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Abstract. The emergence of handheld devices associated with wireless tech-
nologies has introduced new challenges for middleware. First, mobility is be-
coming a key characteristic; mobile devices may move around different areas 
and have to interact with different types of networks and services, and may be 
exposed to new communication paradigms. Second, the increasing number and 
diversity of devices, as in particular witnessed in the home environment, lead to 
the advertisement of supported services according to different service discovery 
protocols as they come from various manufacturers. Thus, if networked services 
are advertised with protocols different than those supported by client devices, 
the latter are unable to discover their environment and are consequently iso-
lated. This paper presents a system based on event-based parsing techniques to 
provide full service discovery interoperability to any existing middleware. Our 
system is transparent to applications, which are not aware of the existence of 
our interoperable system that adapts itself to both its environment across time 
and its host to offer interoperability anytime anywhere.  A prototype implemen-
tation of our system is further presented, enabling us to demonstrate that our 
approach is both lightweight in terms of resource usage and efficient in terms of 
response time. 

1 Introduction 

The home environment now embeds networked devices, possibly wireless, from vari-
ous application domains, i.e., home automation, consumer electronics, mobile and 
personal computing domains. The networked home shall then enable an open sponta-
neous network in which authorized devices are discovered and connected, as in par-
ticular investigated in the Amigo IST project [1]. 

Service discovery protocols enable finding and using networked services without 
any previous knowledge of their specific location. Several Service Discovery Proto-
cols (SDP), like Jini [2], SLP [3], UPnP [4] and Salutation [5], are now available. 
With the advent of both mobility and wireless networking, SDPs are taking on a ma-
jor role in networked environments, and are the source of a major heterogeneity issue 
across middleware. Furthermore, once services are discovered, applications need to 
use the same interaction protocol to allow unanticipated connections and interactions 
with them. Consequently, a second heterogeneity issue appears among middleware. 
Summarizing, middleware for the networked home environment must overcome two 



heterogeneity issues to provide interoperability, i.e.: (i) heterogeneity of service dis-
covery protocols, and (ii) heterogeneity of interaction protocols between services. 
Interoperability is also difficult between devices made by different manufacturers, as 
they can implement differently a standardized protocol.  

Distributed systems for the networked home must provide efficient mechanisms to 
detect and interpret protocols used by the networked devices, which are not known in 
advance. Furthermore, detection and interpretation must be achieved without increas-
ing consumption of resources that are limited on a number of devices (e.g., handheld).  
New techniques must be used to both: (i) offer lightweight systems so that they can be 
supported by resource-constrained devices, and (ii) support system adaptation accord-
ing to the dynamics of the open networked environment. Middleware solutions, de-
signed to cope with the above issues, have been introduced, as surveyed in [6]. From 
this pool of existing middleware, more or less adapted to the constraints of the net-
worked home, reflective middleware seem to be flexible enough to provide interoper-
ability among networked services. However, solutions to interoperability based on re-
flective techniques, like ReMMoC [7, 8], do not bring simultaneously interoperability 
and high performance, as discussed in [9]. SDP interoperability needs to be revisited 
to improve efficiency of SDP detection, interpretation and evolution. Moreover, to 
provide interoperability, we need a fine-grained control over protocols. Our approach 
is to decouple components from protocols with the use of concepts inherited from 
software architecture enhanced with event-based parsing techniques [10, 11]. 

The originality of our approach comes from the trade offs achieved among effi-
ciency, interoperability and flexibility. Our interoperability system, called INDISS 
(INteroperable DIscovery System for networked Services), may further be integrated 
with any existing middleware platform. Hosting INDISS enables the networked home 
system to discover and interpret all the services available in the home environment, 
independent of underlying middleware technologies. One key feature of INDISS is to 
provide efficient interoperability without altering the existing applications and serv-
ices. 

Based on conceptual similarities among SDPs, we are able to provide a generic 
mechanism supporting discovery protocol interoperability, as presented in Section 2. 
According to user activities, the networked home can become a highly dynamic net-
work formed by the random arrival of devices based on different middleware. What-
ever the networked home configuration/composition, interoperability must be main-
tained transparently without requiring to change the applications and/or services. In 
this context, INDISS must adapt itself to the evolution of the home environment 
across time. Section 3 discusses both the self-adaptation and context-awareness capa-
bilities of INDISS. To validate the INDISS design, in particular in terms of efficiency, 
we have developed a first prototype, which is flexible enough to consider several use 
cases. Section 4 provides performance results, which demonstrate the efficiency of 
INDISS. Finally, Section 5 summarizes our contribution and discusses our future 
work on achieving middleware interoperability. 



2 Service Discovery Protocol Interoperability 

According to the architectural style of service-oriented computing systems, a majority 
of SDPs support the concepts of client and service. In order to find needed services, 
clients may perform two types of request: unicast or multicast. The former implies the 
use of a repository, equivalent to a centralized lookup service, which aggregates serv-
ices information from service advertisements. The latter is used when either the re-
pository's location is not known or there does not exist any repository in the environ-
ment. Similarly, services may announce themselves with either unicast or multicast 
advertisement, depending on whether a repository is present or not. From the afore-
mentioned approaches, two SDP models are identified, irrespectively of the reposi-
tory's existence: (i) the passive discovery model, and (ii) the active discovery model. 
When a repository exists in the network environment, the main challenge for clients 
and services is to discover the location of the repository, which acts as a mandatory 
intermediary between clients and services [3]. In this context, using the passive dis-
covery model, clients and services are passively listening on a multicast group address 
specific to the SDP used and are waiting for multicast advertisements from a reposi-
tory. On the contrary, with an active discovery model, clients and services send multi-
cast requests to discover a repository that sends back a unicast response to the re-
quester to indicate its presence. In a “repository-less” context, a passive discovery 
model means that the client is listening on a multicast group address, which is specific 
to the SDP that is used to discover services. Obviously, the latter periodically send out 
multicast announcement of their existence to the same multicast group address. In 
contrast, with a repository-less active discovery model, the roles are exchanged. 
Thereby, clients perform periodically multicast requests to discover needed services 
and the latter are listening to these requests. Furthermore, services send unicast re-
sponses directly to the requester only if they match the requested service. Summariz-
ing, most SDPs support both passive and active discovery with either optional or 
mandatory centralization points. The following details our solution to SDPs interoper-
ability, which is compatible with both the passive and active discovery models.  

