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Abstract—This paper explores the use of Interval Decision Di-
agrams (IDDs) as the central structure of a firewall packet filter-
ing mechanism. This is done by first relating the packet filtering
problem to predicate logic, then implementing a prototype which
is used in an empirical evaluation. The main benefits of the IDD
structure are that it provides access to boolean algebra over filters,
efficient classification time, and potentially a compact representa-
tion. Results from the empirical evaluation shows that IDDs are
scalable in terms of memory usage: a 50,000 rule filter requires
only 3MB of memory, and efficient for packet classification: it is
able to handle more rules than the schemes it was compared to
without causing a degradation in performance.

Keywords: Packet Classification, Firewall, Traffic Filtering, Deci-
sion Diagrams

I. INTRODUCTION

The Internet firewall is one of the key technologies used by
network administrators for controlling access to a network. The
main reason for its success is that the firewall allows filtering
of traffic entering and exiting the protected network at a sin-
gle centralized point. A central mechanism of the firewall is
the packet filter, which decides what packets to pass through
the firewall using a filter specification. Filter specification con-
sists of a set of rules describing which policy to apply on which
packet based on the values in the packet header fields. In this
paper we focus on the packet filtering mechanism, and in par-
ticular on how packet filters can be improved in terms of per-
formance.

The primary aspect of packet filtering is the issue of packet
classification, which has been subject of much study in recent
time, for examples see [1], [2], [3], [4], [5]. The reason being
that the ability to classify packets plays a central role in fire-
walls and routing, for instance.

The requirements of the packet classification scheme are
quite different from one application to the other. Issues mainly
range from classification speed, size of the representation of the
ruleset and complexity of the algorithm building the representa-
tion of the rule set. One example is packet forwarding on Inter-
net routers, where it is essential that the classification scheme
can handle frequent updates of the rule set. Firewalls, on the
other hand, may classify packets using more header fields, than
the router, but updates occur less frequently.

The main contributions of the work presented in this paper is
a packet classification scheme, that is well suited for use in fire-
walls, and an empirical evaluation through a prototype imple-
mentation. This paper does not address issues such as stateful
inspection and application level filters.

The central idea of our packet classification scheme is to
transform a traditional rule based representation of a packet
filter into a boolean expression represented as a decision di-
agram, similar to the approach presented in [6]. However,
rather than using the widely known Boolean Decision Diagrams
(BDDs) [7] as in [6], we use the less explored Interval Decision
Diagrams (IDDs) [8]. IDDs operate on integer ranges rather
than booleans thus providing the access to efficient classifica-
tion of packets on generic CPUs.

The main characteristics of the IDD based scheme can be
summarized as follows:

• Access to boolean algebra over filters. This simplifies
the description of algorithms used in the scheme because
we can use well understood operations like comparison,
union and intersection. For instance, as we shall see later,
describing the transformation between a filter specifica-
tion and the actual representation can be expressed using
boolean algebra over filters.

• Compact representation and scalability. Decision diagram
structures are optimized in space independently of the
number header fields used in the specification.

• Efficient classification complexity. Namely, O(m · log r),
where m is the number of fields and r is the maximum
range of the fields.

• Static representation of filters. The algorithm for build-
ing the representation has polynomial complexity, there-
fore updating the rule set might not be straight forward.

In the following, we first describe background and related
work. Section III describes our model of packet filtering. Sec-
tion IV continues by introducing IDDs and showing how we can
represent filters using IDDs. Section V describes the overall ar-
chitecture of a firewall using decision diagram based packet fil-
ters. Followed by an empirical evaluation where the scheme is
studied under a worst case scenario. Finally, section VII states
conclusions and describe future work.



II. RELATED WORK

Several papers propose algorithms for packets classification
on multiple fields for generic CPUs [9], [3], [10], [11].

Begel et. al [9] proposes a fully general packet filter frame-
work. Filters are specified in a declarative predicate language,
and they are compiled into a flow graph, and then optimized be-
fore being executed on a virtual machine model. Optimization
is performed on the flow-graph by using redundant predicate
elimination for removing redundancies and rearranging non-
optimal code sequences. The evaluation of the tool shows good
performance. However, only small test cases are applied.

