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ON ORIENTED LABELLING PARAMETERS

We introduce two notions, (i) L(p, q) labelling for oriented graphs and (ii) oriented L(p, q) labelling, to explore frequency assignment problem under half-duplex setting and compute bounds of oriented labelling of special classes of graphs: trees, bipartite graphs and planar graphs. More over we prove that the span of the L(p, 1) labelling for oriented graphs is bounded by l �/ J + p!l.

*This work has been done during a visit of the third author at LaBRI. This visit was sponsored by the french ministry of education and research. that all internal vertices have both in-degree and out-degree one is called an oriented path. The length of a shortest oriented path joining two vertices x, y in an oriented graph is called oriented distance between x and y. The girth

Introduction

The frequency assignment problem (FAP) arises in wireless communication systems. There are several models based on genetic algorithms, neural net works, constrained programming and combinatorial enumeration to explore and optimize different features of FAP such as available frequencies and lim iting interference among radio signals. In 1970, Metzger [START_REF] Metzger | Spectrum management technique[END_REF] introduced graph coloring techniques as a tool to optimize the frequency spectrum used in FAP. Motivated by FAP, Hale 11 developed the concept of T-coloring and it lead to many indepth graph theoretical results. A common feature of all these graph theoretical models of FAP is that they assume communica tion is viable in both direction ( duplex) between two radio trasmitters and hence model FAP as a non-oriented graph. This is far away from reality. In fact, Aardal et al emphasised the importance of "direction/orientation" of transmission in their recent survey (for details see Ref. 1 page 4) on FAP.

In this paper, we explore FAP under half-duplex setting (i.e., there are radio transimitters in a network in which at most one way transimission is effective between any two of them). Hence FAP can be modeled as an oriented multi graph. As a preliminary step, we focus on oriented simple graphs.

Oriented Vertex Partitioning Problems

The partitioning of the vertex set of a non-oriented graph into minimum number of subsets in which each subset possesses a special property is a fundamental graph theory problem with many applications. For example: vertex coloring, star (vertex) coloring and clique cover problem. We sug gest a general frame work to incorporate "orientation" into various vertex partitioning problems. Two subsets A, B of the vertex set of an oriented graph is called one way oriented if all edges with one end vertex in A and other in B are oriented from A (respectively B) to B (respectively A).

Oriented vertex partitioning problem: Partition the vertex set of an ori ented graph into minimum number of pairwise one way oriented subsets in which each set possesses a special property. Oriented coloring is a well known oriented vertex partitioning problem. 17 The least integer k in which 6 has k-oriented coloring is called the oriented chromatic number :x( 6) of 6. The oriented chromatic number x( G) of a non-oriented graph G is defined as max {:x( 6) : 6 is an orientation of G}.

Note that the condition (i) of oriented coloring ensures that adjacent vertices do not belong to same color class. The condition (ii) guarantees that any two color classes preserve one way oriented property in an oriented graph. Moreover, x(G)::; :x(G) where x(G) denotes the chromatic number of G. Since x(K n , n ) = 2n, x(G) has no upper bound as a function of x(G).

Raspaud and Sopena [START_REF] Raspaud | Good and semi-strong colorings of oriented planar graphs[END_REF] proved that the oriented chromatic number of a planar graph is at most 80.

A suggestion of Roberts to distinguish close and very close transmitters in a wireless communication system led Griggs and Yeh 10 to propose a variation of FAP as labelling the vertices of a non-oriented graph with a condition at a distance two (known as L(2, 1)-labelling). Georges and Mauro 8 generalized this as follows:

L(p, q)-Labelling: Let G = (V, E) be a non-oriented graph and p, q be two positive integers. A map L : V -{O, 1, ... , k} is called a k-L(p, q) labelling if it satisfies the following.

(i) For any edge xy EE, IL(x) -L(y)I � p. (ii) For any pair of vertices x, y at a distance 2, IL(x) -L(y)I � q.

The span, A p ,q( G), of G is defined as min { k : G has a k-L(p, q) labelling}. For convenience, we prefer >.P( G) to A p ,l ( G).