The following sections introduce the architectural principles of INDISS that builds 
on [9] and decomposes into mechanisms for: (i) SDP detection (§2.1) and (ii) SDP 
interoperability (§2.2). Specifically, SDP interoperability is achieved through transla-
tion of SDP functions in terms of events coordination (§2.3). This translation process 
is then outlined through a concrete example (§2.4). 

2.1 SDP detection 

All SDPs use a multicast group address and a UDP/TCP port that must have been as-
signed by the Internet Assigned Numbers Authority (IANA). Thus, assigned ports and 
multicast group addresses are reserved, without any ambiguity, to only one type of 
use. Typically, SDPs are detected through the use of their assigned address and port. 
These two properties form a unique pair and may be interpreted as a permanent SDP 
identification tag. Furthermore, it is important to note that an entity may subscribe to 
several multicast groups simultaneously. These only two characteristics are sufficient 
to provide simple but efficient environmental SDP detection. We discover passively 



the environment by listening to the well-known SDP multicast groups. In fact, we 
learn the SDPs that are currently used from both services’ multicast announcements 
and clients’ multicast service requests. To achieve this feature, a component, called 
monitor component, embeds two major behaviours: 

− The ability to subscribe to several SDP multicast groups, and 
− The ability to listen to all their respective ports. 

Figure 1 depicts the mechanism used to detect active and passive SDPs in a reposi-
tory-less context. The monitor component, which may be deployed on the client side 
and/or service side, joins both the SDP1 and SDP2 multicast groups and listens to the 
corresponding registered UDP/TCP ports. We assume that SDP1 is based on an active 
discovery model. Hence, SDP1 clients perform multicast requests to the SDP1 multi-
cast group to discover services in their vicinity. The monitor component, as a member 
of the SDP1 multicast group, receives client requests and thus is able to detect the ex-
istence of SDP1 in the environment as data arrival on the SDP1-dedicated UDP/TCP 
port identifies the discovery protocol. Assuming SDP2 is based on a passive discov-
ery model, SDP2 services advertise themselves to the SDP2 multicast group to an-
nounce their existence to their vicinity. Similarly to SDP1, as soon as data arrive at 
the SDP2-dedicated UDP/TCP port, the monitor component detects the SDP2 proto-
col. The monitor component is able to determine the current SDP(s) that is(are) used 
in the environment upon the arrival of the data at the monitored ports without doing 
any computation, data interpretation or data transformation. It does not matter what 
SDP model is used (i.e., active or passive) as the detection is not based on the data 
content but on the data existence at the specified UDP/TCP ports inside the corre-
sponding groups. 
 
 
 
 
 
 
 
 
 

Fig. 1. Detection of active and passive SDPs through the monitor component. 

The monitor component is easy to implement, as both subscription and listening 
are solely IP features. Hence, any middleware based on IP support the monitor com-
ponent, which simply maintains a static correspondence table between the IANA-
registered permanent ports and their associated SDP. Hence, SDP detection only de-
pends on which port raw data arrived. Therefore, the cost of SDP detection is reduced 
to a minimum. 

2.2 SDP interoperability 

SDP detection is just a first step towards SDP interoperability. The main issue is still 
unresolved: the incoming raw data flow, which comes to the monitor component, 
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needs to be correctly interpreted to deliver the service descriptions to the application 
components. To effectively support SDP interoperability, we reuse event-based pars-
ing concepts. 

Upon the arrival of raw data at monitored ports, the monitor component detects the 
SDP that is used (Figure 2, Step ❴), and forwards the input data to the appropriate 
parser (Step ❵), to successfully transform the raw data flow into a series of events. 
The parser extracts semantic concepts as events from syntactic details of the SDP de-
tected. Then, the generated events are delivered to composers that are locally de-
ployed (Step�). Finally, the composer delivers a SDP message understood by the tar-
get application (Step�). The communication between the parser and the composer 
does not depend on any syntactic detail of any protocol. They communicate at a se-
mantic level through the use of events. Indeed, a fixed set of common events has been 
identified for all SDPs (see §2.3). And, a larger, specific set of events is defined for 
each SDP. For example, a subset of events generated by a UPnP parser are success-
fully understood by a SLP composer, whereas specific UPnP events, due to UPnP 
functionalities that SLP does not provide, are simply discarded from the SLP com-
poser, as they are unknown. 
 
 
 
 

 
 

 
 
 
 

 

Fig. 2. SDP detection & interoperability mechanisms 

Event streams are totally hidden to components outside INDISS, as they are as-
sembled into SDP-specific messages through composers. Consequently, interoperabil-
ity is guaranteed to existing applications tied to a specific SDP without requiring any 
change to applications. Similarly, future applications do not need to be developed 
with a specific middleware API to benefit from SDP interoperability. In general, ap-
plication components continue to use their own native service discovery protocol; 
interoperability is achieved through a transparent integration of INDISS. It is further 
important to note that the system may be deployed on either the service provider or 
client application side. It may even be distributed among both parties or deployed on 
some intermediate (e.g., gateway) networked node (see §4.2).  