In [11], Baboescu and Varghese describe a scheme called Ag-
gregate Bit Vector (ABV). The aim of the scheme is to pro-
vide scalable packet classification (100,000 rules) to handle
large filters while also providing efficient classification times
on generic CPUs. The scheme is an extension of the bit vector
search algorithm (BV) described in [1].

In [6], Hazelhurst presents the idea of transforming firewall
packet filters into boolean expressions that are represented as
BDDs. The paper describes an algorithm for transforming a
firewall filter specified in a Cisco-like access list language into
a BDD, including the handling of issues with overlapping rules.
The main focus of BDDs in this paper is a tool that can analyze
and test filters. A later paper by Hazelhurst et. al [12] focus on
using the BDD structures for performing packet classification.
The conclusion is that BDDs can improve the lookup latency on
systems using dedicated hardware such as FPGAs, while they
do not perform well on generic CPUs. In [13], Attar and Hazel-
hurst use N-ary decision diagrams for improving the lookup
performance. The experimental results show that the lookup
time can be significantly improved by using this method, how-
ever at the price of increased memory usage.

More recently, in [5], Rovniagin and Wool describe an algo-
rithm called Geometric Efficient Matching (GEM). Classifying
packets with GEM has a time complexity of O(m·log n), where
m is the number of fields and n is the number of rules. Unfor-
tunately, the worst case space complexity is O(n4). Indeed, the
authors manage to show nice empirical results with this tech-
nique. In [4], decision trees are widely used to classify packets.
The authors introduce a new technique to split the domain of
possible values into nearly optimum division.

III. PACKET FILTERING

The problem of packet filtering is to match a packet header
with a policy. This decision is based only on the header of the
current examined packet and a set of rules, also called ’filter’.

Usually, the filters are defined as an ordered list of indepen-
dent rules. Each rule specify both a set of headers and what
policy to apply to the packet. For example, in a Cisco-like syn-
tax, one can define the rule set represented on Figure 1.

access-list 108 permit tcp any any eq www
access-list 108 deny tcp any any
access-list 108 deny ip any any

Fig. 1. Example of a filter in a Cisco-like syntax.

The first rule applies the policy "permit" to any TCP packet
when the destination port is equal to "www" (80), if the in-
coming packet does not match the first rule, it is compared
to the second one, which states that the filter apply the policy
"deny" to any TCP packet. If, again, the incoming packet is
not matched with this rule, it is compared to the last one which
apply the policy "deny" to all IP packets.

The current approach is to use this filter specification strait
forward. Indeed, this representation of a filter implies that the
efficiency of the packet classification will be strongly related to
the number of rules in the list.

The worst case complexity of such algorithm is O(n · m),
with n the number of rules, m the number of fields to check in
the header. This complexity analysis show that the number of
rules has a great impact on the performance of the packet filter.

In this section, we consider a filter as a predicate logic for-
mula on integers. This way of specifying a filter define an alge-
bra on filters, in other words, considering filters as logic formu-
las, allows us to compare them and to compute the intersection
or the union of two (or more) filters. Then, by using this alge-
bra, we show that we have the same expressive power than the
ordered rule-set representation. The algorithm presented here
has already been described in [6], but neither formal scheme,
nor proof or evidence that all rule sets can be expressed by this
mean was given.

A. Specifying Filters as First-Order Logic Formula

Specifying filters as a predicate logic formula on integer vari-
ables is immediate. In order to do it right, we introduce a formal
framework of the problem to be able to prove the properties we
are interested in.

Let H be the finite set of all the possible headers, and let
Π = {accept, drop} be the set of the policies. A rule is given
by a set of headers (η) and a policy (π):

r = (η, π), with η ⊆ H and π ∈ Π (1)

For example, a rule which drops packets that have the field
’source IP’ set to 192.134.*.* and use the protocol TCP would
be written:

r = ((sip = 192.134. ∗ .∗) ∧ (proto = TCP ),drop) (2)

We define a filter as a set of rules over H × Π:

ϕ = ((η1, πk1), (η2, πk2), . . . , (ηn, πkn)), (3)

with πki ∈ Π and ηi ∈ H, ∀i ≤ n.