We cite a few known results in L(p, q)-labelling problems.

(1) L(2, 1)-labelling problem is NP-complete. [START_REF] Griggs | Labelling graphs with a condition at a distance two[END_REF] (2) For a tree T with maximum degree�, � + 1 S >.2 ( T ) s � + 2. 10

(3) For a graph G with maximum degree 6, >. p (G) :::; 6 2 + (p -1)6 -2. 9

Two Oriented Variations of L(p, q)-Labelling

In this section, we extend L(p, q)-labelling to oriented graphs and propose a new oriented vertex partitioning problem.

L(p, q)-Labelling for oriented graphs: Let G = (V, A) be an oriented graph and p, q be two positive integers. A map L : V ---+ {O, 1, ... , k} is called a k-L(p, q)-labelling of G if it satisfies the following.

(i) For any edge xy EA, /L (x) -L (y) / 2: p. (ii) For any pair ofvertices x, y at an oriented distance 2, /L(x)-L(y)/ 2'. q.

The span, >.�,q(G), of G is defined as min {k : G has a k-L(p,q) labelling}. The span of a non-oriented graph G, >.�,q(G), is defined as max {>.� , q(G) : G is an orientation of G}. For convenience (when q = 1), we denote >.�, 1 ( G) = >.� ( G).

This notion is already studied by Chang et al. [START_REF] Chang | Distance-two labelings of digraphs[END_REF] They give interest ing bounds for the span of oriented graphs with a specified longest dipath length.

Oriented L(p, q)-Labelling: Let G = (V, A) be an oriented graph and p be a positive integer. A map l : V ---+ {O, 1, . . . , k} is called a k-oriented L(p, q)-labelling if it satisfies the following.

(i) For any edge xy EA, /l(x) -l (y)/ 2: p. (ii) For any pair of vertices x, y at an oriented distance 2, /l(x)-l(y)/ 2: q.

(iii) There are no two edges xy, uv such that l(x) = l(v) and l(y) = l(u).

The span, x p , q ( G) ' of G is defined as min { k ; G has a k-oriented L(p, q ) labelling}. The span of a non-oriented graph G, X p ,q(G), is defined as max { x p , q ( G) : C is an orientation of G}. For convenience ( when q = 1), we denote x p ,1( G) = X p (G).

Remarks: There is a distinction between the L(p, q)-labelling of ori ented graphs and the oriented L(p, q)-labelling. Note that any two oriented L(p, q)-labelling color classes (i.e. set of vertices with same label) are one way oriented. But L(p, q)-labelling doesn ' t guarantee one way orientedness of its color classes. A pair of color classes in a L(p, q)-labelling can be viewed as a union of two ( disconnected) pairs of one way oriented sets (see Fig. 1). Hence, an oriented L(p, q)-labelling of an oriented graph C is also a L(p, q) labelling of G. The graph fi in Fig. 1, with >.f(H) = 3 and X1(H) = 4, shows that the converse is not true. labelling is a generalization of oriented coloring. In particular, X 1 ( G) =

x(G)-1 (we do allow ' O' as a label). Let Io, Ii, .. . , I x -i be a set oforiented color classes of G. We produce a (x( G) -1 )p-oriented L(p, p )-labelling of G by assigning the label jp to each vertex in the set I j for O ::::; j ::; x( G) -1.

It is easy to see that if there is a homomophism h : G ----> ii' then x p ,q ( G) ::; X p ,q(H). Indeed, given a k-oriented L(p, q)-labelling l H of H, we define a k-oriented L(p, q)-labelling l a of G, by l a (v) = l H (h(v)), for all v E V a .

We also note that a L(p, q)-labelling of a non-oriented graph G is a L(p, q) labelling of any orientation of G. By definition, an oriented L(p, q)-labelling of an oriented graph is also its L(p, 1)-labelling. These remarks prove the following lemma.

