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Derivation and study of dynamical models
of dislocation densities

A. El Hajj1, H. Ibrahim2, R. Monneau2
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Abstract

In this paper, starting from the microscopic dynamics of isolated dislocations, we explain how

to derive formally mean field models for the dynamics of dislocation densities. Essentially these

models are tranport equations, coupled with the equations of elasticity. Rigorous results of

existence of solutions are presented for some of these models and the main ideas of the proofs

are given.

AMS Classification: 54C70, 35L45, 35Q72, 74H20, 74H25.

Key words: Cauchy’s problem, non-linear transport equations, non-local transport equa-

tions, hyperbolic equations, BMO estimate, dynamics of dislocation densities.

Introduction

In this paper we are interested in several mesoscopic models involving the dynamics
of dislocations. These models are important for the understanding of the elasto-visco-
plasticity behaviour of materials. For crystals, at the microscopic level, the origin of
plasticity is mainly due to the existence of defects called dislocations. Dislocations are
line defects that can move in the crystal when a shear stress is applied. On the other
hand each dislocation also creates a stress field. This leads to a complicated dynamics
of these defects that we consider below. See Figure 1 for an example of complicated
pattern of dislocations in real crystals.

Organization of the paper.
Section 1 presents the microscopic modelling for the dynamics of dislocation straight
lines. In Section 2, we explain how to derive formally a two-dimensional mean field
model, called the Groma, Balogh model. A rigorous result of existence of solutions is
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Figure 1: Dislocation lines in Nickel Aluminium alloy.

given and other results are also given for a one-dimenional submodel. In Section 3, the
Groma, Czikor, Zaiser model is studied. In particular is presented a simulation of the
deformation of a slab under an external shear stress. In Section 4, the formal derivation
of a mean field model for densities of dislocation curves is presented. Concluding remarks
are given in Section 5.

1 The microscopic modelling

1.1 Preliminary: the stress field created by an edge dislocation

In the space coordinates x = (x1, x2, x3) with basis (e1, e2, e3), we consider the case a
material filling the whole space and with a single dislocation line which is the axis x3.
To this line is associated an invariant, called the Burgers vector b. In the case of linear
isotropic elasticity with Lamé coefficients λ, µ (satisfying µ > 0, 3λ+ 2µ > 0), the stress
created by the dislocation is given by

σij = 2µeij + λ

(
∑

k=1,2,3

ekk

)
δij , i, j = 1, 2, 3 (1.1)

where

eij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
+ H(x1)δ0(x2)e

0
ij with e0 =

1

2
(b ⊗ n + n ⊗ b)

where H is the Heaviside function, δ0 is the Dirac mass, n = e2 is the normal to the
slip plane and (u1, u2, u3) is the three-dimensional displacement field. In the special
case where b = e1, the dislocation is called an edge dislocation (the Burgers vector is
perpendicular to the dislocation line). In this case we have

e0 =
1

2




0 1 0
1 0 0
0 0 0



 . (1.2)
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The stress is assumed to satisfy the elasticity equation of equilibrium

∑

i=1,2,3

∂σij

∂xi

= 0, j = 1, 2, 3. (1.3)

The solution to this equation is known since the work of Volterra [16]. We have (see
Hirth, Lothe [7]):

σ(x) = a





−
x2(3x

2
1 + x2

2)

(x2
1 + x2

2)
2

x1(x
2
1 − x2

2)

(x2
1 + x2

2)
2

0

x1(x
2
1 − x2

2)

(x2
1 + x2

2)
2

x2(x
2
1 − x2

2)

(x2
1 + x2

2)
2

0

0 0 0





(1.4)

with

a =
µ

2π(1 − ν)
> 0 where the Poisson ratio is ν =

λ

2(λ + µ)
∈

(
−1,

1

2

)
.

1.2 A two-dimensional microscopic model

In this section we describe very formally a microscopic model describing the dynamics
of dislocation lines in the particular geometry where all lines are parallel to the axis x3.

Considering the cross section of these lines, we can reduce the problem to a two-
dimensional problem where each dislocation line can be identified to its position (x1, x2).
For i = 1, ..., N , let us call X i the positions in R

2 of these dislocations (see Figure 2).

dislocation of type +

dislocation of type −

⊤

⊤⊥

⊥

⊥

−~b

x2

x1

~b

Figure 2: The cross section of the dislocation lines.