By extension, we define a filter ϕ = (ηi, πki)i≤n as a func-
tion that maps any header h to accept and/or drop. Formally,
the function ϕ : H → {accept, drop, {accept, drop}} is de-
fined such that:

ϕ(h) = {πki ∈ Π/h ∈ ηi} (4)

We say that two filters ϕ and ϕ′ are equivalent iff for all
h ∈ H , ϕ(h) = ϕ′(h). And we note ϕ ≡ ϕ′. As filters are
logic formulas, we can easily define the operators ¬ (negation),
which switch accept to drop and vice-versa, ∨ (OR) which



computes the union of two filters (what is accepted by one of
the two filters is mapped to accept), and ∧ (AND) which com-
pute the intersection of two filters (what is accepted by both is
mapped to accept). Then, we define a normal form filter as a
filter with only two rules, one with the policy accept and the
other one with drop. And, finally, we call a unambiguous filter,
a filter in which the set of headers (ηi)i≤n are a partition of H .
A partition is defined as follow:

Definition 1: Let H be a set and (ηi)i≤n such that, for all
i ≤ n, ηi ⊆ H . Then, (ηi)i≤n is a partition of H iff:

•
⋃

i≤n ηi = H ,
• ηi ∩ ηj = ∅, ∀i, j ≤ n with i �= j.
An ambiguous filter might lead to some confusion if a packet

header can be classified both in accept and drop. In an ordered
filter ambiguity is avoided by letting the order prioritize among
overlapping rules.

B. Ordered Filters vs Predicate Logic Filters

In order to prove the equivalence between an ordered filter
and a predicate filter, we first have to define an ordered filter.

Let ψ an ordered filter iff ψ = (ηi, πki)i≤n with ηi ⊂ H ,
πki ∈ Π for all i ≤ n and we define an implicit order � on the
rules such that:

(ηi, πi) � (ηj , πj) ⇔ i > j (5)

By extension, we call an ordered filter ψ = (ηi, πki)i≤n a
function that maps one header to one policy. Formally, the func-
tion ψ : H → Π is defined such that:

ψ(h) = {πki ∈ Π/h ∈ ηi and h �∈ ηj , ∀j < i} (6)

We now state that for any ordered filter ψ we can build an
equivalent unambiguous filter ϕ′.

Proposition 1: For any ordered filter ψ = (ηi, πki)i≤n, we
can build a filter ϕ = (η′

i, π
′
ki

)i≤n s.t. ψ and ϕ are equivalent.
Proof: The proof is straight forward from the definitions

and the following construction of ϕ:
• π′

ki
= πki , ∀i ≤ n,

• η′
i = ηi \

⋃
j<i ηj , ∀i ≤ n.

So, ϕ′ is given by:

ϕ = ((η1, πi1), (η2 \ {η1}, πi2),
(η3 \ {η1 ∪ η2}, πi3),
. . . ,

(ηk \ {η1 ∪ · · · ∪ ηk−1}, πik
))

By construction of ϕ, we can see that this filter is unambigu-
ous and semantically equivalent to ψ.

Therefore, from proposition 1, we deduce that our formalism
is, at least, as expressive as the current method.

In conclusion, we managed to define filters as predicate logic
formulas and introduce a basic algebra to manipulate them. Fi-
nally, we proved that specifying a rule-set as an ordered-list or
a predicate logic formula is equivalent. We even provide an al-
gorithm to derive a predicate logic specification of a filter from
any ordered list. In the next section we will describe an efficient
data-structure for handling predicate logic formulas on integers.

IV. INTERVAL DECISION DIAGRAMS

As pointed out in the previous section, the packet filtering
problem is equivalent to the evaluation of a predicate logic for-
mula. Indeed, one of the most efficient data-structure, both in
matter of space storage and computational time, is decision dia-
grams. The most famous of these are BDDs [14]. Using such a
data-structure to represent filters have been already investigated
by Hazelhurst in [13], [6]. Although BDDs are extremely effi-
cient for the hardware side, they are ineffective for the software
side. Indeed, one main problem in such approach is that BDDs
are based on boolean variables only. Therefore, it is manda-
tory to consider one bit at a time. As a generic CPU is used to
consider one word of several bits in one operation, there is an
overhead on extracting bits from words. Moreover, extracting
each bit requires specific encapsulation. And cause some over-
head in the memory space usage to store these structures. In
order to avoid this drawback, we chose to focus on another de-
cision diagram structure called interval decision diagram (IDD,
[8]). This structure allows us to perform classification on inte-
ger numbers within a domain (finite of infinite).

