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ABSTRACT. We introduce two operads which own the set of planar forests as a basis. With
its usual product and two other products defined by different types of graftings, the algebra
of planar rooted trees H becomes an algebra over these operads. The compatibility with the
infinitesimal coproduct of H and these structures is studied. As an application, an inductive
way of computing the dual basis of H for its infinitesimal pairing is given. Moreover, three
Cartier-Quillen-Milnor-Moore theorems are given for the operads of planar forests and a rigidity
theorem for one of them.
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Introduction

The Connes-Kreimer Hopf algebra of rooted trees, introduced in [1, 6, 7, 8], is a commutative,
non cocommutative Hopf algebra, its coproduct being given by admissible cuts of trees. A non
commutative version, the Hopf algebra of planar rooted trees, is introduced in [3, 5]. We fur-
themore introduce in [4] an infinitesimal version of this object, replacing admissible cuts by left
admissible cuts: this last object is here denoted by H. Similarly with the Hopf case, H is a
self-dual object and it owns a non-degenerate, symmetric Hopf pairing, denoted by 〈−,−〉. This
pairing is related to a partial order on the set of planar rooted forests, making it isomorphic
to the Tamari poset. As a consequence, H is given a dual basis denoted by (fF )F∈F, indexed
by the set F of planar forest. In particular, the sub-family (ft)t∈T indexed by the set of planar
rooted trees T is a basis of the space of primitive elements of H.

The aim of this text is to introduce two structures of operad on the space of planar forests.
We introduce two (non-symmetric) operads Pց and Pր defined in the following way:

1. Pց is generated by m and ց∈ Pց(2), with relations:






m ◦ (ց, I) = ց ◦(I,m),
m ◦ (m, I) = m ◦ (I,m),
ց ◦(m, I) = ց ◦(I,ց).

2. Pր is generated by m and ր∈ Pր(2), with relations:






m ◦ (ր, I) = ր ◦(I,m),
m ◦ (m, I) = m ◦ (I,m),
ր ◦(ր, I) = ր ◦(I,ր).

We then introduce two products on H or on its augmentation ideal M, denoted by ր and ց.
The product F ր G consists of grafting F on the left leave of G and the product F ց G
consists of grafting F on the left root of G. Together with its usual product m, M becomes
both a Pց- and a Pր-algebra. More precisely, M is the free Pց- and Pր-algebra generated by
a single element q . As a consequence, Pց and Pր inherits a combinatorial representation using
planar forests, with composition iteratively described using the products ց and ր.

We then give several applications of these operadic structures. For example, the antipode of
H is described in term of the operad Pց. We show how to compute elements ft’s, with t ∈ T,
using the action of Pց, and the elements fF ’s, F ∈ F from the preceding ones using the action
of Pր. Combining all these results, it is possible to compute by induction the basis (fF )F∈F.

We finally study the compatibilities of products m, ր, ց, the coproduct ∆̃ and the coproduct
∆̃ր dual of ր. This leads to the definition of two types of Pր-bialgebras, and one type of Pց-
bialgebras. Each type then define a suboperad of Pր or Pց corresponding to primitive elements
of M, which are explicitively described:

1. The first one is a free operad, generated by the element q
q − q q ∈ Pր(2). As a consequence,

the space of primitive elements of H admits a basis (pt)t∈Tb
indexed by the set of planar

binary trees. The link with the basis (ft)t∈T is given with the help of the Tamari order.

2. The second one admits a combinatorial representation in terms of planar rooted trees. It is
generated by the corollas cn ∈ Pր(n), n ≥ 2, with the following relations: for all k, l ≥ 2,

ck ◦ (cl, I, . . . , I
︸ ︷︷ ︸

k − 1 times

) = cl ◦ ( I, . . . , I
︸ ︷︷ ︸

l − 1 times

, ck).
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3. The third one admits a combinatorial representation in terms of planar rooted trees, and
is freely generated by q

q ∈ Pց(2).

We also give the definition of a double Pր-bialgebra, combining the two types of Pր-
bialgebras already introduced. We then prove a rigidity theorem: any double Pր-bialgebra
connected as a coalgebra is isomorphic to a decorated version of M.

This text is organised as follows: the first section gives several recalls on the infinitesimal
Hopf algebra of planar rooted trees and its pairing. The two products ց and ր are introduced
in section 2, as well as the combinatorial representation of the two associated operads. The ap-
plications to the computation of (fF )F∈F is given in section 3. Section 4 is devoted to the study
of the suboperads of primitive elements and the last section deals with the rigidity theorem for
double Pր-bialgebras.

Notations.

1. We shall denote by K a commutative field, of any characteristic. Every vector space,
algebra, coalgebra, etc, will be taken over K.