Parsers and composers are dedicated to specific SDP protocols. Then, to support 
more than one SDP, several parsers and composers must be embedded into the sys-
tem. Embedded parsers and composers are dynamically instantiated. 

SDP interoperability comes from the composition of parsers and composers dedi-
cated to different SDPs. As depicted in Figure 3, an incoming SDP1 message is suc-
cessfully translated into an SDP2 message that is then forwarded to an SDP2-related 
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application. According to several SDP specifications, an incoming message is often 
followed by a reply message. In this context, two cases may be considered: (i) the re-
ply is directly sent by the native SDP (Figure 2, Step �), which requires the receiver 
to translate the message into a message of the hosted SDP, (ii) the reply is translated 
into a message of the destination’s SDP (Figure 3). The former solution leads to the 
sharing of the interoperability tasks among all participating nodes. However, this re-
quires all the nodes to embed INDISS. As a result, nodes that do not integrate the 
necessary interoperability mechanisms are likely to be isolated. Therefore, this spe-
cific configuration must be considered as a special case but cannot be assumed nor 
enforced in general. Instead, we consider that a node embedding INDISS is able to 
take care of the complete interoperability process, i.e., both receiving and sending 
messages from/to non-native SDPs. Thus, interoperability among nodes is achieved 
without requiring all the participant nodes to embed INDISS. SDP interoperability is 
achieved if the proposed interoperability system is embedded in at least one of the fol-
lowing nodes: client, server or even gateway. 

 
 
 
 
 
 
 

 

Fig. 3. Coupling of parser and composer 

From the above, it follows that within INDISS, a parser is coupled with a composer 
that does the reverse translation process, in a way similar to the mar-
shalling/unmarshalling functions of middleware stubs. Furthermore, depending on the 
SDP specification, the parser and composer may have to share one bi-directional ses-
sion. Such a coupling occurs when, e.g., once the parser has received a request mes-
sage, the composer has to send some acknowledgement or control message to simply 
maintain or validate a communication session with the requester. In general, SDP 
functions like service request, service registration or service advertisements, are com-
plex distributed processes that require coordination between the actors of the specific 
service discovery function. It follows that the translation of SDP functions that is real-
ised by INDISS is actually achieved in terms of translation of processes and not sim-
ply of exchanged messages, further requiring coordination between the parser and 
composer. This is realized by embedding the parser and composer within a unit that 
runs coordination processes associated with the functions of the supported SDP. The 
unit is further self-configurable in that it manages the evolution of its configuration, 
as needed by the SDP specifics and the evolution of the environment. The behaviour 
of the unit may easily be specified using finite state machines, as detailed in the next 
section. 
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2.3 Event-based interoperability  

A unit implements event-based interoperability for a specific SDP by: (i) translating 
to and from semantic events associated with service discovery, messages of the spe-
cific SDP, and (ii) implementing coordination processes over the events according to 
the behaviour of the SDP functions.  

The overall coordination process implemented by the SDP unit is specified using a 
Finite State Machine (FSM). A SDP state machine is a graph of states connected by 
transitions. A SDP state machine is a Deterministic Finite Automaton (DFA) and is, 
as usual, defined as a 5-tuple (Q, ∑, C,T, q0,F), where Q is a finite set of states, ∑ is 
the alphabet defining the set of input events (or triggers) the automaton operates on, C 
is a finite set of conditions, T: Q x ∑ x C → Q is the transition function, q0 ∈ Q is the 
starting state and F ⊂  Q is a set of accepting states. States keep track of the progress 
of the SDP coordination process. Transitions are labelled with events, conditions and 
actions.  

 
Event set Event type 
SDP Control Events SDP_C_START 

SDP_C_STOP 
SDP_C_PARSER_SWITCH 
SDP_C_SOCKET_SWITCH 

SDP Network Events SDP_NET_UNICAST 
SDP_NET_MULTICAST 
SDP_NET_SOURCE_ADDR 
SDP_NET_DEST_ADDR 
SDP_NET_TYPE 

Service Events SDP_SERVICE_REQUEST 
SDP_SERVICE_RESPONSE 
SDP_SERVICE_ALIVE 
SDP_SERVICE_BYEBYE 
SDP_SERVICE_TYPE 
SDP_SERVICE_ATTR 

SDP Request Events SDP_REQ_LANG 
SDP Response Events SDP_RES_OK 

SDP_RES_ERR 
SDP_RES_TTL, 
SDP_RES_SERV_URL 

Table 1. Mandatory events 

The occurrence of an event may cause a transition if the event matches both the 
event and the condition of the transition. When a transition is engaged, several actions 
may be executed, relating to translation of events to/from message data, coordination, 
and configuration management (see Section 3). A SDP DFA is dedicated to one pro-
tocol to account for the protocol’s specifics and consequently realize some optimisa-
tion. Events are basic elements and consist of two parts: event type and data. What-
ever their types, events are always considered as triggers for the unit components to 
react and eventually activate some coordination rule. We define the mini-
mal/mandatory set of events that is common to all SDPs and sets of specialized events 
that are specific to SDPs.  The set of mandatory events ∑ is defined as the union of a 
number of subsets (see Table 1):  



 
∑m= “SDP Control Events” ∪ “SDP Network Events” ∪ “SDP Service Events” ∪  

“SDP Request Events” ∪ “SDP Response Events”. 
 