A. Structure of an Interval Decision Diagrams

An IDD is a directed acyclic graph (DAG) structure in which
each node correspond to a test on an integer variable. Each
out going edge from a node is associated to an interval within
the domain of the variable attached to the node. Each edge is
linked either to another node or to a boolean terminal (True or
False). More formally, an IDD node is given by:

Definition 2: Let x be an integer variable defined on the do-
main Dx ⊆ N and t a predicate logic formula on integer vari-
ables. We call t an IDD node iff one of the following hold:

• t ∈ {True, False},
• t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ . . . (x ∈ Ik ∧ tk).

With (Ii)i≤k a partition of Dx and (ti)i≤k a set of IDD nodes.
We note: t = x → (I0, t0)(I1, t1) . . . (In, tk).

We call an IDD root, an IDD node without predecessor. We
say that a set of IDD nodes (ti)i≤n is consistent if there is only
one root. Moreover, if t is an IDD node, let var(t) be the func-
tion which gives the integer variable tested on this node:

var(t) =
{

x, if t = x → (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ {True, False}

Finally, let I = ((ti)i≤n,�) be an IDD iff (ti)i≤n is a consis-
tent set of IDD nodes and � is an order on the integer variables
s.t. ∀t ∈ (ti)i≤n with t = x → (I0, t

′
0)(I1, t

′
1) . . . (Ik, t′k), we

have x � var(t′i) for each i ≤ k.
For example, if we consider the logic formula:

(x = 0 ∧ y ≤ 3) ∨ (1 ≤ x ≤ 6 ∧ z ≤ 6) ∨ (x = 7 ∧ y = 1)

The corresponding IDD would be (see also Figure 2):

t0 = x → ({0}, t00) ([1, 6], t000) ({7}, t01)
t00 = y → ([0, 3], T ) ([4, 7], F )
t01 = y → ({0}, F ) ({1}, T ) ([2, 7], F )

t000 = z → ([0, 6], T ) ({7}, F )
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Fig. 2. Example of an Interval Decision Diagram (IDD).

IDD structures can easily be used for describing a filter. In
Figure 3, we represent a very simple filter as an IDD. This ex-
ample is testing the ’Source IP’ variable that we split into four
sub-variables (sipi) which are easier to test. Note that these
IDDs do not contain any non-relevant tests and are optimum in
term of operations, if we evaluate the variables in this order.

sip1

sip2

sip3 sip3

accept

{192}

{132} {164}

[133,163]

[13,255] [0,156]

Ruleset

accept: 192.132.13.*–192.164.156.*

drop: others

Fig. 3. IDD representing a filtering rule.

In Figure 3, drop is assumed to be ¬accept, as we handle
only boolean terminals. It does not appear because it is assumed
that an edge which is not represented leads, by default, to drop.

B. Complexity of Packets Classification

As you can see the classification of a packet is done by sim-
ply traversing the IDD. From a theoretical point of view, it
means that this algorithm has a complexity of O(m · log r),
where m is the number of fields and r is the maximum range
of the fields (or the maximum number of intervals that can be
in a field). This worst case complexity, when compared to the
classical classification scheme (O(n · m) with n the number of
rules), appears to be independent to the number of rules. In a
matter of facts the number of rules and the number of intervals
are related: the more rules you have, the more complex your
IDD will be and, therefore, the more intervals you will get.
However, this algorithm reduce the complexity from a linear
growth to a logarithmic growth1.

It is also interesting to relate our contribution with [5]. In this
paper, Rovniagin and Wool describe an algorithm classifying
packets with a time complexity of O(m · log n). Their results

1Note that we are assuming the fact that each new rule added will produce
new intervals, which is our worst case behavior.

and ours are fairly similar in term of time complexity, but our
worst case time complexity get rid of the dependance of the
number of rules. Our scheme is tight to the range of each field
and do not depend of the number of rules in the filter.