Lemma 1: Let G be a non-oriented graph. Then

(i) F or p ;::: q > 0, x(G) -1::::; X r, q(G) ::::; (x(G) -l)p. (ii) >.�,q(G) ::; >. p ,q(G).

(iii) >.�,q(G)::; X p ,q(G).

There is no trivial relation between A p , q and X p , q• Indeed, the graphs H 1 and H2 depicted in Fig. 2 are such that A p , q(H 1 ) < X p , q(H1) and A p , q(H2) > X p ,q(H2). 

Oriented L(p, q)-Labelling for Trees

A star, S, is a tree with a special vertex x and all other vertices of S are adjacent to x. A double star, D, is a tree with a special pair of adjacent vertices x, y and all other vertices of D are adjacent to either x or y (see Fig. 3). We denote P k the paths with k vertices. Any tree T # Ki, K2 has a P3 as a subgraph. A tree T (# K 1 , K 2 ) with no A as a subgraph is either a star or a double star. The minimal span for the oriented L(p, q)-labelling of an unoriented tree T is easily computable with the following theorem. The two first cases are trivial. We begin by proving that in the two last cases the span cannot be decreased. Since J:. p ,q ( H) ::; X p ,q ( G) if H is a subgraph of G, we just have to note that J:. p ,q(P3) = p + q and J:. p ,q(P 5 ) = p + 2q. Now we show how to label the trees.

Case 1: Let T be a star with a special vertex x. We construct an oriented L(p, q)-labelling of T' by assigning Oto the special vertex x, p to all vertices of Ni(x), and p + q to all vertices of N ji (x).

Case 2: Let T be a double star with special vertices x, y. Without loss of generality, assume that xy E E(H). We construct an oriented L(p, q)

labelling of ii by assigning O to all vertices of Nji (y), q to all vertices of Ni (y), p to all vertices of N ji ( x), and p + q to all vertices of Ni ( x). 4,u,v,w, and w are vertices of C4 and 0 , p + q, q, p + 2q are their respective labels in a p + 2q oriented L(p, q)-labelling of C 4 . First, we pick an arbitaray vertex a of T and map a to u (i.e. , f(a) = u). Then, we map the vertices of N±(a) (respectively N-: (a)) into N-t:. (u) = {v} (respectively N--: (u) = {x}). We

T C4 C4
continue this process until all vertices of T are mapped into V(C 4 ). 

Oriented L(p, 1)-Labelling of Bipartite Graphs

Oriented L(p, 1)-Labelling and the Acyclic Chromatic

Number

In this section, we supply an upper bound of .\ P of planar graphs based on a method developed by Alon, Marshall, Nesetril, Raspaud and Sopena. In fact, they found a homorphism from any oriented k-acyclic graph to a special graph, IVh.

Special graph Nh : Let Nh be an oriented graph with vertex set V(M k ) = { (i, a1 , a2, . . . , ai -1 , ai+1, . . . , a k ) : 1 ::; i ::; k and aj E {O, 1} }. The edge set of M k is defined as follows. Let x = (i, a1 , a2, . . -, a i -l , a i +1, . . , , a k ) and y = ( l, b1, b2, . . . , b 1 -1 , bz+1, . . . , b k ), 1 ::; i < l S k, be two vertices. Then (i)

-----t -----::::

- -----t - -=------ - xy E E(M k ) if azb i E E(T) and (ii) yx E E(M k ) if b i az E E(T) (see F ig. 5 for i').
Theorem 2: [START_REF] Nesetfil | Colored homomorphisms of colored mixed graphs[END_REF] Let G be an orientation of a k-acyclic graph G. Then there exists a homomorphism from G to M k , Proof: Let G be an orientation of G. By Theorem 2, there exists a homo morphism from G to

M k . Then >-v ( G) � >-v (M k ) -Since G is an arbitrary ori entation of G, >-v (G) � >-v (M k ) -By Lemma 3, >-v(G) � k(2 k -1 -1)+p(k-l) .