The set “SDP Control Events” contains events that may be generated by compo-
nents embedded in INDISS (See section 3) to notify their listeners of their internal 
states.  For instance, it enables either the unit to control the coordination of its regis-
tered components (i.e., parsers, composers) or any other components, registered as a 
listener, eventually from an upper layer like the application layer, to trace, in real 
time, SDP internal mechanisms. This is a useful feature, not only for debugging pur-
poses, but also for a dynamic representation of the run-time interoperability architec-
ture. The set “SDP Network Events” is related to network properties and, for instance, 
defines events to determine if the SDP messages are either unicast or multicast, to in-
dicate the SDP used and to specify the source or target address. Then, “SDP Service 
Events” enriches the above set with necessary events to describe the functions that are 
common to the different SDPs: service search request, service search response, serv-
ice advertisements and the type of the service searched. Then, “SDP Request Events” 
and “SDP Response Events” contain events respectively dedicated to the description 
of SDP requests with richer descriptions, and to specific events to express possible 
common SDP answers (e.g., positive or negative acknowledgement, URL of the 
searched service etc). 

All SDP parsers must at least generate the mandatory events. Conversely, all SDP 
composers must also understand them. The mandatory events result from the greatest 
common denominator of the different SDP functionalities. Nevertheless, a given SDP 
parser may generate additional events related to its advanced functionalities. Simi-
larly, a SDP composer may manage these additional events. However, SDP compos-
ers are free to handle or ignore them. For instance, SLP does not manage UPnP ad-
vanced functionalities. Consequently, the SLP composer ignores UPnP-specific 
events generated by the UPnP parser. On the other hand, a JINI-related composer may 
support some of the UPnP-specific events. In fact, events added to the mandatory 
ones enable the richest SDPs to interact using their advanced features without being 
misunderstood by the poorest. The behaviour of the latter is unchanged as they dis-
card unknown events and consider only the mandatory events. Moreover, INDISS is 
extensible and integration of future SDPs is rather direct. In particular, the possible in-
troduction of new events to increase the quality of the translation process will not 
trigger a whole cascade of changes of SDP components. This is a direct consequence 
of building INDISS upon the event-based architectural style. We introduce three 
open, extension sets for the definition of additional events: “Registration Events”, 
“Discovery Events” and “Advertisement Events”. For instance, specific SDP mes-
sages involved in the registration of services are translated to events belonging to the 
“Registering Events” set, which enriches both “SDP Requests Events” and “SDP Re-
sponses Events”. The same applies for the “Discovery Events” set. On the other hand, 
“Advertisement Events” enriches only “SDP Responses Events” since an advertise-
ment is a one-way message to spread service location.  

States of the DFA (or coordination process) of a unit are activated according to 
triggers that define the event types that can cause transitions between states. Transi-
tions imply that the unit executes some actions or coordination rules among its com-



ponents (i.e., composer, parser). According to the unit’s current state, incoming events 
are filtered and may be dispatched to different listeners (i.e., composer, parser or other 
units) until new incoming triggers cause a transition to a new state and so on. Reply 
messages generated through the composer may rely on data associated with events 
generated previously by its associated parser. Thus, events data from previous states 
are recorded using state variables. Conditions are written as Boolean expressions over 
incoming and/or recorded data and may test their properties, whereas actions are a se-
quence of operations that a unit can perform to: dispatch events to components, record 
events, or reconfigure the composition of its embedded components (e.g., changing 
dynamically the current parser or composer). Actions that may be performed by a unit 
are specific to the SDP that it manages. However, all units have to support mandatory 
actions.  
 
2.4 Example 
 
We illustrate our solution using a scenario where a SLP client is searching, e.q., a 
clock service. The clock service is based on UPnP and interoperability is enabled 
through the transparent use of INDISS (See Figure 3 with SDP1=SLP and 
SDP2=UPnP). Our aim, in this scenario, is to outline the different steps involved in 
the interoperability process and more particularly, to describe how messages are suc-
cessfully transformed to events and vice-versa, during a search session initiated by a 
SLP client, to discover a service based on UPnP. However, for brevity, we describe 
only the most meaningful events that occur during this scenario. 
 
First, the client broadcasts a SLP search request to discover its environment in order 
to find a clock service. As presented in Sections 2.1 and 2.2, INDISS catches the re-
quest as a raw data stream and forwards it to the parser of the SLP unit that generates 
a stream of events, which is dispatched to the composer of the UPnP unit as depicted 
in Figure 4, step ❴ . The event stream always starts with a SDP_C_START event and ends 
with a SDP_C_STOP event to specify the events belonging to a same message. On the 
other hand, the SDP_NET_MULTICAST, SDP_SERVICE_REQUEST, SDP_SERVICE_TYPE events 
are used to generate a corresponding UPnP search request. SDP_REQ_VERSION, 
SDP_REQ_SCOPE, SDP_REQ_PREDICATE and SDP_REQ_ID are events specific to SLP and 
are thus discarded by the UPnP unit’s composer. The SDP_NET_SOURCE_ADDR is di-
rectly forwarded to the SLP composer embedded into the SLP unit to prepare the re-
ply. The routing of events and related actions are specified by the DFA of the units as 
presented in §2.3.  
 