C. Boolean Operations on Interval Decision Diagrams

As for logic formulas, we can perform all the usual logical
operations on IDDs, as negation (¬), and (∧), or (∨), equiva-
lence (≡) and so on. The advantage of this representation is that
we can now manipulate the filters through the boolean algebra.
All these operators allows us to build complex operations on
filters, e.g. the translation of an ordered rule-set into an normal
form filter. Some basic examples are given in Figures 4 and 5.
Figure 4 represents two formulas ϕ1 and ϕ2. Figure 5 repre-
sents the result of ¬ϕ1, ϕ1∧ϕ2 and ϕ1∨ϕ2. The edges labeled
by ∗ denote the complement of all the other edges. For exam-
ple, if a node has four edges labeled [0, 2], {9},[12, 15], ∗ and
has a range of [0, 15], then ∗ stand for [3, 8] and [10, 11].

x

y

F T

x

z

F T

[10, 15]
*

* [0, 9]

*
[0, 11]

* {4}

ϕ1 = (x > 9) ∧ (y < 10) ϕ2 = (x < 12) ∨ (z = 4)

Fig. 4. Examples of Interval Decision Diagrams.
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[0, 9]
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ϕ1∨ϕ2
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[10, 15]
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* [0, 9]

¬ϕ1

Fig. 5. Examples of boolean operations on IDDs.

D. Optimization of Interval Decision Diagrams

In Figure 5, the result of ∧ and ∨ is obviously not a strait
combination of ϕ1 and ϕ2. Indeed, optimizations have been
performed on the structure in order to prune redundant nodes
and sub-trees. The optimization algorithm is quite simple
(see [8]). It is performed by listing each node of the IDD and
applying the following optimization rules:

1) Interval Merging : If two consecutive intervals of a par-
tition lead to the same node, they are merged into one.

2) Node Pruning: If a node has only one outgoing edge,
the node is pruned and the ingoing edges are linked to the
node pointed by the previous unique outgoing edge.

3) Subtrees Merging: If two nodes are root of two identical
subtrees, one subtree is pruned and all the ingoing edges
coming to its root are linked to the root of the other.



When all the nodes have been processed, the input IDD to the
optimization function is compared to the resulting IDD. If they
are equal, a fixed-point have been reached and the optimization
process terminates. If not, it takes the resulting IDD as the input
and it performs the optimization function again.

This optimization algorithm is proved to always terminate (as
all the rules are pruning an element and none is adding one). It
also guaranty, both, that the number of nodes and the depth of
the IDD will be minimal for this given order2 [8].

In conclusion, we have presented a data-structure (IDDs) to
handle with our subset of predicate logic on integer variables,
we described an algorithm to optimize in size and depth such
data-structures.

V. ARCHITECTURE OF THE PROTOTYPE

The architecture of the packet filtering prototype is shown
in Figure 6. The three main components are: the filter, the
compiler, and the packet classifier. The flow is similar to that
of writing and executing programs using a compiler: A filter
is specified using a Cisco-like access list language that allows
overlapping rules. A compiler translates the filter to an IDD us-
ing the algorithm specified in Section III-B. The compiled filter
is then uploaded to a kernel space module which then filters
packets according to the specification.

Rule-based
Filter

Specification

Compiler

IDD Packet
Classifier

Kernel Space

Fig. 6. Packet Filter Architecture.

As shown on Figure 6 an actual implementation of the packet
classifier runs in kernel-space and serves as the core classifica-
tion mechanism in a firewall. The majority of kernel space code
consists of initializing the IDD data-structure describing the fil-
tering policy, while the classification algorithm is small. Repre-
senting the IDD use a directed acyclic graph (DAG) structure,
where each partition is sorted and stored in an array, thus allow-
ing fast search of the partition. All partition entries are stored as
32 bit unsigned integers to avoid the overhead of having a com-
parison function for each different bit-ranges used in the IDD.
This gives some overhead for 8 bit and 16 bit fields.

The main strength of this architecture is that the core com-
plexity of the packet filter lies in the compiler that runs in user-
space, while the packet classifier that runs in kernel-space is ex-
tremely simple. However, a consequence of this design is that
the filtering policy is more static because any change requires a
recompilation of the filter. We see it as an advantage since the
syntax of the filter is checked before actually passing it to the
firewall.

