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Elasticity of sphere packings: pressure and initial state dependence

I. Agnolin & J.-N. Roux
Laboratoire des Mat́eriaux et des Structures du Génie Civil, Institut Navier, Champs-sur-Marne, France

ABSTRACT: Elastic properties and internal states of isotropic sphere packings are studied by numerical sim-
ulations. Several numerical protocols to assemble dense configurations are compared. One, which imitates
experiments with lubricated contacts, produces well coordinated states, while another, mimicking the effect of
vibrations, results, for the same density, in a much smallercoordination numberz, as small as in much looser
systems. Upon varying the confining pressureP , simulations show a very nearly reversible variation of density,
while z is irreversibly changed in a pressure cycle. Elastic moduliare shown to be mainly related to the coordi-
nation number. TheirP dependence notably departs from predictions of simple homogenization approaches in
the case of the shear moduli of poorly coordinated systems.

1 INTRODUCTION
The mechanical properties of solidlike granular mate-
rials are well known to depend on the internal struc-
ture of the packing. Classically, one distinguishes
between the behaviour of dense and loose materi-
als (Wood 1990; Mitchell 1993). However, some re-
sults – see e.g. (Benahmed et al. 2004) – also indicate
that other factors than the sole packing fraction (or
void index) also determine the quasistatic response to
applied load variations. In numerical simulations, it is
a common practice to remove friction in the assem-
bling stage in order to prepare dense samples (Makse
et al. 1999; Thornton 2000). It is not guaranteed that
the correct initial state, as obtained in laboratory ex-
periments, is reproduced. Elastic properties, or sound
wave velocities, are now commonly measured in soil
mechanics (Chen et al. 1988; Hicher 1996) and con-
densed matter physics (Jia et al. 1999) laboratories.
Their evaluation in numerical calculations can allow
for comparisons with experiments.

We report here on a numerical study of isotrop-
ically assembled and compressed sphere packings,
prepared in different initial states. Coordination num-
bers are found to vary according to the preparation
method independently from density, and to determine
the elastic moduli and their pressure dependence.

2 MODEL AND NUMERICAL METHODS
Numerical samples of 4000 identical balls of diame-
ter a and massm are prepared by standard molecu-
lar dynamics calculations, involving periodic bound-
ary conditions in all three directions. The method is
similar to those of Cundall & Strack (1979) or Thorn-
ton (2000), except that stresses, rather than strains, are

controlled, as in (Parrinello & Rahman 1981). Contact
elasticity relates the normal forceFN is to the normal
deflectionh of the contact by the Hertz law

FN =
Ẽ
√

a

3
h3/2, with Ẽ =

E

1− ν2
, (1)

while variations of tangential elastic forcesFT with
tangential displacementsδuT ,

dFT

dδuT
= αT

dFN

dh
, with αT =

2(1− ν)

2− ν
, (2)

are modeled with a simplified form of the Cattaneo-
Mindlin-Deresiewicz theory (Johnson 1985). On im-
plementing (2), special care was taken, as advocated
by Elata & Berryman (1996), to avoid spurious cre-
ation of elastic energy.

Particles are endowed with the Young modulus
E = 70 GPa and the Poisson coefficientν = 0.3 of
glass beads. The tangential reaction is limited by the
Coulomb condition with friction coefficientµ = 0.3.

First, the sample is assembled from an initial
disordered loose granular gas state, under the pre-
scribed isotropic pressureP = 10 kPa. In proce-
dure A, tangential forces are suppressed in this stage,
as for frictionless grains. This produces dense sam-
ples with a coordination numberz∗, counting only
force-carrying grains and contacts, approaching 6
in the rigid limit (Roux 2000). Only a small frac-
tion f0 ≃ 1.3% of grains (the “rattlers”) carry no
force. This procedure, already used in other numer-
ical work (Thornton 2000), amounts to dealing with
perfectly lubricated beads. Imperfect lubrication can
be modelled with a very small friction coefficient,
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µ0 = 0.02, resulting in slightly different samples, de-
noted as B configurations.

A different assembling procedure (method C) was
designed to simulate dense samples obtained by vi-
bration. Configurations A are first dilated, scaling all
coordinates by a common factorλ = 1.005, thereby
supressing the contacts ; then the grains are attributed
random velocities and mixed with a kinetic-energy
preserving event-driven (“hard sphere”) calculation,
until each of them has undergone 50 collisions on av-
erage ; finally, they are compressed with strongly dis-
sipative collisions and friction, to mechanical equilib-
rium underP = 10 kPa. Remarkably (see table 1),
such configurations C are very nearly as dense as the
perfectly lubricated ones A, and actually denser than
B ones, while their active coordination numberz∗ is
considerably lower, with many more rattlers.