Once the UPnP service has received the UPnP search request from INDISS, it re-
sponds to it with a corresponding UPNP search answer (Figure 4, step ❵), which is 
then parsed by the UPnP unit. An event stream is generated and dispatched to the SLP 
unit’s composer. However, thanks to its DFA, the UPnP unit detects that it does not 
get enough events from the UPnP service. The SDP_RES_SERV_URL event, which indi-
cates the URL of the searched service, has never been generated. Therefore, the UPnP 
unit needs to recursively generate additional requests to the remote service until it re-
ceives the expected event. To achieve this task, the UPnP-specific events generated 
by the UPnP unit are consumed internally by the composer to generate other UPnP 



requests. For instance, the SDP_DEVICE_URL_DESC event gives the URL of the descrip-
tion of the remote service that contains the URL of the remote service endpoint. 
Therefore, once the composer of the UPnP unit receives this event, it generates a cor-
responding request to get the description. As previously, the next answer from the 
service is parsed (Figure 4, step�) but the reply contains a XML body that the current 
UPnP parser, which is dedicated to the SSDP protocol, does not understand. There-
fore, the current parser generates a SDP_C_PARSER_SWITCH event to ask its unit to 
switch to a XML parser to continue the parsing to get finally the expected 
SDP_RES_SERV_URL event. The XML description is converted to several SDP_RES_ ATTR 
events. As soon as the composer of the SLP unit has received all of them (as indicated 
by SDP_C_STOP), a SLP answer is generated (the SDP_RES_ ATTR are translated to tradi-
tional SLP attributes) and received by the SLP client.  
 

Step Request  Generated Events Composed request 

❴  SLP 
Search 

SDP_C_START …. 
SDP_NET_MULTICAST 
SDP_NET_SOURCE_ADDR 
SDP_SERVICE_REQUEST 
SDP_REQ_VERSION 
SDP_REQ_SCOPE 
SDP_REQ_PREDICATE 
SDP_REQ_ID 
SDP_ SERVICE_TYPE: 
SDP_C_STOP 

From the previous events, the UPnP unit multi-
casts a UPnP search request to discover UPnP 
services in its vicinity: 
 
M-SEARCH * HTTP/1.1 
SERVER: 239.255.255.250:1900 
ST: urn:schemas-upnp org:device:clock 
MAN: ssdp:discover 
MX: 0 
 

    
Step Reply Parsing Generated Events Composed re-

quest 

❵  

HTTP/1.1 200 OK 
CONTENT-TYPE: text/html;  
SERVER: UPnP/1.0 CyberLink/1.3.2 
CONTENT-LENGTH: 0 

……………… 
ST: upnp:clock 
USN: uuid: ClockDevice::upnp:clock 
LOCATION: 
http://128.93.8.112:4004/description.xml 

SDP_C_START 
SDP_NET_TYPE 
SDP_SERVICE_TYPE 
SDP_DEVICE_URL_DESC 

…… 
 

As the UPnP unit 
did not get the lo-
cation of the re-
mote service it 
must generate 
additional UPnP 
requests:  
 
GET 
/description.xml 
HTTP/1.1 

 
Step Reply Generated Events Composed reply 

�  

Service 
answer to 
the GET 
request: 
 
HTPP 
Reply 
 

Events generated from the 
HTPP reply: 
 
SDP_C_PARSER_SWITCH 
SDP_RES_ATTR 
SDP_RES_ATTR  ….. 
SDP_RES_SERV_URL 
SDP_C_STOP 
 

SrvRply: sevice:clock:soap://128.93.8.112:4005/ 
service/timer/control 
;major:"1";minor:"0";friendlyName:"CyberGarage 
Clock Device"; modelDescription:"CyberGarage"; 
manufacturerURL:"http://www.cybergarage.org"; 
modelDescription:"CyberUPnP Clock Device"; 
modeName:"Clock";modelNumber:"1.0"; 
modelURL:"http://www.cybergarage.org"; 

Fig. 4. SLP-UPnP interoperability in action 

 



3 Context-aware, Self-adaptive Interoperability 

INDISS is based on a specialization of the event-based architectural style. Advantages 
of using an event-based architecture are: increasing the degree of decoupling among 
components and of interoperability, and providing a dynamic and extensible architec-
ture. Since interactions among components are based on events, components operate 
without being aware of the existence of other components and consequently parsers, 
composers and units may change dynamically at runtime without altering the system 
(see Figure 5). INDISS is consequently defined as a set of event-based components. 
We distinguish between these components that are inside the system, and other com-
ponents that are outside INDISS and are therefore considered as application compo-
nents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Evolution of INDISS configuration 

 The INDISS internal architecture has to evolve across time due to two main reasons. 
First, as devices joining the network, whether mobile or stationary, evolve over time, 
the current SDP that is used and/or the SDPs with which interoperability is required 
may change accordingly. Second, some SDPs are actually based on a combination of 
protocols. For instance, UPnP uses alternatively SSDP, HTTP, and SOAP. To support 
these two types of changes, we need to define rigorous composition rules to describe 
the specific architecture of a given instance of INDISS. Configuration of a INDISS 
instance is initially defined in terms of supported SDPs and the corresponding units 
that need be instantiated. As illustrated in Figure 5.a, specification of the system con-
figuration does not describe when and how to compose units. Indeed, unit composi-
tion is achieved dynamically according to both the context and the hosted application 
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components. The context is discovered with the help of the monitor component, as 
presented in Section 2.1. At run-time, embedded units of different types are instanti-
ated and dynamically composed depending on the environment and the applications 
used. Thus, several configurations may occur (e.g., see Figure 5.b, c, d). 

At the system level, SDP interoperability is achieved through the correct composi-
tion of some units. As depicted in Figure 5.c, the translation from SLP to UPnP dis-
covery corresponds to the composition of a SLP unit with a UPnP unit. At this level, a 
unit is only considered as a computational element that transforms messages to events 
and vice versa. The unit’s internal mechanisms are totally hidden. Referring to event-
based architectures, components can be either event listeners or event generators or 
both. The same applies for units; they are both event generator and listener. Units are 
composed and communicate together through events, whereas they use messages to 
interact with components that are outside INDISS. Therefore, the use of events is in-
ternal to INDISS.  