2Choosing a different order can sometimes lead to some gain.

VI. EMPIRICAL EVALUATION

The relevance of using the IDD structure for packet filtering
depends on whether performance is competitive with other al-
gorithms for packet filtering. In the following, we describe a set
of experiments that we have conducted in order to evaluate the
scheme. Focus has been on two issues: space requirements and
classification time.

A. Space Requirements of the IDD Structure

The worst case memory requirement of an IDD is exponen-
tial in the depth of the IDD, potentially making it unsuitable for
packet filtering due to lack of scalability. However, by looking
closer at the data stored in the IDD it is quite clear that expo-
nential growth is not a realistic estimate for the actual case. In
fact it is quite easy to identify often occurring intervals. For
instance, the first bits in an IP-address describes the network
address, which in an IDD will be represented as intervals. An-
other example is the protocol field in the IP header, where only
a few different values are used for specifying protocols such as
TCP, UDP, ICMP, and IGMP.

To provide study the growth rate of IDDs in a realistic setting,
we have performed an experiment which allows us to look at
sets that are large and yet realistic. The idea is to build filters
that describe the traffic of a network backbone by letting each
packet header be described by a rule specifying five values: IP
protocol, and source, destination IP and ports. Using backbone
traces from university network, we were able to generate rule
set with sizes ranging from 10-50,000 unique rules. This is
worst case scenario for the IDD based scheme because none of
the rules contain intervals, only specific values.
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Fig. 7. Space requirements as a function of number of rules.

Figure 7 and table I shows the results of the scalability ex-
periments. The graph in figure 7 shows the size of the IDD
when loaded by the packet filtering prototype depending on the
number of rules in the filter. Initially, we see a linear growth
rate of 0.1 per rule, this drops to 0.07 between 0 and 25,000
rules. Finally, between 25,000 and 50,000 rules, the growth rate
drops to 0.055. The effect is caused by new rules that produce
a minimal change of an existing interval. With 50,000 rules the
average size is around 60 bytes per rule. We believe that this
can be minimized by more carefully designing the kernel space



IDD structure. For instance, we could use indexing rather than
pointers when referencing nodes and work on ways to reduce
the redundancy of our structure.

#Rules Time (s) #Nodes #Edges Size (KB)

10 0.01 28 102 2
25 0.03 77 279 4
50 0.11 128 481 7
100 0.44 232 891 14
250 3.44 542 2109 32
500 19.14 998 3952 59
1000 37.72 1884 7544 113
2500 102.1 4289 17493 261
5000 237.0 7678 31880 475
10000 571.4 13420 57417 850
25000 1832 24657 116673 1,696
50000 5221 37416 198754 2,834

TABLE I
IDD RESOURCE REQUIREMENTS (MEASURED ON A 2.6GHZ MACHINE).

As described earlier, the algorithm building the IDDs has a
polynomial complexity. To show the effect of this complexity in
practice, we briefly discuss the compilation times for transform-
ing a rule-based filter to an IDD. The second column in Table I
shows the compile times for filters having sizes ranging from 10
to 50,000 rules. As we can see more realistic filters consisting
of up to 1,000 rules, compiles in less than 40 seconds, which is
acceptable. Larger filters with more than 10,000 rules take un-
acceptably long time to compile. However, we have not made
any systematic attempts to optimize the compilation process in
the current version.

B. Classification time

In this section, we focus on evaluating the IDD based packet
filter by studying the performance of the IDD based scheme
in a near worst case scenario, and compare the measured per-
formance with that of the packet filtering algorithms currently
provided on the Linux platform.

For the experiments we have chosen Linux as our test plat-
form. The main reason for this choice is that Linux already pro-
vides two different packet filtering mechanisms, based on two
different algorithms, and due to the simplicity of implementing
the IDD based scheme as a loadable kernel module.

The two packet filtering schemes provided in Linux are: the
classical packet filtering scheme, Netfilter [15], and a high-
performance scheme called Hipac [16] which has been imple-
mented as a Netfilter module. Netfilter performs a simple linear
evaluation of the rules in the order they are stored until a match-
ing rule is found. Hipac uses a more advanced algorithm based
on the scheme described in [3], [17].