2. Let (A,∆, ε) be a counitary coalgebra. Let 1 ∈ A, non zero, such that ∆(1) = 1 ⊗ 1. We
then define the non counitary coproduct:

∆̃ :

{
Ker(ε) −→ Ker(ε) ⊗ Ker(ε)

a −→ ∆̃(a) = ∆(a) − a ⊗ 1 − 1 ⊗ a.

We shall use the Sweedler notations ∆(a) = a(1) ⊗ a(2) and ∆̃(a) = a′ ⊗ a′′.

1 Planar rooted forests and their infinitesimal Hopf algebra

We here recall some results and notations of [4].

1.1 Planar trees and forests

1. The set of planar trees is denoted by T, and the set of planar forests is denoted by F. The
weight of a planar forest is the number of its vertices. For all n ∈ N, we denote by F(n)
the set of planar forests of weight n.

Examples. Planar rooted trees of weight ≤ 5:
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Planar rooted forests of weight ≤ 4:

1, q , q q , q
q
, q q q , q

q
q , q q

q
, q∨qq

, q
q
q

, q q q q , q
q
q q , q q

q
q , q q q

q
, q∨qq

q , q q∨qq

, q
q
q

q , q q
q
q

, q
q

q
q
, q∨qq q

, q∨qq

q

, q∨qq

q

,
q∨qq

q , q
q
q
q

.

2. The algebra H is the free associative, unitary algebra generated by T. As a consequence,
a linear basis of H is given by F, and its product is given by the concatenation of planar
forests.

3. We shall also need two partial orders and a total order on the set V ert(F ) of vertices of
F ∈ F, defined in [3, 4]. We put F = t1 . . . tn, and let s, s′ be two vertices of F .

(a) We shall say that s ≥high s′ if there exists a path from s′ to s in F , the edges of F
being oriented from the roots to the leaves. Note that ≥high is a partial order, whose
Hasse graph is the forest F .
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(b) If s and s′ are not comparable for ≥high, we shall say that s ≥left s′ if one of these
assertions is satisfied:

i. s is a vertex of ti and s′ is a vertex of tj, with i < j.

ii. s and s′ are vertices of the same ti, and s ≥left s′ in the forest obtained from ti
by deleting its root.

This defines the partial order ≥left for all forests F , by induction on the the weight.

(c) We shall say that s ≥h,l s′ if s ≥high s′ or s ≥left s′. This defines a total order on the
vertices of F .

1.2 Infinitesimal Hopf algebra of planar forests

1. Let F ∈ F. An admissible cut is a non empty cut of certain edges and trees of F , such
that each path in a non-cut tree of F meets at most one cut edge. The set of admissible
cuts of F will be denoted by Adm(F ). If c is an admissible cut of F , the forest of the
vertices which are over the cuts of c will be denoted by P c(t) (branch of the cut c), and
the remaining forest will be denoted by Rc(t) (trunk of the cut). An admissible cut of F
will be said to be left-admissible if, for all vertices x and y of F , x ∈ P c(F ) and x ≤left y
imply that y ∈ P c(F ). The set of left-admissible cuts of F will be denoted by Adml(F ).

2. H is given a coproduct by the following formula: for all F ∈ F,

∆(F ) =
∑

c∈Adml(F )

P c(F ) ⊗ Rc(F ) + F ⊗ 1 + 1 ⊗ F.

Then (H,∆) is an infinitesimal bialgebra, that is to say: for all x, y ∈ H,

∆(xy) = (x ⊗ 1)∆(y) + ∆(x)(1 ⊗ y) − x ⊗ y.

Examples.