At the unit level, coordination and composition rules among embedded SDP com-
ponents are specialized with respect to a given SDP, according to the unit’s state-
machine. The unit is then in charge of dispatching event notifications to its registered 
listeners. However, there are some variations applied to the traditional event-based 
style. First, the unit does not systematically forward incoming events to all subscrib-
ers. The unit filters events, and may additionally react to them through actions to 
modify its current configuration. Events delivery and executed actions are dependent 
upon the unit’s state machine described earlier. A notable feature of our solution is 
that SDP interoperability components that are developed are not necessarily specific 
to a SDP. Customization of a unit with respect to a SDP results from the specific con-
figuration and in particular the embedded FSM. 

As a result, interoperability components may be reused in various units, even if not 
related to the same SDP. For instance, at the implementation level, HTTP or XML 
parsers developed for one SDP may be reused for another. Definition of a unit then 
relies upon specifying embedded components, as exemplified below for a UPnP unit: 
 

Component Unit UPnP = { 
setFSM(fsm, UPNP); 
AddParser(component, SSDP); 
AddComposer(component, SSDP); 
…} 

The state machine’s description is itself considered as a part of the system specifi-
cation. Hence, a new operator is introduced to define state machines: 

 
Component UPnP-FSM ={ 

AddTuple(CurrentState,triggers,condition-guards,NewState,actions) 
 …} 

In the above tuple, CurrentState and NewState are labels to name different states, 
triggers are taken from the set of previously defined events, condition-guards are 
Boolean expression on events and actions are those provided by the unit’s interface. 



4 Prototype Implementation and Performance 

We have implemented a first prototype of INDISS. Currently, it includes a UPnP unit 
and a SLP unit. Although our prototype is not yet optimised, it is robust enough to as-
sess the performance of our approach in different use cases. The following discusses 
key elements of the prototype. We first outline its small size requirements compared 
to existing solutions (§4.1). We then discuss how it improves interoperability within 
the networked home according to the nodes on which it is deployed and the usage 
context (§4.2).  Finally, we evaluate INDISS performance by comparing response 
times with native service discovery (§4.3). 

4.1 Prototype implementation 

The prototype is implemented in Java to take advantage of cross platform portability. 
We are, in particular, able to deploy our solution on any mobile device that embeds 
J2ME [12], which provides a Java virtual machine customized for devices with lim-
ited resources. However, INDISS is not constrained to be written in Java, and may be 
developed as well in C or in any other programming language closer to the embedded 
operating system, to get a smaller code-size foot print and better execution speeds. 
Nevertheless, in Java, we get already very encouraging results. We compare the size 
required by INDISS with common open-source library like OpenSlp1 and Cyberlink 
for Java2. 

 
As depicted in Table 2, currently, the overall INDISS system consists of 39 Java 

classes, and 2910 lines of Non Commented Source Statements Classes (NCSS). The 
overall system size is 218 Kbytes. This includes 125Kbytes for the UPnP Unit and 
49Kbytes for the SLP one. To be interoperable, nodes running UPnP (resp. SLP) ap-
plications need to host native UPnP (resp. SLP) library plus INDISS. This is to be 
contrasted with a device that is not equipped with our interoperable system, which 
needs: (i) to host both the full UPnP stack and the SLP library and, (ii) some engineer-
ing effort to develop and host an additional SLP (resp. UPNP) client that is equivalent  
in terms of functionalities to the UPnP (resp. SLP) client. 

 
Still in Table 2, without INDISS, the size requirements of a middleware that needs 

to be interoperable for hosting one simple service is 514Kbytes. Conversely, the size 
requirement for a middleware dedicated to UPnP (resp. SLP) equipped with INDISS 
is 598Kbytes (resp. 352Kbytes). Moreover, the size requirements increase proportion-
ally with the number of hosted services. Therefore, according to the number of hosted 
services, the size requirements of an interoperable middleware without INDISS in-
creases faster than the one equipped with INDISS simply because, for the former, 
each time we add a service we are multiplying its size by two (e.g., SLP service size + 
UPnP service size). 
 

                                                             
1 http://www.openslp.org/ 
2 http://www.cybergarage.org/net/upnp/java/ 



Table 2. Size requirements in KBytes for known libraries and INDISS 

Thus, the small size overhead introduced by INDISS with UPnP applications dis-
appears with the number of hosted services. Last but not least, a middleware that 
needs to host different services, in terms of both functionalities and SDP used, must 
have all the corresponding native libraries irrespectively of the use of INDISS. How-
ever, in this case, the latter still provides efficient interoperability: it reduces drasti-
cally both the number of hosted services and, in the long term, the overall middleware 
size since you do not have to develop and deploy services for each existing SDP. 

4.2 Interoperability scenarios 

One of our objectives is to provide service discovery interoperability to applications 
without altering them. Hence, applications are not aware of interoperability mecha-
nisms and actually have the illusion that the remote applications that they discover 
(and/or discover them) use the same SDP. In this context, several use cases may be 
considered, according to both the nature of the SDPs that are used and the location of 
INDISS, which can be localized on the client, server, both or gateway.  

Another of our other objectives is to save resources on resource-constrained de-
vices and the bandwidth that is shared among devices in the network. It is thus impor-
tant to examine the impact of INDISS on resource consumption. This may in particu-
lar vary according to the system’s location (i.e., where it is deployed) and usage 
context. The usage context of the system depends on the SDP model used by the cli-
ents and services. Referring to Section 2, there exist two SDP models: passive and ac-
tive. We need thus to distinguish cases where the client (resp. service provider) acts as 
listener and as a requester.  Moreover, we obviously assume that either the client or 
service node hosts INDISS. As a result, for each possible scenario, two uses cases are 
possible, according to the location of INDISS.  