Finally, procedure D consists in directly compress-
ing the granular gas to equilibrium at 10 kPa with the
final coefficient of frictionµ = 0.3. z∗ values are close
to the C case, but the density is significantly lower.

Table 1 summarizes the data on these initial states.
All data throughout this paper are averaged over 5
different samples, error bars correspond to one r.m.s.
deviation. These initial states are then further com-

Table 1. Packing fractionΦ, coordination numberz∗ on force-
carrying structure and proportion of rattlersf0 at the lowest pres-
sure10 kPa for the four simulated preparation procedures.

State Φ z∗ f0 (%)
A 0.637± 0.009 6.074± 0.002 1.3± 0.2

B 0.627± 2 · 10−4
5.80 ± 0.007 1.65 ± 0.02

C 0.635± 0.002 4.56± 0.03 13.3± 0.5

D 0.606± 0.002 4.62± 0.01 10.4± 0.9

pressed, on applying pressure steps, up to 100 MPa,
assuming contacts still behave elastically, and then the
pressure is gradually decreased back to 10 kPa. To en-
sure quasistatic conditions are maintained with suffi-
cient accuracy, strain ratesǫ̇ are constrained by con-
dition ǫ̇

√

m
aP

< 10−4. Equilibrium states are recorded
for pressure values at ratio

√
10. Throughout this pro-

cess, the friction coefficient is maintained equal to
0.3, for all four configuration types. Elastic constants
are measured on building the stiffness matrix associ-
ated with the contact network at equilibrium.

3 RESULTS
3.1 Structure of equilibrium configurations
The results obtained on samples A, C and D are re-
ported below, configurations of type B behaving very
similarly to A ones. Fig. 1 displays the evolution of
packing fractionΦ and coordination numberz∗ over
the compression-decompression cycle. Changes inΦ
are very nearly reversible (elastic): density differences
between states A, C and D, are maintained at low
pressure after one cycle, although A and C samples
exhibit very similar properties at highP . The shape

Figure 1. Variations ofΦ andz∗ asP increases up to 100 MPa
and decreases back to 10 kPa, in samples A (square dots), C
(open circles), and D (crosses).

of the normal force distribution also changes withP .
It can be characterized by the reduced moments:

Z(α) =
〈F α

N〉
〈FN〉α

, (3)

while the average normal force, for monosized beads,
simply relates toP as

〈FN〉 =
πa2P

zΦ
, (4)

z = z∗(1 − f0) being the total coordination number.
The width of this distribution, as expressed, e.g., by
Z(2), decreases at growingP , the fastest in well-
coordinated A samples. Changes in friction mobiliza-
tion are also observed : asP grows, it first decreases
in C and D samples, and increases in A ones (in which
it starts at zero).

The change ofz∗ in type A samples asP decreases
from a high value – many more contacts are lost than
were gained at increasingP – might seem surprising.
One should note however that configurations with a
high coordination number, for nearly rigid grains, are
extremely rare. Each contact requires a new equation
to be satisfied by the set of sphere centre positions.
Equilibrium states of rigid, frictionless sphere assem-
blies, apart from the motion of the scarce rattlers, are
isolated points in configuration space, because of iso-
staticity (Roux 2000). As isotropic compression, at
the microscopic scale, is not reversible, due to friction
and to geometric changes, one should not expect ex-
ceptional configurations to be retrieved upon decreas-
ing the pressure. Large coordination numbers of A (or
B) samples do not survive a pressure cycle. The his-
tory of an isotropic sample can therefore significantly
influence its structure without any appreciable density
change.

3.2 Elastic moduli
Bulk (B) and shear (G) moduli of all equilibrium
states for ascendingP were computed on solving
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linear systems of equations involving the stiffness
matrix (they express the response to infinitesimal
stress changes). Their variations withP are plotted
on Fig. 2. Results for configurations B (not shown)
are very close to those of A samples. The obvious first

Figure 2.P dependence of bulk moduliB (bottom) and shear
moduli G (top) (symbols for A, C, D states as on fig. 1, joined
by continuous lines), and of their upper (B andG) and lower (for
B only) bounds for states A and C (same symbols, no line). Note
the relatively narrow bracketing ofB in all cases, and the large
overestimation ofG by its Voigt upper bound in C samples.