We consider moreover the particular case where each dislocation can only move along
the direction e1. Those dislocations X i are known to be characterized by an invariant
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called the Burgers vector bi = εie1 where

εi = ±1.

Finally the dynamics of these dislocations is

dX i(t)

dt
= bi σ12(X

i(t)), for i = 1, ..., N. (1.5)

Here σ12 is one component of the stress. In the case of linear isotropic elasticity, it is
known that

σ12(x) =
∑

i=1,...,N

εiσ0(x − X i), where σ0(x) = a
x1(x

2
1 − x2

2)

(x2
1 + x2

2)
2

,

where σ0 is the (1− 2)-component of the stress given in (1.4). Here σ0(x) appears to be
the shear stress created at the point x by a single dislocation positionned at the origin,
with Burgers vector e1. With the convention that the self-stress created by a dislocation
on itself is zero, i.e. formally σ0(0) = 0, we see that we can rewrite the full dynamics of
particles satisfying X i 6= Xj for i 6= j, as follows

dX i

dt
= e1




∑

j∈{1,...,N}\{i}

εiεjσ0(X
i − Xj)



 , for i = 1, ..., N.

Let us now introduce the “density” of dislocations

θ±(x, t) =
∑

i∈{1,...,N} : εi=±1

δ0(x − X i(t))

where θ+ and θ− correspond respectively to the dislocations with positive and negative
Burgers vector. Again with the convention σ0(0) = 0, we can rewrite the dynamics as

θ±t + div
(
±J θ±

)
= 0 with J = e1 σ0 ⋆ (θ+ − θ−). (1.6)

2 Mesoscopic models

2.1 Formal derivation of the two-dimensional mesoscopic model

A natural question is what is the effective model at the mesocsopic scale corresponding
to the microscopic model (1.6)? It seems to be an open and difficult question. As a naive
answer, we can consider as a first candidate to the mesoscopic model, the mean field
model corresponding to the model (1.6), where now each density θ+ and θ− can be seen
as a “continuous” quantity. In this mean field model, we have in particular neglected
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the short range dynamics. One convenient way to rewrite the model is to introduce one
primitive ρ± of the densities θ± such that

ρ±
x1

(x, t) = θ±(x, t) ≥ 0.

Then we can rewrite (1.6) as (with a zero constant of integration):

ρ±
t = ∓σ12 ρ±

x1
(2.7)

with
σ12 = (σ0)x1

⋆ (ρ+ − ρ−). (2.8)

System (2.7)-(2.8) is an integrated form of the Groma, Balogh model (1.6) (see [5]). It
turns out that by construction σ solves:






∑

i=1,2,3

∂σij

∂xi

= 0,

σij = 2µeij + λ

(
∑

k=1,2,3

ekk

)

δij ,

eij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
+ (ρ+ − ρ−)e0

ij,

(2.9)

where e0 is given in (1.2). Here (2.8) appears to be a representation formula for the
solution of the equations of elasticity (2.9).

2.2 Existence of a solution in the two-dimensional periodic case

In the case where the dislocations densities θ±(x, t) are Z
2-periodic in x ∈ R

2 such that

∫ 1

0

dx1 θ±(x1, x2, t) = L > 0,

it turns out that the representation formula (2.8) can be rewritten

σ12 = ā R2
1R

2
2(ρ

+ − ρ−) with ā = 4µ(λ + µ)/(λ + 2µ), (2.10)

where Ri for i = 1, 2 are the Riesz transform given in Fourier series coefficients on
T

2 = R
2/Z

2 by

ck(Ri(f)) =






ki

|k|
ck(f) for all k = (k1, k2) ∈ Z

2\ {(0, 0)}

0 if k = (0, 0)

where

ck(f) =

∫

T2

e−2iπk·xf(x) d2x.
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We will also make use of the norm on the following Zygmund space

||f ||L ln L(T2) = inf

{
γ > 0,

∫

T2

|f |

γ
ln

(
e +

|f |

γ

)
≤ 1

}
.

We assume that
ρ±(·, 0) = ρ±

0 (2.11)

and we make the following assumptions on the initial data






ρ±
0 (x1 + m, x2 + l) = mL + ρ±

0 (x1, x2) for any m, l ∈ Z

(ρ±
0 )x1

≥ 0

||(ρ±
0 )x1

||L lnL(T2) ≤ C

(2.12)

where C > 0 is any fixed constant.