Consider first that both clients and services are based on the passive discovery 
model (see Figure 6). In this context, clients are listeners and services are requesters. 
The most optimised location for INDISS is to be hosted on the client side. Thereby, 

INDISS size requirements 
 Size (KB) Classes NCSS Overhead 

Core framework 44 15 789 - 
UPnP Unit 125 18 1515 - 
SLP Unit 49 6 606 - 
Total 218 39 2910 - 

SDP library size requirements 
OpenSlp Library 126 21 1361 - 
Cyberlink UPnP  372 107 5887 - 
Total 498 128 7248 - 

Size requirements to provide interoperability with and without INDISS 
SLP &UPNP Library + 
SLP & UPnP clients 

514 - - - 

UPnP client & Library + INDISS 598 - - 14% 
SLP client  & Library + INDISS 352 - - -31.5% 



clients are able to intercept all messages generated by the remote service whatever its 
specific multicast group or message format (see left-top of Figure 6). In contrast, if 
INDISS is localized on the service side, it will never intercept messages from clients 
as, by definition of the passive discovery model, clients are listeners and never gener-
ate messages. We get a blocked situation as depicted in the right top of Figure 6. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 6. SDP interoperability and passive service discovery 
 
Consequently, we must define a network traffic threshold below which INDISS, 

hosted on the service host, must become active so as to intercept messages generated 
from the local services in order to translate them to any known SDPs according to the 
embedded units (see bottom of Figure 6). Although this specific use case illustrates 
the high flexibility of INDISS to adapt itself to the context, it has non-negligible im-
pact on resource consumption. Indeed, dynamic reconfiguration of the system has a 
processing cost and service advertisements following the enactment of the active 
model increases bandwidth usage. However, interoperability is enforced without 
really saturating the bandwidth, as INDISS is switched to the active model only when 
the network traffic is low. 

Consider now the case where both clients and services are based on the active dis-
covery model, i.e., clients are requesters and services are listeners. In order to opti-
mise the bandwidth usage and computational resources, the most suitable location for 
INDISS is to be on the service side. Otherwise, in a way similar to the previous sce-
nario, ineffective SDP interoperability may arise when INDISS is located on the re-
quester side. In general, when the clients and services are based on the same discov-
ery model, the most convenient location for INDISS is on the listener side. 

It may be the case that the clients and services are based on different discovery 
models. If the clients are based on the active model and services are based on the pas-
sive model, then both clients and services generate SDP messages. Interoperability is 
guaranteed without additional resources cost. Nevertheless, some subtleties arise. 
Hosting INDISS on the client side means that the client benefits from the advertise-
ments of remote services. But, the client’s requests will not reach remote services that 
are based on different SDPs if they are not interoperable (i.e., they do not host our 
interoperability system). On the contrary, if services embed INDISS and not the cli-
ents, requests from the latter will be taken into consideration from services, whereas 
clients will not be aware of services’ advertisements originating from SDPs different 
than the one hosted on the clients. Although, in this case, interoperability is not as ef-
fective as expected, clients and services do interact. Furthermore, interoperability ef-
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fectiveness may be improved if the bandwidth is under-utilized, thanks to INDISS re-
configurability. 

Conversely, when clients are based on the passive model and services are based on 
the active model, both clients and services are listeners. Once again, we are faced with 
the recurrent ineffective discovery interoperability. However, in this particular case, 
dynamic reconfiguration of INDISS does not resolve the clients’ inability to discover 
services, since there is no node initiating SDP-related communication. There is no 
way to resolve this issue, considering our constraint to not alter the behaviour of 
SDPs, clients and services. On the other hand, this specific case is unlikely to happen. 
Nowadays, in practice, clients are always able to generate requests.   

Summarizing, irrespective of the service discovery model used by clients and serv-
ices, we are able to guarantee a minimum level of interoperability. Depending on the 
environment, the bandwidth usage may be increased to enable interoperability. The 
basic idea is to provide a quasi-full interoperability as long as the bandwidth-usage 
enables it. Then, interoperability degradation may occur according to the traffic. Fur-
thermore, by design, INDISS is independent of its host. Thus, it is not mandatory for 
INDISS to be deployed on the client or service host. INDISS may be deployed on a 
dedicated networked node, depending on the specific network environment. Such a 
dedicated node may in particular translate messages generated in one environment 
from any SDP to messages handled by any other SDP, according to the traffic condi-
tion. Obviously, this specific configuration generates additional traffic and is only 
valid as long as there is enough bandwidth.  

4.3 Experimental results  

We evaluate the performance of our interoperability mechanisms by investigating the 
response time of INDISS when enabling a client dedicated to one SDP to discover a 
service based on another SDP. Specifically, the experiments consider the case where a 
SLP (resp. UPnP) client searches a SLP (resp. UPnP) service. We then compare the 
native client waiting time to get an answer from a native service, with its waiting time 
to get an answer from an INDISS-translated service. The impact of INDISS on per-
formance varies according to its location, on either the client or the service side. Thus 
in the following, we consider the two cases. In addition, as interoperability is 
achieved without generating additional traffic, we have not evaluated the network 
bandwidth consumption. Indeed, the generated traffic is well known since we are nei-
ther providing a new service discovery protocol nor altering native protocols. 