□

A well-known result of Borodin 3 states that any planar graph is 5-acyclic colorable. In Ref. 5, the authors proved that planar graphs with girth at least 5 ( resp. 7) are 4-acyclic colorable ( resp. 3-acyclic colorable). Moreover it is well known that graphs with treewidth k are (k + 1)-acyclic colorable. So we have the following corollary. If G is a planar graph with girth at least 5, then >-v ( G) � 28 + 3p. If G is a planar graph with girth at least 7, then >-v ( G) � 9 + 2p.

If G is a graph with treewidth k, then >-v(G) �

(k + 1) (2 k -1) + pk.

L(p, q)-Labelling of Oriented Graphs

In Ref. 10, the authors conjectured that for an unoriented graph G, >.2,1 (G) � � 2 , where � is the maximum degree of G. Much work [START_REF] Chang | On L(d, 1) labelling of graphs[END_REF][START_REF] Skrekovski | A theorem about the channel assignement problem[END_REF][START_REF] Gongalves | On the L(d, 1)-labelling of graphs[END_REF] have been done on bounding A p ,q by a function of � -Here, we prove a similar result for oriented graphs.

Theorem 4: For every directed graph G = (V, A) with maximal degree 0 l li. E) is an unoritented graph with the same vertex set.

2 J �, >. p , l (G) S 2 + P � - In a directed graph G = (V, A) , u is a 2-neighbor of v if there is a directed 2-path between u and v. Given a directed graph G = (V, A), its 2-paths graph G 2 = (V,
There is an edge uv in this graph if and only if there is a directed 2-path in G linking u and v. The next lemma gives an interesting property of these graphs.

Lemma 4: For every directed graph G = (V, A) with maximal degree �, its 2-paths graph G 2 = (V, E) is l �/ j -degenerate.

Proof: We prove that for any S � V, the induced graph G 2 [S] has minimal degree at most l 1 2 j . We do so, using a discharging method.

Let the initial charge 'Y(v) of the vertices be 1 2

if v E S, or O if v ff. S.

The total charge of the graph is 1 2

ISi. Then we proceed to the following discharging step, every vertex of S gives the charge % to each of its neigh bors. We denote 'Y* the new charge of the vertices of G. Note that a vertex v with k neighbors in S has charge 'Y* ( v) at least k f . Now consider the number of oriented 2-paths going through a vertex v E V(G) and linking two vertices in S. Let us denote this number 7r s(v).

Note that for a vertex v with k neighbors in S, we have that 7rs (v) S max{ i x j, i + j = k} = l k : j , where i and j are respectively the number of incoming and outgoing arcs.

Since k � � we have that 7rs (v) � l k : j � k f � ,*Jv) . This implies that the number of edges in G 

• 18 3.

 18 Notation and TerminologyIn this paper, we consider only finite (oriented and non-oriented) simple + ---graphs. As usual, N (v) = {u : vu E E(G)} and N-(v) = {u : uv E E ( G)}.A proper k-coloring of the vertices of a non-oriented graph G is an assignement f of integers ( or labels), using at most k colors ( or labels), to the vertices of G such that f ( u) =f f ( v) if the vertices u en v are adjacent in G.

Fig. 1 .

 1 Fig. 1. Oriented color classes and the graph ii.
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  Let H be a subgraph of G. Then >.;(H) < >.;(G). Oriented L(p, q)

Fig. 2 .

 2 Fig. 2. The graphs H1 and H2.

Fig. 3 .

 3 Fig. 3. Star and Double Star.
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Fig. 4 .

 4 Fig. 4. The graph ck

Lemma 2 :

 2 For a complete bipartite graph K m ,n (m, n 2 1), A; (K m ,n) S m + n + p -2.Proof: Let V (K m ,n) = A U B where A = {u1, u2, . . . , u m } and B = { v1 , v2, . . . , v n }, We construct an oriented (m + n + p -2)-labelling of an arbitrary orientation of K m ,n by a function l : V(K m ,n) ---+ {O, 1, . . . , m + n + p -2} defined as l ( ui) = i -1 for 1 ::; i ::; m and l ( v j) = m + j + p -2 for 1 S j S n. Hence A; (K m ,n) S m + n + p -2.DIt is not hard to show that the upper bound in the Lemma is tight if m = n, i.e. , A; (Kn , n ) = 2n + p -2. Note that every bipartite graph is a subgraph of a complete bipartite graph. Hence, for a bipartite graph G, .\ ; ( c ) s I V(G)I + P-2. 