Then we have:

Theorem 2.1 (Global existence of a solution in the periodic case, [2])
Under assumption (2.12) there exists a function (ρ+, ρ−) which is a solution of (2.7),
(2.10) in the sense of distributions and with initial condition (2.12), such that ρ±(·, t)
satisfies (2.12) for all time. Moreover ρ± ∈ C([0, +∞); L1

loc(R
2)) and

σ12 ∈ L2
loc([0, +∞); H1

loc(R
2)). (2.13)

Remark 2.2 Recall that there exists a constant C > 0 such that the general inequality
holds for functions f ∈ H1(T2) and g ∈ L lnL(T2)

||fg||L1(T2) ≤ C||f ||H1(T2)||g||L lnL(T2).

Then the product σ12 · (ρ
±)x1

in (2.7) is defined because of both estimate (2.13) on σ12

and estimate L∞([0, +∞); L lnL(T2)) on (ρ±)x1
.

Indeed, in the proof of Theorem 2.1, the main tool is to consider the entropy

S(t) =
∑

±

∫

T2

θ±(·, t) ln θ±(·, t) with θ± = (ρ±)x1

which satisfies formally the following a priori estimate

S(t) + ā

∫ t

0

∫

T2

(R1R2(θ
+ − θ−))2 ≤ S(0).

The uniqueness of the solution remains an open problem.
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Figure 3: A 1-D sub-model invariant by translation in the (−1, 1) direction.

2.3 A one-dimensional mesoscopic submodel

In this section, we present a submodel where the uniqueness of the solution is known.

Let us now consider a solution (ρ+, ρ−) of (2.7), (2.10) only depending on the variable
y = x1 + x2 and on the time t (see Figure 3).

In that case, we can rewrite the system of equations for (ρ+(y, t), ρ−(y, t)) as follows:






ρ+
t = −c1

{
(ρ+ − ρ−) + c2

∫ 1

0

dz (ρ+(z, t) − ρ−(z, t))

}
ρ+

y

ρ−
t = c1

{
(ρ+ − ρ−) + c2

∫ 1

0

dz (ρ+(z, t) − ρ−(z, t))

}
ρ−

y

(2.14)

with the constants

c1 =
µ(λ + µ)

λ + 2µ
> 0, c2 =

µ

λ + µ
> 0.

For ρ±
y ≥ 0, this system looks very much like the Burgers equation in the rarefaction

case (where no shocks are created). For this system, the following uniqueness result is
available:

Theorem 2.3 (Uniqueness for the one-dimensional submodel, [4])
Assume that the initial data ρ±

0 is Lipschitz non-decreasing and that for some L > 0, the
functions y 7→ ρ±

0 (y)−Ly are 1−periodic. Then there exists a unique viscosity solution
(ρ+, ρ−) to the system (2.14),(2.11). Moreover this solution is globally Lipschitz in space
and time.

In this theorem the notion of viscosity solution is the one introduced by Ishii, Koike
[12] for systems which are quasi-monotone. Roughly speaking, this is related to the fact
that for c2 = 0, this system has a comparison principle. More precisely, if ρ±,1 and ρ±,2
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are two solutions of system (2.14) with c2 = 0 such that

ρ+,1(y, t) ≤ ρ+,2(y, t) and ρ−,1(y, t) ≤ ρ−,2(y, t) for all y ∈ R

holds at time t = 0, then this is true for all time t > 0.
Moreover for system (2.14), it is possible to write an upwind scheme and to prove a

Crandall-Lions type discrete-continuous error estimate for this scheme, as it is done in
El Hajj, Forcadel [4].

Let us mention that an existence and uniqueness result for system (2.14) has also
been obtained by El Hajj [3] in the framework of H1

loc(R) initial data with solutions in
H1

loc(R × [0, +∞)).
This system has also been studied in the case of periodic external applied stress. In

the system (2.14), this corresponds to add a time-periodic term to the quantity (ρ+−ρ−).
Then for this non-local system, it is shown formally in Briani, Cardaliaguet, Monneau [1]
(see also Souganidis, Monneau [15] for a local system in the stationary ergodic setting)
that the long time behaviour of the system is an equivalent quasilinear diffusion equation.

3 The GCZ one-dimensional mesoscopic model

3.1 Presentation of the model

In this section we consider the case where the three-dimensional material is a slab Ω =
(−1, 1) × R

2 with boundary conditions

σ · n = ±τe2 for x1 = ±1 (3.15)

where τ ∈ R is a fixed constant (see Figure 4).

