> -BuO) _{2/} 140 °C	$H(TFP)_nP(O)(OC_2H_5)_2 n=1-4$	7b
THF	DTBP/140 °C	monoadduct (48%)	8
2-Me-1,3-	Fe(CO) ₅	2-Me-2,4-bis(TFP)-dioxolane	9
dioxolane			
CH ₃ SSCH ₃	UV	CH ₃ SCH ₂ CH(CF ₃)SCH ₃	10
HBr	UV	CF ₃ CH ₂ CH ₂ Br	2
Cyclopentadiene	180°C/72 h	Exo/endo = 62:38	11
CH ₃ OCOCH(CH ₃) ₂	peroxides	$CH_3OCOC(CH_3)_2[CH_2CH(CF_3)]_nH$	12
(CH ₃) ₂ CHOH	γ-rays (<i>T</i> < 90 °C)	$(CH_3)_2C(OH)[CH_2CH(CF_3)]_nH$ n=1,2	13
C ₆ H ₅ CH ₂ -Cl	Fe(CO) ₅	n=1,2 C ₆ H ₅ CHX [CH ₂ CH(CF ₃)] _n Y	14
		n=1,2 X=Cl,H Y=H,Cl	
CCl ₄	Fe(CO) ₅	$Cl_3C[CH_2CH(CF_3)]_nCl, n=1-3$	15
CCl ₄	CuCl ₂ /LiCl	$Cl_3C[CH_2CH(CF_3)]_nCl, n=1-7$	16
			1.5
C ₆ H ₅ CH ₂ Br	Fe(CO) ₅	$C_6H_5CHX[CH_2CH(CF_3)]_nY$	17
		n=1-2; X=Br, H; Y=H, Br.	
CUD	$E_{\alpha}(C_{\Omega})/D_{ME}$	$\mathbf{P}_{\mathbf{r}}$ CHICH CH(CE) $\mathbf{P}_{\mathbf{r}}$ $\mathbf{r} = 1.2$	18
CHBr ₃ Br ₂ CHBr	Fe(CO) ₅ /DMF DBP*	$\frac{Br_2CH[CH_2CH(CF_3)]_nBr}{XCBr_2[CH_2CH(CF_3)]_nY} n=1-3$	18
	DDL.		10
BrCH ₂ Br	Fe(CO) ₅	$\frac{Y=X=H \text{ or } Br n=1,2}{BrCH_2[CH_2CH(CF_3)]_nBr n=1,2}$	18
	16(00)5	$\mathbf{D} \in \mathbf{H}_2[\mathbb{C} \cap \mathbb{C} \cap $	10
CBr ₄	DBP*	$Br_3C[CH_2CH(CF_3)]_nBr$ n=1-3	19
* dihanzayi narayida			1)

Table 1. Telomerization of 3,3,3- trifluoroprop-1-ene with different chain-transfer agents (or telogens) and initiators (experimental conditions and results)

* dibenzoyl peroxide

Table 2.Radical telomerization of 3,3,3-trifluoroprop-1-ene with $R_F I^a$ as a telogen at

Run	Initiator	R_0	C_0	Т	t_r	P (bar)		TFP	% by GC ^c		
				(°C)	(h)	max	min	conv.	R _F I	A,1	A,2 ^d
								(%)			
1	Thermal	0.25	I	160	20	39	34	36.8	52.8	26.2	21.0
2	Thermal	0.50	-	160	20	22	17	79.2	27.6	51.9	20.5
3	Thermal	0.50	-	180	22	30	11	73.4	2.4	65.9	31.2
$4^{\rm e}$	Perkadox16s	0.50	0.03	62	20	7	5	79.2	23.8	35.4	40.8
5	AIBN	0.50	0.03	82	18	10	7	79.2	17.4	38.8	42
6	Trigonox101	0.50	0.03	134	6	16	0.6	89.6	3.7	19.1	63.8
7	DTBP	0.50	0.03	140	6	17	0.2	97.9	3.7	19.0	63.8
8	DTBP	0.50	0.03	143	4	19	0.8	94.3	9.6	21.1	66.6
9	DTBP	1.40	0.03	140	4	13	1.1	95.2	22.5	54.4	15.7
10	DTBP	0.40	0.03	140	4	25	2	96.8	2.9	3.7	47.4
11	DTBP	0.50	0.03	140	4	22	2	98.1	3.3	10.15	57.9
12	DTBP	0.75	0.03	145	4	20	3.0	93.8	6.8	34.1	49.0
13	DTBP	1.20	0.03	150	4	20	5.0	90.0	14.9	46.3	33.4
14	DTBP	1.40	0.03	150	4	21	3.5	95.0	12.6	54.1	28.6
15	DTBP	1.50	0.03	150	4	19	5.0	95.0	24.6	43.9	28.3
16	UV	1.40	-	30	24	-	-	75.2	27.8	38.2	21.6
17 ^f	Fe ³⁺ /Benzoin	1.40	0.3	140	48	-	-	48.5	39.8	32.5	18.4

different reaction conditions (batch operation)^b

- a) $R_F = n C_6 F_{13}$ (Runs 1-9; 16,17) and (CF₃)₂CF (Runs 10-15)
- b) $R_0 = [R_F I]_0 / [TFP]_0; C_0 = [In]_0 / [TFP]$ (In stands for initiator)
- c) The remaining part contained higher TFP telomers (n>2)
- d) A,1 and A,2 stand for $R_F(C_3H_3F_3)_1I$ and $R_F(C_3H_3F_3)_2I$, respectively
- e) Perkadox 16s- Bis(4-tert-butylcyclohexyl)peroxydicarbonate; purity 95 %.
- f) FeCl₃ / C₆H₅CH(OH)COC₆H₅ (1/1 mol)