The IDD based packet filtering scheme was implemented as
a loadable kernel module. Access to packets is gained by us-
ing the hooks which a “netfilter enabled” kernel provides, thus
meaning that no changes to the Linux source tree were made
to implement our scheme. In addition to the kernel module, a

user-space tool was written to allow IDDs to be uploaded to ker-
nel memory. The data-structure for storing the IDD is a DAG.
Filtering of packets is done by traversing the IDD from root to
terminal and performing binary search of each partition.

For this evaluation, we are primarily interested in studying
the effect on performance of a firewall with different sizes of
filters and under different traffic loads. Our focus has been on
keeping the experiments as simple as possible, yet allowing us
to get a clear indication of whether the idea of IDD based fire-
walls is worth pursuing.

1) Setup and experimental procedure: Figure 8 shows the
experimental setup. At the core of the network, we have the
firewall which filter traffic arriving from the traffic generators
(TG1-20). The traffic is filtered and accepted traffic is routed
to a sink which simply drops the incoming traffic. All nodes
are connected using two switches: a Cisco Catalyst 2950 and a
Cisco Catalyst 3500XL. The 2950 allows 100Mbps links from
traffic generators to be aggregated onto a 1Gbps link, while the
3500XL switch allows the firewall to be connected to the Cata-
lyst 2950 and the sink. To monitor the performance on the link
without influencing the experiments, we use SPAN port mon-
itoring on the catalyst 3500XL which forwards all traffic on a
specific port toward a monitoring port. A machine with two gi-
gabit interfaces is connected to the SPAN enabled ports allow-
ing us to monitor both input and output traffic of the firewall
being tested.

TG2

TG20

Monitor

Firewall Sink

TG1

100Mbps

1Gbps

Fig. 8. Logical structure of the experimental setup.

Each experiment consists of choosing a filtering scheme
(Netfilter, Hipac, or the IDD based scheme), and uploading a
packet filter to the chosen scheme. A traffic load is then gener-
ated using the header trace matching the installed packet filter.
Packet filters and header traces were generated using a method
similar to the method used for the growth rate study described
in the previous section. However, for each unique rule, we also
store the unique packet header in a trace. Therefore, when re-
playing the header trace on a traffic generator machine we are
sure that all packets are accepted by the filter and all rules are
matched uniformly. This corresponds to a worst case scenario
for the IDD based filtering scheme, because all parts of the fil-
ter is used continuously, and because each packet requires a full
search of the IDD.

In one way the generated traffic is different from the traffic
described in the replayed header traces. The payload of each



packet is kept fixed throughout the experiment. This allows
us to compare the performance measured with two different fil-
ters. If we used the original payload size, then each header trace
would have a different payload size distribution thus making it
difficult to compare performance.

During each experiment the traffic generators run for a five
minute period during which we monitor the performance of the
router. At load up to 75Kpps (thousands of packets per second),
we are able to monitor traffic on both interfaces of the router,
however due to limited disk bandwidth at higher loads, we are
only able to monitor the outbound link of the two links on R
with M, however traffic generators measure the rate at which
traffic is generated ensuring that we can detect any variations
in the input load to the firewall. Throughout the experiments,
switch statistics has also been monitored to ensure that switches
are not congested with traffic during any of our experiments.

CPU AMD Athlon(TM) MP 2000+ (1700MHz)
NICs SysKonnect SK9821 V2.0 (64bit, 66MHz)
NIC driver Driver sk98lin v6.03, NAPI enabled
Kernel Linux-2.4.20

TABLE II
FIREWALL CONFIGURATION.

2) Results: In the overall set of experiments, we have
explored several combinations of input load (100, 250, and
500Mbps). However, for clarity we only show results from ex-
periments with a sustained input load of 500Mbps.

Figure 9 and 10 shows the results of experiments with a sus-
tained input load of 500Mbps, fixed payload size of 300bytes
(∼180 Kpps) and number of rules ranging from 10-10,000. In
the interval from 10-100 rules the performance of the packet
filters are quite similar. However, both Hipac and Netfilter per-
form lower than expected with 25 rules. For Netfilter, through-
put performance starts to degrade as the number of rules sur-
passes 100 rules, and continues to degrade until 2500 rules
where the throughput reaches zero. Hipac performs signifi-
cantly better than Netfilter. Performance also degrades once
the filter grows larger than 900 rules, however at a slower rate
than with Netfilter. Finally, the IDD based classification scheme
can handle up to 3,000 rules before performance begins to de-
grade. Between 5,000-10,000 performance of Hipac and the
IDD based scheme is nearly unchanged. In essence, the fig-
ures clearly demonstrates the complexity difference between
the approach used in Netfilter and the IDD based classification
scheme.