ττ

1−1 e1

e2

Figure 4: Geometry of the slab.

In that case, we can check that the solution to the equation (2.9) on Ω supplemented
with boundary conditions (3.15), is

σ12 = τ and σij = 0 if {i, j} 6= {1, 2} .
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And then from the evolution equation (2.7), we see that in the case τ > 0, the positive
dislocations move to the right and the negative dislocations move to the left. In order
to take into account the short range dynamics with accumulations of dislocations on
the boundary of the material, Groma, Czikor and Zaiser [6] have proposed to modify
equation (2.7) into the following equation (GCZ model)

ρ±
t = ∓σ̃12ρ

±
x1

with σ̃12 = σ12 + τb (3.16)

where τb is the back stress created by the concentration of dislocations

τb = −D0
(θ+ − θ−)x1

θ+ + θ−
with θ± = ρ±

x1

where D0 is a diffusion coefficient that we take equal to 1 to simplify the presentation.
Introducing the quantities

ρ = ρ+ − ρ− and κ = ρ+ + ρ−,

the full GCZ system can be rewritten with y = x1 ∈ I = (−1, 1) as
{

ρt = ρyy − τκy

κtκy = ρtρy

∣∣∣∣ on I × (0, +∞) (3.17)

with boundary conditions on ∂I:
{

ρ(−1, t) = 0 and ρ(1, t) = 0
κ(−1, t) = −c0 and κ(1, t) = c0 > 0

∣∣∣∣ for all t ≥ 0, (3.18)

for some constant c0 and the initial conditions
{

ρ(·, 0) = ρ0

κ(·, 0) = κ0.
(3.19)

The non-negativity of the densities θ± at the inital time is equivalent to the following
condition

κ0
y ≥ |ρ0

y| on I. (3.20)

Moreover, we will assume the following condition

(ρ0
y, κ

0
y) is in C∞(I) and with compact support in I. (3.21)

3.2 Main results

For this system, we have the following result

Theorem 3.1 (Global existence of a solution; [11])
Assume that the initial data (ρ0, κ0) satisfies (3.20)-(3.21). Then there exists two func-
tions ρ ∈ C1

(
I × [0, +∞)

)
and κ ∈ C0

(
I × [0, +∞)

)
solution of (3.17)-(3.18)-(3.19).

Moreover for all time t > 0, (3.20) is satisfied with (ρ0, κ0) replaced by (ρ(·, t), κ(·, t)).
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Remark that in this theorem the notion of solution to (3.17) is the following. The
first equation of (3.17) is satisfied in the sense of distributions, while the second equation
of (3.17) satisfied by κ is satisfied in the viscosity sense. This makes sense because the
right hand side ρtρy of the equation is continuous, and because the time derivation κt is
multiplied by the non-negative quantity κy.

Here condition (3.21) appears to be a technical condition to get the result. Althought
this one-dimensional system (3.17) seems very simple, its mathematical study and the
proof of Theorem 3.1 is particularly difficult.

In the case τ = 0, it is possible to get a uniqueness result.

Theorem 3.2 (Uniqueness of the solution in the case τ = 0; [9])
In the case τ = 0, let us assume that the initial data (ρ0, κ0) is Lipschitz and satisfies
for some δ > 0:

κ0
y ≥

√
δ2 + (ρ0

y)
2 on I.

Then there exists a solution (ρ, κ) to (3.17)-(3.18)-(3.19) satisfying

κy(., t) ≥
√

δ2 + ρ2
y(., t) for all t > 0. (3.22)

Moreover this solution is unique among the solutions satisfying (3.22).

Main idea for the proof of Theorem 3.2
The proof of Theorem 3.2 is based on the fact that

√
δ2 + ρ2

y is an entropy subsolution
of the conservation law satisfied by v = κy, namely

vt =

(
n(y, t)

v

)

y

with n = ρtρy.

Then the comparison principle between entropy solutions and entropy subsolutions shows
that (ρ(·, t), κ(·, t)) satisfies (3.22) for all time t > 0.

Main ideas for the proof of Theorem 3.1
In particular, a first try shows that

M = κy − |ρy|

satisfies formally
Mt = a1My + a0M

with

a1 = τsgn(ρy) −
ρyρyy

(ky)2
and a0 =

(ρyy)
2

(κy)2
−

ρyyysgn(ρy)

κy

.