∆( q) = q ⊗ 1 + 1 ⊗ q ,

∆( q q) = q q ⊗ 1 + 1 ⊗ q q + q ⊗ q ,

∆( q
q
) = q

q ⊗ 1 + 1 ⊗ q
q
+ q ⊗ q,

∆( q
q
q) = q

q
q ⊗ 1 + 1 ⊗ q

q
q + q ⊗ q q + q

q ⊗ q ,

∆( q∨qq

) = q∨qq ⊗ 1 + 1 ⊗ q∨qq

+ q q ⊗ q + q ⊗ q
q
,

∆( q
q
q

) = q
q
q

⊗ 1 + 1 ⊗ q
q
q

+ q
q ⊗ q + q ⊗ q

q
,

∆( q q q q) = q q q q ⊗ 1 + 1 ⊗ q ⊗ q q q + q q ⊗ q q + q q q ⊗ q ,

∆( q
q
q q) = q

q
q q ⊗ 1 + 1 ⊗ q

q
q q + q ⊗ q q q + q

q ⊗ q q + q
q
q ⊗ q ,

∆( q q
q
q) = q q

q
q ⊗ 1 + 1 ⊗ q q

q
q + q ⊗ q

q
q + q q ⊗ q q + q q

q ⊗ q ,

∆( q q q
q
) = q q q

q ⊗ 1 + 1 ⊗ q q q
q
+ q ⊗ q q

q
+ q q ⊗ q

q
+ q q q ⊗ q ,

∆( q q∨qq

) = q q∨qq ⊗ 1 + 1 ⊗ q q∨qq

+ q ⊗ q∨qq

+ q q ⊗ q
q
+ q q q ⊗ q ,

∆( q q
q
q

) = q q
q
q

⊗ 1 + 1 ⊗ q q
q
q

+ q ⊗ q
q
q

+ q q ⊗ q
q
+ q q

q ⊗ q ,

∆( q∨qq

q) = q∨qq

q ⊗ 1 + 1 ⊗ q∨qq

+ q ⊗ q
q
q + q q ⊗ q q + q∨qq ⊗ q,

∆( q
q
q

q) = q
q
q

q ⊗ 1 + 1 ⊗ q
q
q

+ q ⊗ q
q
q + q

q ⊗ q q + q
q
q

⊗ q,

∆( q
q

q
q
) = q

q
q
q ⊗ 1 + 1 ⊗ q

q
q
q
+ q ⊗ q q

q
+ q

q ⊗ q
q
+ q

q
q ⊗ q ,
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∆( q∨qq q

) = q∨qq q ⊗ 1 + 1 ⊗ q∨qq q

+ q ⊗ q∨qq

+ q q ⊗ q
q
+ q q q ⊗ q ,

∆( q∨qq

q

) = q∨qq

q

⊗ 1 + 1 ⊗ q∨qq

q

+ q ⊗ q∨qq

+ q
q ⊗ q

q
+ q

q
q ⊗ q ,

∆( q∨qq

q

) = q∨qq

q

⊗ 1 + 1 ⊗ q∨qq

q

+ q ⊗ q
q
q

+ q q ⊗ q
q
+ q q

q ⊗ q ,

∆(
q∨qq

q ) =
q∨qq

q ⊗ 1 + 1 ⊗ q∨qq

q q ⊗ q
q
q

+ q q ⊗ q
q
+ q∨qq ⊗ q ,

∆( q
q
q
q

) = q
q
q
q

⊗ 1 + 1 ⊗ q
q
q
q

+ q ⊗ q
q
q

+ q
q ⊗ q

q
+ q

q
q

⊗ q.

We proved in [4] that H is an infinitesimal Hopf algebra, that is to say has an antipode
S. This antipode satisfies S(1) = 1, S(t) ∈ Prim(H) for all t ∈ T, and S(F ) = 0 for all
F ∈ F − (T ∪ {1}).

1.3 Pairing on H
1. We define the operator B+ : H −→ H, which associates, to a forest F ∈ F, the tree ob-

tained by grafting the roots of the trees of F on a common root. For example, B+( q∨qq

q) =

q∨qq∨qq

, and B+( q q∨qq

) = q∨qq∨q q

.

2. The application γ is defined by:

γ :

{
H −→ H

t1 . . . tn ∈ F −→ δt1, q t2 . . . tn.

3. There exists a unique pairing 〈−,−〉 : H×H −→ K, satisfying:

i. 〈1, x〉 = ε(x) for all x ∈ H.

ii. 〈xy, z〉 = 〈y ⊗ x,∆(z)〉 for all x, y, z ∈ H.

iii. 〈B+(x), y〉 = 〈x, γ(y)〉 for all x, y ∈ H.

Moreover:

iv. 〈−,−〉 is symmetric and non-degenerate.

v. If x and y are homogeneous of different weights, 〈x, y〉 = 0.

vi. 〈S(x), y〉 = 〈x, S(y)〉 for all x, y ∈ H.

This pairing admits a combinatorial interpretation using the partial orders ≥left and ≥high

and is related to the Tamari order on planar binary trees, see [4].

4. We denote by (fF )F∈F the dual basis of the basis of forests for the pairing 〈−,−〉. In other
terms, for all F ∈ F, fF is defined by 〈fF , G〉 = δF,G, for all forest G ∈ F. The family
(ft)t∈T is a basis of the space Prim(H) of primitive elements of H.

2 The operads of forests and graftings

2.1 A few recalls on non-Σ-operads

1. We shall work here with non-Σ-operads [11]. Recall that such an object is a family P =
(P(n))n∈N of vector spaces, together with a composition for all n, k1, . . . , kn ∈ N:

{
P(n) ⊗ P(k1) ⊗ . . . ⊗ P(kn) −→ P(k1 + . . . + kn)

p ⊗ p1 ⊗ . . . ⊗ pn −→ p ◦ (p1, . . . , pn).
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The following associativity condition is satisfied: for all p ∈ P(n), p1 ∈ P(k1), . . ., pn ∈
P(kn), p1,1, . . . , pn,kn

∈ P,

(p ◦ (p1, . . . , pn)) ◦ (p1,1, . . . , p1,k1
, . . . , pn,1, . . . , pn,kn

)

= p ◦ (p1 ◦ (p1,1, . . . , p1,k1
), . . . , pn ◦ (pn,1, . . . , pn,kn

)).