0 0Fig. 5 . 1 -k

 051 Fig. 5. The graph T.

Corollary 1 :

 1 If G is a planar graph, then >-v (G)� 75 + 4p.

2 I

 2 2 [S] , L v E V (G ) 7rs (v), is at most ½ L v E V ( G ) 'Y* (v).Since the discharging does not change the total charge of the graph, wehave that L v E V (G ) 7rs (v) S ½ L v E V ( G ) 'Y(v) = ½ x 1 2ISi. So we have that the sum of the degrees in G 2 [S] is at most 1 Si, which implies that there is a vertex with degree at most l 1 2j in G 2 [S]. □

Oriented coloring 17 , 18 : Let 6 = (V, A) be

  The chromatic number of a graph G is the smallest integer k such that G has a proper k-coloring. A proper k-coloring of the vertices of a non oriented graph is called acyclic if the subgraph induced by the vertices of any two color classes has no cycle. The acyclic chromatic number of a graph

	of a non-oriented graph G is the length of its smallest cycle. Let 6 = (V, A) and ii = (U, B) be two oriented graphs. A homomorphism from 6 to ii is a map f : V -U which preserves adjacency, that is for any arc xy E A, the corresponding arc f ( x) f (y) E B.
	an oriented graph. A map
	c: V -{1, 2, ... , k} is called a k-oriented coloring of 6 if it satisfies the
	following conditions:
	(i) For any edge of 6, xy, c(x) -=/-c(y). (ii) There are no two edges of 6, xy, UV such that c( x) = c( v) and c(y) = c(u).
	G is the smallest integer k such that G has an acyclic k-coloring. We will say that a graph G is k-acyclic if its acyclic chromatic number is at most k.
	The length of the shortest path joining two vertices x, y in a non-oriented graph is called distance between x and y. A path with an orientation such

  2• 16 • 1 8

Proof of Theorem 4. This lemma implies that there is an order v 1 , v2 , . • • , Vn on the vertices of G = (V, A), such that for every i :::; n, the vertex Vi has at most l 1 2 j 2-neighbors V j , with j < i. Given this order on the vertices, we consider the following algorithm: i = 0 ; while there are unlabelled vertices do for V j = V1 to Vn do if V j is unlabelled and V j can be labelled i then I let Vj be labelled i; end end i = i + 1; end Now consider the last vertex being labelled by this algorithm, say v with label k. What could prevent it to be labelled with the value x < k, when the algorithm considered the possibility (i.e. when i = x and Vj = v)? It is either a neighbor of v that was already labelled with the label l, with xp < l :::; x, or a 2-neighbor of v that was labelled x. Note that if a 2neighbor of v is labelled x before the possibility was offered to v, it implies that this 2-neighbor appears before v in the order. So the 2-neighbors of v posterior to v in the order cannot prohibit a value to v. Since v has at most � neighbors and at most l 1 2 j 2-neighbors appearing before v in the order, at most l 1 2 j + p� values were refused to v. This implies that k :::; l 1 2 J + P�- □ Note that this implies that the algorithm labels the graph in time 0(� 2 n).

Conclusion

In this article, we have explored the role of "orientation" in FAP by extend ing L(p, q)-labelling to oriented graphs and introducing oriented L(p, q) labelling. We have computed upper bounds of oriented L(p, q)-labelling of trees, bipartite graphs and planar graphs. Note that bounds of L(p, q) labelling of a tree depends on its maximum degree but bounds of oriented

L ( p, q)-labelling depends on its structure (see Theorem 1 ) . It indicates that an oriented version of labelling may provide more structrual information of concerned network of FAP than its non-oriented version.