By a maximum principle argument, we see that in order to guarantee that M ≥ 0 is
true for every time, we have somehow to control the L∞-norm of ρyyy/κy. This seems
hopeless, because we would need to control moreover κy > 0 from below. The idea is
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then to replace system (3.17) by a suitable regularized system, which is the following for
ε > 0: {

ρt = (1 + ε)ρyy − τκy

κt = εκyy +
ρyρyy

κy

− τρy
(3.23)

and the result is then obtained, passing to the limit ε → 0. Even the regularized system
(3.23) is still difficult to study, because of the division by κy (see [10]). But for the
regularized system (3.23), it is possible to replace M by

Mγ = κy(·, t) −
√

γ2(t) + (ρy(·, t))2

and to prove that Mγ ≥ 0 while the non-increasing function γ(t) satisfies

γ′

γ
≤ −Cε

(
1 + ||ρyyy(·, t)||L∞(I)

)
(3.24)

where the constant Cε blows-up as ε → 0. The striking remark is that to show in the
case ε > 0 that Mγ is non-negative, we only need a control on the L∞-norm of ρyyy,
while in the case ε = 0, in order to show that M is non-negative it was necessary to
control the L∞-norm of ρyyy/κy which was worse (and not sufficient to conclude).

On the other hand, proving a parabolic version of the well-known Kozono-Taniuchi
inequality (see [13]) and using heavily the regularity theory for parabolic equations, we
can prove for the regularized system (3.23) that

||ρyyy(·, t)||L∞(I) ≤ CeCt(1 + | ln γ(t)|) (3.25)

for some constant C > 0 also depending on ε, among other things. Putting estimates
(3.24) and (3.25) together, we see that we get the three-exponential estimate

κy(·, t) ≥ γ(t) ≥ e−ee
ct

for some constant c > 0 depending in particular on ε. Then the global existence of a
solution to the regularized system (3.23) follows. Finally we recover a solution to the
original system (3.17) taking the limit ε → 0.

3.3 Numerical simulations

Comming back to the system of elasticity, it is possible to compute the displacement.
We find u1 = u3 = 0 and

u2(y, t) =
τ

µ
y +

∫ y

0

dz ρ(z, t)

In Figure 5, we show successively the initial state of the crystal at time t = 0 without any
applied stress, then the instantaneous (elastic) deformation of the crystal when we apply
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the shear stress τ > 0 at time t = 0+. The deformation of the crystal evolves in time and
finally converges numerically to some particular deformation which is shown on the last
picture after a very long time. This kind of behaviour is called elasto-visco-plasticity
in mechanics. Moreover, on the last picture, we observe the presence of boundary layer
deformations. This effect is directly related to the introduction of the back stress τb in
the model.

a) t = 0− b) t = 0+ c) t = +∞

Figure 5: Deformation of a slab for model (3.23)

4 General dynamics of curved dislocations

4.1 Preliminary on the dynamics of dislocation curves

At sufficiently low temperature, dislocation curves are contained in the crystallographic
planes of the three-dimensional crystal and can only move in those planes. Let us
consider a closed and smooth curve Γt moving in the plane (y1, y2). The evolution of
this dislocation can be modelled by a dynamics with normal velocity c(y, t) (see Figure
6).

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

c ∆t nΓt

t

Γt

Γt+∆t

Ω

Figure 6: Schematic evolution of a dislocation line Γt by normal velocity c between the
times t and t + ∆t.
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4.2 Transport formulation of the dynamics

If we want to describe the dynamics of a high number of dislocations curves, it is inter-
esting to describe this dynamics with a single quantity and a single equation. This is
the goal of this subsection that we describe heuristically.

Let us consider a smooth closed curve Γ0 in the plane (y1, y2) with basis (e1, e2). The
curve Γ0 can be parametrized by its curvilinear abscissa s, such that

Γ0 =
⋃

s

{y(s)} .

Let us define for θ ∈ R/(2πZ)

n(θ) = (cos θ)e1 + (sin θ)e2 and τ(θ) = (sin θ)e1 − (cos θ)e2.

We also define the angle θ(s) of the tangent to Γ0 at the point y(s) by

dy

ds
(s) = τ(θ(s))

and the curvature KΓ0
(y) of Γ0 at the point y by

KΓ0
(y(s)) =

d

ds
(θ(s)).