Run	Product	RT* (min)	b.p.	
			°C	Pressure
				(mm Hg)
1	$n-C_6F_{13}(C_3H_3F_3)-I(A,1)$	3.6	24-26	0.4
			71-73	18-25
2	$n-C_6F_{13}(C_3H_3F_3)_2-I(A,2)$	5.5	29-31	0.2
			100-105	18-25
3	$n-C_6F_{13}(C_3H_3F_3)-CH_2CH(I)CH_2OCOCH_3$	11.5	70-72	0.1
4	<i>n</i> -C ₆ F ₁₃ (C ₃ H ₃ F ₃) ₂ -CH ₂ CH(I)CH ₂ OCOCH ₃	13.4	110-115	0.05
5	$n-C_{6}F_{13}(C_{3}H_{3}F_{3})-CH_{2}CH=CH_{2}$	3.2	68-70	18-25
			105-108	normal
6	$n-C_{6}F_{13}(C_{3}H_{3}F_{3})_{2}-CH_{2}CH=CH2$	5.3	100-103	18-25
7	$(CF_3)_2C(F)C_3H_3F_3I$	1.5	100-110	normal
8	$(CF_3)_2C(F)(C_3H_3F_3)_2-I$	3.2	65-70	18-25
9	(CF ₃) ₂ C(F)(C ₃ H ₃ F ₃)CH ₂ CH(I)CH ₂ OCOCH ₃	8.2-8.9	115-120	18-25
-		0.2 0.5	65-70	1
10	(CF ₃) ₂ C(F)(C ₃ H ₃ F ₃) ₂ CH ₂ CH(I)CH ₂ OCOCH ₃	10.8-11.1	78-84	0.1
			105 110	
11	$(CF_3)_2C(F)(C_3H_3F_3) CH_2CH=CH_2$	1.3-1.5	105-110	normal
12	$(CF_3)_2C(F)(C_3H_3F_3)_2CH_2CH=CH_2$	2.9-3.1	63-64	18-25

Table 3. Main reaction products and their characteristics

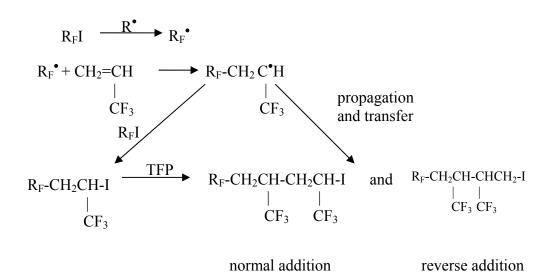
*RT stands for retention time; GC analysis: column OV1 (3% silicone grease on

Chromosorb G); 2 m length, 1/8" diameter, 50-200 °C.

SCHEME CAPTIONS

Scheme 1.Radical telomerization of 3, 3, 3-trifluoroprop-1-ene (TFP) with perfluoroalkyl iodide

Scheme 2.Mechanism of radical telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with perfluoroalkyl iodide (R_FI)


Scheme 3.Radical addition of TFP telomers onto allyl acetate Scheme 4.Synthesis of fluorinated allylic monomers **C**,**n** by deiododeacetatization of **B**,**n**

$$R_{F}-I + n CH_{2}=CH \xrightarrow{In} R_{F} + CH_{2}-CH_{7} + (n=1,2) \quad (1)$$

$$CF_{3} \xrightarrow{In} R_{F} + CH_{2}-CH_{7} + (n=1,2) \quad (1)$$

$$A,n$$

Scheme1. Radical telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with perfluoroalkyl iodide

Scheme 2. Mechanism of radical telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with perfluoroalkyl iodide (R_FI)

$$\mathbf{A,n} + CH_2 = CHCH_2OAc \xrightarrow{\text{AIBN}} R_F + (CH_2 - CH_2) - (CH_2 - CH_2OCOCH_3) (2)$$

$$\mathbf{B,n}$$

$$\mathbf{A,n} + CH_2 = CHCH_2OAc \xrightarrow{\text{AIBN}} R_F + (CH_2 - CH_2) - (CH_2 - CH_2OCOCH_3) (2)$$

Scheme 3. Radical addition of TFP telomers onto allyl acetate

B,n
$$\xrightarrow{\text{Zn/CH}_3\text{OH}}$$
 $CH_2=CH-CH_2(-CH-CH_2)nR_F$ (3)
CH₂=CH-CH₂(-CH-CH₂)nR_F (3)

Scheme 4.Synthesis of fluorinated allylic monomers **C**,**n** by deiododeacetatization of **B**,**n**

FIGURE CAPTIONS

- Figure 1. ¹⁹F NMR spectrum (in CDCl₃) of *n*-C₆F₁₃(C₃H₃F₃)I monoadduct
- Figure 2. DEPT ¹³C NMR spectrum (in CDCl₃) of (CF₃)₂CF(C₃H₃F₃)I monoadduct
- Figure 3. ¹H NMR spectrum (in CDCl₃) of (CF₃)₂CF[CH₂CH(CF₃)] CH₂CH=CH₂.