Although our solution is dedicated to various devices, including resources con-
strained ones, all tests are performed on workstations equipped with 256Mbytes RAM 
on Intel PIV processor rated at 1.8GHz. In fact, currently, to the best of our knowl-
edge, there does not exist any UPnP profile for J2ME devices in the open source 
community. Thus, the operating system, the Java virtual machine and the performance 
tools platform used are respectively Linux from Redhat Fedora Core 2, JDK1.4.2 
from SUN and the Hyades platform from Eclipse Foundation. Moreover, the SLP 
(resp. UPnP) client and SLP (resp. UPnP) service are hosted on different hosts con-
nected to a LAN at 10Mb/s. The SLP client and service are based on OpenSlp 
whereas UPnP client and service use Cyberlink for Java. The given measurements are 



in ms and are the median of 30 successful tests to avoid a mean skewed by a single 
high or low value. 
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Fig. 7. Native clients & services 
 

In Figure 7, we first give the response time of a search request generated by a native 
client to get a successful answer from a native service: for SLP, we get 0.7 ms, 
whereas for UPnP, we get 40ms. It is clear that using SLP is much more efficient than 
UPnP, which is a higher-level protocol than SLP. These results are considered as ref-
erences values to enable us to interpret the following results. 

Consider now the case where INDISS is located on the service side to enable the 
latter to be interoperable with any client independently of its SDP (Figure 8). In the 
context where the client is SLP and the service is UPnP, the client gets an answer in 
65 ms. The translation between SLP and UPnP is not direct. For instance, UPnP and 
SLP search responses are semantically different: a SLP client expects a direct refer-
ence to interact with the service discovered whereas a UPnP client expects a reference 
to a description file corresponding to the service found. Consequently, INDISS has 
translated the SLP request into two local UPnP requests to get the information that is 
necessary to generate on the network the corresponding SLP response. This means 
that INDISS has waited and parsed successively two UPnP responses increasing thus 
the SLP responsiveness latency. On the service side, it is clear that INDISS simulates 
a UPnP client and therefore we cannot interfere on the native time taken to get UPnP 
response from the service. In this context, the INDISS result is pretty good.   
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Fig. 8. Performance with INDISS located on the service side 

Still in Figure 8, when the client is UPnP and the service is SLP, the response time 
to get an answer is 40ms. In fact, it corresponds exactly to a search request generated 
on the network from a native UPnP client to a native UPnP service. On the service 
side, the response time to a SLP request is negligible as the latter is generated locally. 
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Fig. 9. Performance with INDISS located on the client side 

When INDISS is located on the client side (Figure 9a), the latter becomes interop-
erable and can discover any service whatever its SDP. If the client is SLP and the 
service is UPnP the SLP client gets the answer to its search request in 80ms. It corre-
sponds globally to two native UPnP responses from a native UPnP service. It is obvi-
ous since, as previously, INDISS has translated the SLP request into two network 
UPnP requests to get the necessary information to generate locally the corresponding 
SLP response. Once again, INDISS result is encouraging. It is important to note that 
compared to the case depicted in Figure 8, the response time is higher than previously 
simply because the UPnP traffic goes across the network between INDISS and the 
UPnP service, increasing by 15 ms the response time. In the same context, the lack of 
speed inherent to the UPnP protocol is confirmed as a UPnP client gets a response 
from a SLP service in only 0.12ms (Figure 9b). This is due to the fact that first the 
UPnP traffic is local and then the only traffic that goes across the network is SLP, 
which is particularly fast. In addition, the necessary information to generate a search 
response for UPnP is tiny. We can consider this case as the best case. 

From the above results, we have shown that INDISS is particularly efficient in 
providing interoperability in all possible context use.  

5 Conclusion 

INDISS overcomes the heterogeneity of service discovery in the networked home and 
decomposes into two mechanisms: SDP detection and SDP interoperability, allowing 
therefore any networked home system to discover and interpret all the services avail-
able in the home environment, independent of underlying middleware technologies. 
Our solution is specifically designed for highly dynamic home networks, which re-
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quires both minimizing resource consumption, and introducing lightweight mecha-
nisms that may be adapted easily to any platform. INDISS is composed of a set of 
event-based components and their composition/configuration is performed dynami-
cally at run-time according to both the context and the host on which INDISS is de-
ployed. As a result, service discovery interoperability is provided to applications 
without altering them: applications are not aware of the existence of INDISS, which 
adapts itself to the context. In particular, INDISS may be deployed on a client, a serv-
ice or a gateway.  As demonstrated by the first INDISS prototype, experiment results 
are encouraging.  The response time of INDISS when enabling a client dedicated to 
one SDP to discover a service based on another SDP is close to request/response 
among related native clients/services.  

Once services are discovered, applications further need to use the same interaction 
protocol to allow unanticipated connections and interactions with them. In this con-
text, the ReMMoC reflective middleware introduces a quite efficient solution to inter-
action protocol interoperability. The plug-in architecture associated with reflection 
features allows mobile devices to adapt dynamically their interaction protocols (i.e., 
publish/subscribe, RPC etc.). Furthermore, [13] proposes to use ReMMoC together 
with WSDL [14] for providing an abstract definition of the remote component’s func-
tionalities. Client applications may then be developed against this abstract interface 
without worrying about service implementation’s details. However, the solution dis-
cussed in [13] suffers from a major constraint: service and client must agree on a 
unique WSDL description. But, once again, in a dynamic network, the client does not 
know the execution context.  Therefore, it is not guaranteed to find exactly the ex-
pected service. Client applications have to find the most appropriate service instance 
that matches the abstract requested service. In addition, this leads to the dynamic 
composition of services. This issue is addressed by the WSAMI middleware devel-
oped in the context of the Ozone project [15], which introduces enhanced WSDL 
specification for mobile services and a dedicated middleware to allow a service in-
stance to be automatically selected and composed upon a user request, according to 
the services that may be retrieved in the environment. However, if WSAMI provides 
interoperability to Web services in the mobile environment, it is still a SOAP based 
middleware, and hence does not deal with interoperability among components using 
heterogeneous interaction protocols. We are currently investigating solutions to this 
issue to complement our solution to SDP interoperability and thus support middle-
ware interoperability, as required by today’s network environments [1]. 
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