We introduce the lifting Γ̂0 of Γ0 by

Γ̂0 =
⋃

s

{(y(s), θ(y(s)))} ⊂ R
2 × (R/(2πZ)).

We define the distribution δbΓ0
(y, θ) on the test function φ(y, θ) by

< δbΓ0
, φ >=

∫

bΓ0

ds φ(y(s), θ(y(s))).

Let us now consider a smooth evolution of the oriented closed curve Γt with normal
velocity c(y, t). For any fixed t, let us call sΓt

the curvilinear absissa of the curve Γt and

sbΓt
the curvilinear abscissa of Γ̂t. Then we define the distributions

g(y, θ, t) =

(
dsΓt

dsbΓt

)
δbΓt

(y, θ) and κ(y, θ, t) = KΓt
(y) · g(y, θ, t).

We can now state the following result (see Theorem 2.1 and Remark 2.3 in [14] and the
original system for (g, κ) in [8]):
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Theorem 4.1 (Transport formulation of the motion by normal velocity)
Under the previous assumptions, the distributions g, κ satisfy the compatibility equation

τ · ∂yg + ∂θκ = 0 (4.26)

and the system

{
gt + ∂y(cng) + ∂θ((τ · ∂yc)g) + cκ = 0
κt + ∂y(cnκ) + ∂θ((τ · ∂yc)κ) − (n · ∂yc)κ − (τ ⊗ τ : ∂yyc)g = 0.

(4.27)

Remark that Theorem 4.1 is only known to be true for smooth evolutions of closed
curves. When singularities appear (in general in finite time), we do not know if system
(4.27) is still true.

4.3 Dynamics of densities of dislocation curves

We now consider the three dimensional case with the basis (e1, e2, e3). Let us now not
only consider dislocations in the particular plane (y1, y2) for y3 = 0, but also in parallel
planes for any y3 = constant. To this end, let us consider distributions g(y, θ, t), κ(y, θ, t)
with the new notation y = (y1, y2, y3), which are again assumed to satisfy (4.26) and
(4.27). To close the system we have to explain how is defined the normal velocity c(y, t)
in the case of dislocation dynamics. To this end, we have first to compute the strain
e(y, t) ∈ R

3×3
sym which is solution of the system

{
div σ = 0 with σ = 2µe + λ(trace(e))Id
inc e = (curlrow (b × β))sym with β(y, t) =

∫
R\(2πZ)

dθ τ(θ)g(y, θ, t)
(4.28)

where the operator inc e is obtained, taking first the curl of the column vectors of the
matrix e, and then the curl of the row vectors of the new matrix. The curlrow is the
curl of the row vectors of the matrix, and the index ( )sym means that we consider the
symmetric part of the matrix. The quantity b⊗β is called the Nye tensor of dislocation
densities, where b is the Burgers vector of the dislocations under consideration. Then,
to close the model, we define the normal velocity field by

c(y, t) = (b ⊗ e3) : σ(y, t). (4.29)

Relation (4.29) between the normal velocity and the right hand side (called the resolved
Peach-Koehler force) is the simplest expression when the drag coefficient is isotropic and
taken equal to 1. Again, if we neglect the short range dynamics, the complete system is
(4.26)-(4.27)-(4.28)-(4.29), and can be interpreted as a mean field model, describing the
densities of dislocation curves moving in interaction.

Finally, remark that the Groma, Balogh system (1.6) is a particular case of this
complete model, when every quantity is invariant in y2 and x1 = y1, x2 = y3, with the
notation θ±(x1, x2, t) = g(y1, 0, y3,±π, t).
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5 Concluding remarks

The models presented in this paper deal with the dynamics of dislocation densities, and
can be seen as a very first (and naive) attempt to derive elasto-visco-plasticity behaviour
of crystals. All these models are essentially mean field models, and for instance are not
able to explain relations between the stress and the plastic deformation velocity like for
instance the typical power-law behaviour

ėp ≃ ±|σ|m

with m large. More realistic models should also take into account the complicated short
range dynamics, with the possible pinning of dislocations, the creation and destruction
of dipoles of dislocations with opposite Burgers vector, and even the possibilities of junc-
tions between dislocations, or the Frank-Read sources and the cross-slip phenomenon.
At least, it seems that the framework of kinetic equations for the creation and annihi-
lation of such dipoles should be a promising tool for the modelling of the short range
dynamics of dislocations. We hope to investigate this modelling in a future work.
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