conclusion to be drawn is that elastic moduli are sen-
sitive to coordination rather than density, as results for
statesC andD are very similar. The pressure depen-
dence of bulk moduli differs a little between A sam-
ples on the one hand and C, D on the other. In the
latter case, the increases ofB with P is slightly faster
than theP 1/3 law predicted by simple estimates (see
below). The most striking behaviour is that ofG in
samples C and D, the increase of which approaches a
P 1/2 dependence. To explain such observations, one
can try to estimate the moduli as follows. Assuming
the distribution of normal forces is known, one gets
by virtue of (1) and (2) the distribution of contact
stiffnesses. It is easy, then, to derive upper bounds
to B andG, and a lower bound toB, analogous to
the Voigt and Reuss bounds for elastic heterogeneous
continua (Nemat-Nasser & Hori 1993). The Voigt up-
per bound is the simple “effective medium” estimate
that results from the assumption of affine displace-
ment fields. Using the properties and notations intro-

duced in Eqns. 1, 2, 3 and 4, one gets:

B ≤ BVoigt =
1

2

(

zΦẼ

3π

)2/3

P 1/3Z(1/3)

G ≤ GVoigt =
6 + 9αT

10
BVoigt.

(5)

To write a lower bound (Reuss estimate), one needs a
trial set of equilibrium contact force increments cor-
responding to the stress increment. For a simple in-
crease of isotropic pressure, this is readily obtained
by a scaling of the forces corresponding to the pre-
existing pressure. Hence a lower bound forB (but no
such estimate is available forG). Denoting asrTN the
ratio ||FT ||/FN in each contact, and defining

Z̃(5/3) =
〈F 5/3

N (1 +
r2

TN

αT

)〉
〈FN 〉5/3

,

a modified reduced momentZ(5/3) (Eqn. 3), one has:

B ≥ BReuss=
1

2

(

zΦẼ

3π

)2/3

P 1/3

Z̃(5/3)
. (6)

In view of the force distribution and mobilization of
friction observed,B, bracketed by (5) and 6, cannot
depart very much from aP 1/3 dependence (r2

TN/αT

is at most0.11 anyway forµ = ν = 0.3, and the prod-
uctZ(1/3)Z(5/3) only exceeds 1.15 for systems with
few contacts at low pressure). As to the increase ofz
with P , it does not appear to entail large effects either.

The behaviour ofG for samples C and D is quite
different. G seems to get unexpectedly small (G <
B/2) at low pressure. Its upper bound is a very
poor estimate in such cases (as, by (5),GVoigt =
1.34×BVoigt). The situation is reminiscent of friction-
less sphere packings (O’Hern et al. 2003), for which
G ≪ B under isotropic pressure in the rigid limit. We
could observe that those states had the largest level
of strain fluctuations (departure from affine displace-
ment field).

4 CONCLUSION
Our simulations of isotropically assembled sphere
packings revealed the following points.

• Configurations of a given density can vary con-
siderably in coordination number. Samples as-
sembled with a procedure designed to imitate vi-
bration can have a large density and a small co-
ordination number.

• Elastic moduli are primarily sensitive to coordi-
nation numbers.

• They vary with pressure in rather good agree-
ment to simple predictions (nearly asP 1/3, with
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a small effect of contact creation asP increases)
in highly coordinated samples, but the shear
modulus behaves quite anomalously in poorly
coordinated ones, with a low value at lowP and
a faster increase, nearly asP 1/2 in some cases.

• A compression-decompression cycle, although
almost reversible in terms of density, can sub-
stantially reduce the coordination number when
it was initially high.

We therefore suggest to use elastic moduli, which can
be compared between simulations and experiments,
as indicators of the internal state (contact density) of
granular packings.

On comparing numerically predicted ultrasonic
wave velocities with experimental values obtained on
dense sphere packs withP in the range 100-800 kPa,
we observe (Agnolin et al. 2005) that perfectly lu-
bricated samples (type A or B), are considerably too
stiff, even though they agree with experimental ob-
servations in the MPa range (Makse et al. 1999).
Although somewhat idealized, our “vibrated” ones
(type C) seem to be closer to the materials studied
in the laboratory. We also note in another contribu-
tion to the present proceedings (Roux 2005) that their
stress-strain curves under growing deviatoric stress
are also closer to experimentally observed mechanical
behaviours. Of course, it will be necessary in the near
future to investigate by numerical simulations more
“realistic” assembling procedures (Emam et al. 2005),
and the effects of the resulting anisotropy.
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