Figure 11 (x-axis is now logarithmic) shows a similar set of
experiments for runs with a fixed payload size of 600bytes (∼95
Kpps). Behavior mimic the previous set of experiments except
that the performance degradation occurs with larger rule sets.
An interesting aspect is that, between 10-100 rules, Netfilter
actually performs better than Hipac. We expect this to be due
to a processing overhead of using Hipac, however further inves-
tigation is necessary to determine the exact cause. Experiments
with a frame size of 1440 were also performed. But, under that
load, neither of the filtering mechanisms had problems handling
the 500Mbps load. Probably due to the fairly low frame rate.
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Fig. 9. Firewall throughput as a function of the number of rules (0-1000 rules).
Input load is fixed at 500Mbps load and payloads fixed to 300 bytes.
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Fig. 10. Firewall throughput as a function of the number of rules (0-10000
rules). Input load is fixed at 500Mbps load and payloads fixed to 300 bytes.
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logarithmic). Input load 500Mbps and payloads are fixed to 600 bytes.



In total, these experiments shows significant performance po-
tential of the IDD base packet filtering scheme. The experi-
ments with payloads of 300 bytes is the most interesting, we
were able to handle three times more rules than Hipac before
reaching the performance limit with 3,000 rules. One could ar-
gue the only few firewalls will ever have filters consisting of
more than 500 rules. Nevertheless, it is important to realize that
even though we get similar performance with smaller rule sets,
the IDD based scheme overall, seems to use less CPU resources
than both Netfilter and Hipac, leaving more resources to other
tasks allowing the use of a slower and cheaper CPU.

The conducted experiments have a limited scope and many
questions remain open. For instance the described experiments
do not take into account that in a realistic setting some rules will
be matched more often than other, thus allowing the approach
used in Netfilter to be optimized by setting the most used rules
first in the filter. In future experiments, we hope to explore
performance issues related to this aspect and many others.

VII. CONCLUSION

In this paper we have described the use of Interval Decision
Diagrams (IDDs) as the central structure in the packet filtering
mechanism of a firewall. The work includes a mapping of tra-
ditional filter specification to predicate logic, and an empirical
evaluation of the scheme, comparing it to two other schemes
provided on the Linux platform.

The primary advantages of using IDDs, in a packet filtering
scheme, is that an IDD describes a predicate logic expression,
thus providing access to boolean algebra over filters. Further-
more, IDDs allow efficient classification of packets on generic
CPUs, by avoiding tests of individual bits. A disadvantage, on
the other hand, is that the build algorithm has polynomial com-
plexity, this means that it is quite time consuming to rebuild the
structure over a certain size.

The presented empirical evaluation focused on two issues:
growth-rate of the size of the IDD and the efficiency of the
packet classification algorithm. Experiments on growth-rate
showed that IDD based structure grows less than linearly in the
number of rules, when rules describe individual packet from a
packet-header trace. This is a promising result, considering the
fact that worst-case growth rate of an IDD is exponential.

To evaluate the packet classification algorithm, a prototype
was implemented on Linux. This allowed us compare perfor-
mance with two other packet classification schemes provided
on the Linux platform. The IDD based scheme was success-
ful by being able to handle filters with significantly more rules
before throughput of the firewall decreased.

Overall, the work presented in this paper suggests that the
IDD structure is a strong and efficient foundation for packet
filtering on firewalls.

Further work includes a more elaborate evaluation of the IDD
based scheme, for instance by comparing it to other schemes.
Also, testing the scheme with real filters is important as well
as extending the scheme to allow more than two policies. Fi-
nally, issues on working on optimizing space requirements of
the actual data-structure and minimizing compile times should
be addressed as well. Moreover, we are now working on a

new prototype for Linux, called Netkeeper [18], which is freely
downloadable.
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