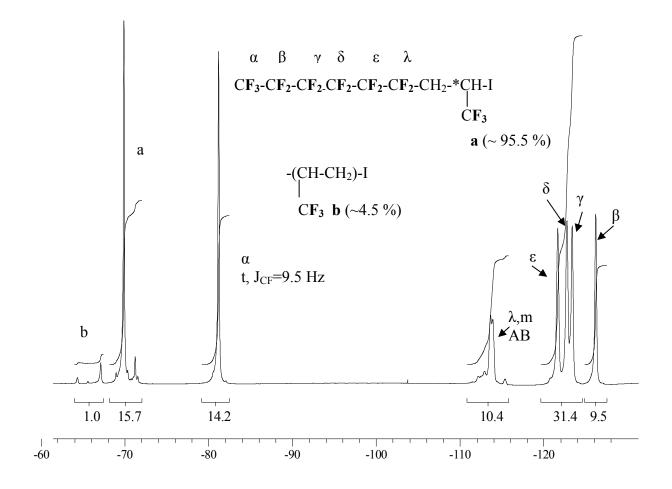


Figure 1.¹⁹F NMR spectrum (in CDCl₃) of n-C₆F₁₃(C₃H₃F₃)I monoadduct.

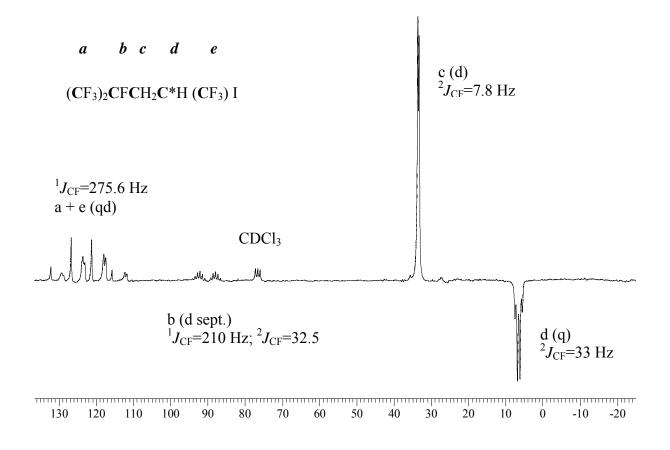
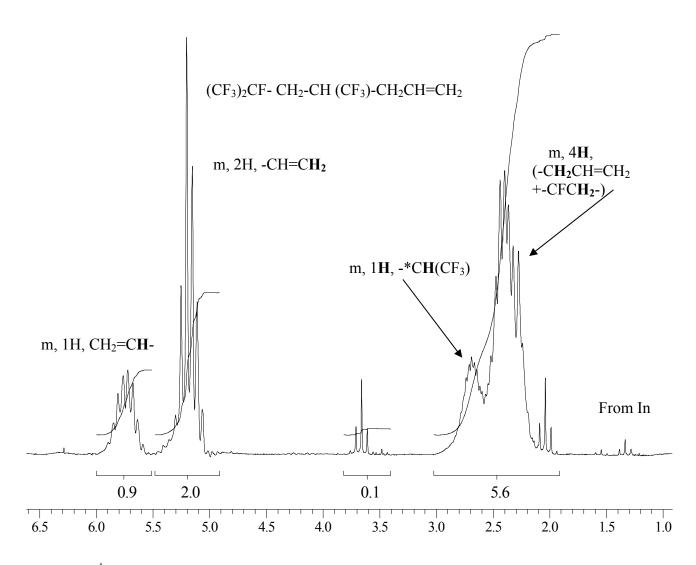
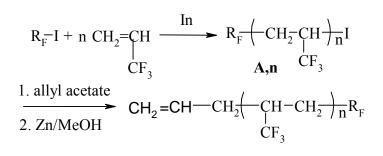


Figure 2. DEPT ¹³C NMR spectrum (in CDCl₃) of (CF₃)₂CF(C₃H₃F₃)I monoadduct.




Figure 3.¹H NMR spectrum (in CDCl₃) of (CF₃)₂CF -CH₂-CH(CF₃)- CH₂CH=CH₂

Graphical Abstract

TELOMERIZATION OF 3, 3, 3-TRIFLUOROPROP-1-ENE AND FUNCTIONALIZATION OF ITS TELOMERS

Telomerization of 3,3,3-trifluoroprop-1-ene (TFP) with linear (n-C₆F₁₃I) or branched [(CF₃)₂CFI] perfluoroalkyl iodides led to **A**,**n** telomers which were chemically

changed into their allyl derivatives, as follows:

