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Abstract

In this paper we describe a method to select the bandwidth used
in the nonparametric EM (npEM) algorithm of Benaglia et al. (2008).
This method is a generalization of the Silverman’s rule of thumb used
to select a bandwidth in kernel density estimation, and it results in one
bandwidth for each mixture component and each block of conditionally
independent and identically distributed repeated measures.
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1 Introduction

Suppose the r-dimensional vectors X1, . . . ,Xn are a simple random sample
from a finite mixture of m > 1 distributions. For nonparametric mixtures,
we do not assume that the component distributions come from a family
of densities that may be indexed by a finite-dimensional parameter vector.
However, it is necessary to restrict the family F of multivariate density func-
tions from which the component densities are drawn in order to avoid the
problem of model non-identifiability, as discussed by Benaglia et al. (2008)
and several of the references therein. To this end, we assume throughout
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this article that F contains only densities equal to the product of their r uni-
variate marginal densities. In other words, the coordinates of the Xi vector
are independent, conditional on the subpopulation or component (1 through
m) from which Xi is drawn. This conditional independence assumption has
appeared in a growing body of literature on non- and semi-parametric mul-
tivariate mixture models; see Benaglia et al. (2008) for a discussion of the
relevant literature. Also see Allman et al. (2008) and Kasahara and Shi-
motsu (2008) for recent breakthroughs related to the identifiability of these
models. We avoid discussion of the identifiability question here, except to
state that Allman et al. (2008) give mild sufficient conditions for identifia-
bility whenever r ≥ 3.

We let θ denote the vector of parameters, including the mixing propor-
tions λ1, . . . , λm and the univariate densities fjk (here and throughout this
article, j indexes the component and k indexes the coordinate, so 1 ≤ j ≤ m
and 1 ≤ k ≤ r). Thus, under the assumption of conditional independence,
the mixture density evaluated at xi = (xi1, . . . , xir)

t is

gθ(xi) =
m

∑

j=1

λj

r
∏

k=1

fjk(xik). (1)

In many models, there is reason to assume that some or all of the r coor-
dinate densities fj1(·), . . . , fjr(·) are the same for all j. For instance, Elmore
et al. (2004) and related articles assume that the coordinates are condition-
ally independent and identically distributed (iid), i.e., fj1(·) = · · · = fjr(·)
for all j. In order to encompass both the conditionally iid case and the more
general case simultaneously in the model and our algorithm, we allow that
the coordinates of Xi are conditionally independent, and that there exist
blocks of coordinates that are also identically distributed. These blocks may
all be of size one so that the general case is still covered, or there may exist
only a single block of size r, which is the conditional iid case. If we let bk

denote the block to which the kth coordinate belongs, where 1 ≤ bk ≤ B
and B is the total number of such blocks, the general model is

gθ(xi) =
m

∑

j=1

λj

r
∏

k=1

fjbk
(xik). (2)

Benaglia et al. (2008) give an algorithm for estimating θ — i.e., the
mixing weights λj and the densities fjbk

(·) — that is based on the well-known
family of EM algorithms for parametric mixture models. After introducing
the Benaglia et al. (2008) algorithm, this article presents several extensions
of this algorithm that make it more flexible.

2



2 The nonparametric EM algorithm

The algorithm described in Benaglia et al. (2008), which is implemented as a
function called “npEM” in the mixtools package (Young et al., 2009) for R
(R Development Core Team, 2008), operates as follows: Given initial values
θ

0 = (λ0, f0), iterate the following three steps for t = 0, 1, . . .:

• E-step: Letting Zij denote the (unobserved) indicator of the event
that the ith observation is drawn from the jth component, calculate
the “posterior” probabilities (conditional on the data and θ

t) of com-
ponent inclusion,

pt
ij

def
= Pθt(Zij = 1|xi) (3)

=
λt

j

∏r
k=1 f t

jbk
(xik)

∑m
j′=1 λt

j′
∏r

k=1 f t
j′bk

(xik)
, (4)

for all i = 1, . . . , n and j = 1, . . . ,m.

• M-step: Set

λt+1
j =

1

n

n
∑

i=1

pt
ij (5)

for j = 1, . . . ,m.

• Nonparametric density estimation step: For each component
j ∈ {1, . . . ,m} and each block ℓ ∈ {1, . . . , B}, define the function

f t+1
jℓ (u) =

1
h

∑r
k=1

∑n
i=1 pt

ijI{bk = ℓ}K
(

u−xik

h

)

∑r
k=1

∑n
i=1 pt

ijI{bk = ℓ}

=
1

nhCℓλ
t+1
j

r
∑

k=1

n
∑

i=1

pt
ijI{bk = ℓ}K

(

u − xik

h

)

, (6)

where K(·) is a kernel density function, h is a bandwidth (see sec-
tion 3), and

Cℓ =

r
∑

k=1

I{bk = ℓ} (7)

is the number of coordinates in the ℓth block.

Benaglia et al. (2008) give modified versions of the npEM algorithm
tailored for specific situations (iid coordinates, components differing only
by a location or scale parameter, univariate symmetric components, and
others). Extensions of several of these versions are discussed in Benaglia
et al. (2008).
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3 Bandwidth Selection

The nonparametric density estimation step (6) of the npEM algorithm de-
scribed above is a modified version of kernel density estimation, a well-
studied topic in statistics (e.g., see Silverman, 1986; Scott, 1992; Härdle
et al., 2004). The central decision in this step is the selection of an appro-
priate value for the bandwidth h, or smoothing parameter, since this choice
affects density estimates dramatically. The choice of kernel function K(·) is
not as influential, so we simply take the kernel to be the standard normal
density function.

There exist some standard rules in the literature for choosing the band-
width in the univariate case when there is no mixture structure. We will use
some of these standard ideas and extend them to the mixture case. How-
ever, selecting a bandwidth in a mixture setting like this one appears to
be a fundamentally more complicated problem than in the corresponding
non-mixture case due to the fact that we do not obtain direct information
about the individual densities fjℓ from a mixture sample.

Benaglia et al. (2008) use a single fixed bandwidth h for all components
and blocks, selected by default according to a rule of thumb due to Silverman
(1986, page 48). The entire n× r dataset is treated as a vector of length nr
and then

h = 0.9 min

{

SD,
IQR

1.34

}

(nr)−1/5, (8)

where SD and IQR are respectively the standard deviation and interquartile
range of all nr data values.

The nonparametric mixture setting makes bandwidth selection challeng-
ing, and Benaglia et al. (2008) suggest several reasons why a method like
equation (8) might produce an under- or over-estimate for the bandwidth.
First, pooling all of the data implicitly treats all of the different compo-
nents as though they are from the same distribution. This can overestimate
the bandwidth, particularly if the mixture components’ centers are well-
separated, because in that case, the variability of the pooled dataset will be
larger than that of the individual components. Similarly, if the vector coordi-
nates are not identically distributed within each component, the bandwidth
could be biased upward for the same reason. On the other hand, note that
the expression nr in equation (8) is an overestimate of the “true” sample
size obtained from one of the components or one of the iid coordinate blocks,
especially when each of the r coordinates forms its own block as in equation
(1), in which case it may be sensible to eliminate the r from the equation (8)
entirely. But regardless of whether the coordinates are combined in blocks
or not, the fact remains that the “true” sample size from each component
is actually some fraction of n, namely, about nλj for the jth component.

A further limitation of the Benaglia et al. (2008) algorithm is that equa-
tion (6) forces each component and block to employ the same bandwidth,
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when in fact there is no reason to assume that these bandwidths should
be the same. In other words, we may simply modify the algorithm from
Benaglia et al. (2008) by replacing h by hjℓ in equation (6), thus allowing
a different value of the bandwidth for each component and each block den-
sity function. The remainder of this section describes how to modify the
Benaglia et al. (2008) algorithm to allow for this greater flexibility.

As noted earlier, the challenge of bandwidth selection for a mixture
model is that a sample from gθ(x) does not give direct information about
the individual densities fjℓ. However, after each iteration of the npEM algo-
rithm, we do have density estimates f t+1

jℓ . This suggests an iterative scheme
whereby re-estimation of the hjℓ values becomes part of a modified npEM
algorithm at each iteration.

To adapt Silverman’s rule of thumb (Silverman, 1986, page 48) to select
the value of hjℓ in an iterative procedure, for each iteration of the npEM
algorithm, we need an estimate of the sample size, the sample standard
deviation, and the interquartile range for each component and each block.
Once these estimates are in place, the estimated bandwidths at the (t+1)th
iteration, calculated just before the density estimation step of the algorithm,
are given by:

ht+1
jℓ = 0.9 min

{

σt+1
jℓ ,

IQRt+1
jℓ

1.34

}

(nCℓλ
t+1
j )−1/5, (9)

where nCℓλ
t+1
j estimates the sample size for the ℓth block of coordinates

in the jth component, and σt+1
jℓ and IQRt+1

jℓ are the weighted standard
deviation and empirical interquartile range for the jth component and ℓth
block. Calculation of σt+1

jℓ is fairly straightforward if we augment each M-
step to include

µt+1
jℓ =

n
∑

i=1

r
∑

k=1

pt
ijI{bk = ℓ}xik

n
∑

i=1

r
∑

k=1

pt
ijI{bk = ℓ}

=

n
∑

i=1

r
∑

k=1

pt
ijI{bk = ℓ}xik

nλt+1
j Cℓ

(10)

and

σt+1
jℓ =

[

1

nCℓλ
t+1
j

n
∑

i=1

r
∑

k=1

pt
ijI{bk = ℓ}(xik − µt+1

jℓ )2

]1/2

. (11)

We compute IQRt+1
jℓ as the difference between the estimated 0.75 and

0.25 quantiles of the ℓth block of the jth component. To accomplish this,
we first introduce the notion of a weighted quantile estimate:

Let a1, . . . , aν be real numbers and w1, . . . , wν be associated (nonnega-
tive) weights, with W = w1 + · · ·+wν . The first step in finding the weighted
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quantile estimate is to sort the ai in non-decreasing order. To this end, let
τ(·) be a permutation on the integers {1, . . . , ν} such that

aτ(1) ≤ aτ(2) ≤ · · · ≤ aτ(ν).

(The τ permutation need not be unique if there are ties among the ai.) Then
for α ∈ (0, 1), we define the weighted α quantile estimate to be aτ(iα), where

iα = min

{

s :
s

∑

i=1

wτ(i) ≥ αW

}

is the smallest integer that gives at least a proportion α of the total sum
of weights W . Note that in the special case in which all wi are the same,
the weighted quantile estimate is simply a particular way to define the reg-
ular sample quantile. The mixtools package includes a wquantile func-
tion, based on the findInterval function in R, that implements finding the
weighted quantile.

To find IQRt+1
jℓ , we first calculate the weighted 0.25 and 0.75 quantile

estimate of the nCℓ data values in block ℓ, with corresponding weights given
by the posterior probabilities pt

ij . The weighted interquartile range is then
the difference between these two quantiles. In the mixtools package, the
function wIQR calculates the weighted interquartile range. Note that when
this calculation is performed as part of the npEM algorithm, the permutation
τ need only be calculated once due to the fact that the data and block
structure do not change during the running of the algorithm. Furthermore,
the sum W of the weights at iteration t is equal to λt+1

j Cℓ because of equation
(5).

Note that there are alternatives to the bandwidth selection method of
Silverman (1986) given by equation (9). For instance, simply replacing 0.9
by 1.06 in equation (9) yields the method of Scott (1992). Further bandwidth
selection methods are detailed in the documentation for the bw.nrd0 func-
tion in R (R Development Core Team, 2008), and these might be adapted to
the case of a weighted sample just as the Silverman (1986) and Scott (1992)
methods have been.

4 An example

A simple example serves to illustrate the effect of allowing different band-
widths in the npEM algorithm. We generated 300 observations from a m = 2
component mixture from the general model (2) with trivariate (r = 3) ob-
servations, B = 1 block (i.e. b1 = b2 = b3 = 1, which means that we have
three conditionally iid repeated measures), and parameter and densities:

λ1 = 0.4, f11 ≡ N (0, 1), f21 ≡ N (15, 25). (12)
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We estimate the model applying the npEM algorithm using both a single
bandwidth given by (8) and different bandwidths computed by (9). The code
used to generate the data and then apply the npEM algorithm in R using
the mixtools package may be found in the appendix. Note that in the
actual npEM output, the component labels were switched — i.e., actually
ĥ11 = 1.246 and ĥ21 = 0.266 — but we have relabeled the components to
agree with the definitions of equation (12).

If we consider each component separately and apply Silverman’s rule
of thumb, the bandwidths would be h1 = 0.9(0.4 × 300)−1/5 ≈ 0.35, and
h2 = 0.9 × 5 × (0.6 × 300)−1/5 ≈ 1.593, for the first and second component
respectively. The npEM algorithm used ĥ = 1.932 for a single bandwidth,
and ĥ11 = 0.266 and ĥ21 = 1.246 when allowing different bandwidths. The
left-hand plot of Figure 1 shows that the large value ĥ results in an over-
smoothed density estimate for the first component. Allowing separate band-
width estimates ĥ11 and ĥ21, as in the right-hand plot of Figure 1, gives
better results.
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Figure 1: Effect of bandwidth in the component density estimates. On
the left are estimates from the original npEM algorithm using the same
bandwidths; on the right are estimates using the modified npEM algorithm
in which individual component bandwidths are updated at each iteration.

In Figure 1, we see from the legends that the final estimates of λ1 and λ2

are the same for the two algorithms, i.e., λ̂1 = 0.390 and λ̂2 = 0.610. This is
not guaranteed to be the case: Since the λ estimates are ultimately functions
of the density estimates in the npEM algorithm, the original (fixed, single h)
npEM algorithm can lead to different estimates that the modified algorithm
we introduce here. However, the particular example we have chosen involves
mixture components that are “well-separated” in the sense that it is fairly
easy to assign each observation to one component or the other. Thus, the
final estimate of λ1 is simply the proportion of observations that are classified
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as belonging to the first component, which is 117/300 in this example. We
may observe that this is true by noting that all of the posterior probabilities
pij at the final iteration are very close to zero or one. (In fact, the smallest
value of maxj pij is larger than 0.9999 for both algorithms of Figure 1.)

5 Further extensions

Among the special cases of the npEM algorithm discussed by Benaglia et al.
(2008) are those in which component or block density estimates may differ
from one another, but they differ only in (say) a location or scale parameter
and otherwise they have the same shape. In cases such as these, an extension
of the npEM algorithm as we have suggested here — recalculating each hjk

value at each iteration — should be designed to exploit this structure.
For instance, the most restrictive case discussed in Benaglia et al. (2008)

is the case in which the density function for each component and block shares
exactly the same shape, and the different components and blocks differ only
by a possible location and scale parameter, so that for every component j
and block ℓ, the (j, ℓ) density function becomes

fjℓ(x) ≡
1

σjℓ
f

(

x − µjℓ

σjℓ

)

. (13)

In this case, because we wish to estimate only a single density f(x), the
density estimation step in the algorithm would specify for any u ∈ R that

f t+1(u) =
1

nrh

n
∑

i=1

m
∑

j=1

r
∑

k=1

pt
ijK

(

u − xik + µjbk

hσjbk

)

. (14)

In particular, note that there is no reason to allow a different bandwidth hjℓ

for each component j and block ℓ as in equation (9). In effect, the different
bandwidths for each component and block have been entirely accounted for
by the location and scale parameters. Indeed, in the example of Section
4, the component and block densities all have exactly the same true shape
— normal — so that by accounting for the location and scale changes, we
eliminate the need in that example for different bandwidths. Even in this
case, however, the updating of h at each iteration as in equation (9) is still
useful, since it is still difficult for the simplistic bandwidth-selection rule of
thumb employed by Benaglia et al. (2008) to make a good selection before
anything is known about the mixture structure.

To update h at each iteration under model (13), we cannot merely use a
slightly modified version of equation (9) since the µjℓ and σjℓ parameters now
play a more integral role in the model and indeed the whole point of itera-
tively updating h is to somehow ignore the location and scale parameters for
each component and block. In other words, we should apply the bandwidth-
selection rule of thumb only after each data point xik has been appropriately
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shifted and scaled. Since each xik will actually be shifted and scaled accord-
ing to each of the m components, naturally each (xik − µjbk

)/σjbk
must be

weighted according to the corresponding weight pij . Since the sum of all of
these weights is exactly n, the effective sample size is nr and thus we obtain
the following update for h:

ht+1 =
0.9

(nr)1/5
× min

{

1,
IQRt+1

1.34

}

, (15)

where IQRt+1 is the weighted interquartile range of the n × m × r values
(xik − µjbk

)/σjbk
, with corresponding weights pt

ij , for all 1 ≤ i ≤ n, 1 ≤ j ≤
m, and 1 ≤ k ≤ r. Note that the weighted mean and weighted variance
of these same values are 0 and 1 due to the fact that each xik is properly
normalized within each of the m components, which is why the standard
deviation of equation (9) has been simply replaced by one in equation (15).
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Figure 2: Two algorithms fitting model (13) are compared, one in which the
bandwidth is fixed throughout (dashed lines) and one in which the band-
width is updated at each iteration (solid lines). For each of these two meth-
ods, the two components’ density estimates are identical in shape and differ
only in location and scale.

In Figure 2, we can see the effect of iteratively updating the bandwidth.
Each of the two algorithms whose output is displayed in that figure started
at the same default bandwidth value of 1.932, yet the iteratively updated
bandwidth decreased dramatically at the second iteration, finally settling on
a final value of 0.220. The dashed lines show that the algorithm that fails
to update this bandwidth produces a far poorer density estimate than the
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one that does the updating. This is not surprising, since failing to update
means that the bandwidth must be chosen prior to knowing anything about
the mixture structure, at which point it is very difficult to properly choose
a bandwidth.

For some applications, model (13) may be too restrictive in its assump-
tion that all components and blocks have exactly the same shape of density
function. As Benaglia et al. (2008) discuss, it is also possible to allow each
component or each block to have its own density shape, which leads to
replacing (13) by

fjℓ(x) ≡
1

σjℓ
fj

(

x − µjℓ

σjℓ

)

or fjℓ(x) ≡
1

σjℓ
fℓ

(

x − µjℓ

σjℓ

)

,

respectively. Implementation of our algorithm for either of these models is
relatively straightforward using the same techniques described earlier; and,
in either case, the bandwidth (hj or hℓ) may once again be allowed to depend
upon either the component or the block, as the case may be.

6 Summary

This article extends the simplistic bandwidth-selection scheme of Benaglia
et al. (2008) by allowing for (1) iteratively updating bandwidths; and (2)
component- and block-specific bandwidths. Each of these two extensions
improves the density estimations in certain cases for a different reason: The
first solves the problem that it is difficult to estimate a bandwidth before
knowing about the mixture structure, while the second takes care of cases
in which different components or blocks have very different properties. In
cases where “very different properties” includes only location and/or scale
differences, it is possible (as we explain in Section 5) to correct for these
differences in the model without component- and block-specific bandwidths;
yet in more general cases where these different bandwidths are desirable,
implementation of common bandwidth selection methods such as those of
Scott (1992) or Silverman (1986) requires weighted versions of the interquar-
tile range and the standard deviation as we present here.
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Appendix: Computer code

The following computer code can be used in R, once mixtools version
0.3.3 is installed, to produce the examples seen in this article.

library(mixtools) # mixtools package must be installed first

set.seed(123) # Ensure that results are exactly reproducible

#Generate data:

mu <- matrix(c(0, 15), 2, 3)

sigma <- matrix(c(1, 5), 2, 3)

x <- rmvnormmix(300, lambda = c(.4,.6), mu = mu, sigma = sigma)

# npEM algorithm results:

a <- npEM(x, mu0 = 2, blockid = rep(1,3), samebw = TRUE)

b <- npEM(x, mu0 = 2, blockid = rep(1,3), samebw = FALSE)

# Produce plots like in Figure 1:
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s <- seq(-10, 40, len = 200)

plot(a, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30)

lines(s, dnorm(s)*.4 + dnorm((s-15)/5)/5*.6, lwd = 2, lty = 2)

plot(b, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30)

lines(s, dnorm(s)*.4 + dnorm((s-15)/5)/5*.6, lwd = 2, lty = 2)

# Display npEM bandwidths, minimum values of max_j p_{ij}

a$bandwidth

b$bandwidth

min(apply(a$posteriors, 1, max))

min(apply(b$posteriors, 1, max))

# spEM algorithm results:

d <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = FALSE)

d2 <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = TRUE)

# Produce plot like in Figure 2:

plot(d, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30,

addlegend=FALSE)

plot(d2, newplot=FALSE, addlegend=FALSE, lty=2, dens.col=1)

# Display spEM bandwidths

d$bandwidth

d2$bandwidth

12