Moreover, there exists a unit element I ∈ P(1), satisfying: for all p ∈ P(n),

{
p ◦ (I, . . . , I) = p,

I ◦ p = p.

An operad is a non-Σ-operad P with a right action of the symmetric group Sn on P(n) for
all n, satisfying a certain compatibility with the composition.

2. Let P be a non-Σ-operad. A P-algebra is a vector space A, together with an action of P:

{
P(n) ⊗ A⊗n −→ A

p ⊗ a1 ⊗ . . . ⊗ an −→ p.(a1, . . . , an),

satisfying the following compatibility: for all p ∈ P(n), p1 ∈ P(k1), . . ., pn ∈ P(kn), for all
a1,1, . . . , an,kn

∈ A,

(p ◦ (p1, . . . , pn)).(a1,1, . . . , a1,k1
, . . . , an,1 . . . , an,kn

)

= p.(p1.(a1,1, . . . , a1,k1
), . . . , pn.(an,1, . . . , an,kn

)).

Moreover, I.a = a for all a ∈ A.

In particular, if V is a vector space, the free P-algebra generated by V is:

FP(V ) =
⊕

n∈N

P(n) ⊗ V ⊗n,

with the action of P given by:

p. ((p1 ⊗ a1,1 ⊗ . . . ⊗ a1,k1
), . . . , (pn ⊗ an,1 ⊗ . . . ⊗ an,kn

))

= (p ◦ (p1, . . . , pn)) ⊗ a1,1 ⊗ . . . ⊗ a1,k1
⊗ . . . ⊗ an,1 ⊗ . . . ⊗ an,kn

.

3. Let Tb be the set of planar binary trees:

Tb =







, ∨ , ∨∨ , ∨
∨

, ∨∨
∨

, ∨∨
∨

, ∨∨
∨

, ∨∨
∨
, �H . . .







.

For all n ∈ N, Tb(n) is the vector space generated by the elements of Tb with n leaves:

Tb(0) = (0),

Tb(1) = V ect ( ) ,

Tb(2) = V ect

(

∨
)

,

Tb(3) = V ect

(

∨∨ , ∨
∨ )

,

Tb(4) = V ect






∨∨
∨

, ∨∨
∨

, ∨∨
∨

, ∨∨
∨
, �H




 .
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The family of vector spaces Tb is given a structure of non-Σ-operad by graftings on the
leaves. More precisely, if t, t1, . . . , tn ∈ Tb, t with n leaves, then t◦(t1, . . . , tn) is the binary
tree obtained by grafting t1 on the first leave of t, t2 on the second leave of t, and so on
(note that the leaves of t are ordered from left to right). The unit is .

It is known that Tb is the free non-Σ-operad generated by ∨ ∈ Tb(2). Similarly, given
elements m1, . . . ,mk in P(2), it is possible to describe the free non-Σ-operad P generated
by these elements in terms of planar binary trees whose internal vertices are decorated by
m1, . . . ,mk.

2.2 Presentations of the operads of forests

Definition 1

1. Pց is the non-Σ-operad generated by m and ց∈ Pց(2), with relations:






m ◦ (ց, I) = ց ◦(I,m),
m ◦ (m, I) = m ◦ (I,m),
ց ◦(m, I) = ց ◦(I,ց).

2. Pր is the non-Σ-operad generated by m and ր∈ Pր(2), with relations:






m ◦ (ր, I) = ր ◦(I,m),
m ◦ (m, I) = m ◦ (I,m),
ր ◦(ր, I) = ր ◦(I,ր).

Remark. We shall prove in [2] that these quadratic operads are Koszul.

2.3 Grafting on the root

Let F,G ∈ F − {1}. We put G = t1 . . . tn and t1 = B+(G1). We define:

F ց G = B+(FG1)t2 . . . tn.

In other terms, F is grafted on the root of the first tree of G, on the left. In particular,
F ց q = B+(F ).

Examples.

q q q ց q
q

= q∨qq

�Hq q
q
q ց q q q = q

q
q

q q q q ց q q q = q∨qq

q q q q q ց q q = q∨qq q

q

q q
q ց q

q
= q∨qq q

q

q
q ց q q

q
= q

q
q

q
q

q q ց q q
q

= q∨qq

q
q

q q
q ց q q = q∨qq

q

q

q
q
q ց q

q
= q∨qq q

q

q
q ց q

q
q = q∨qq

q

q q q ց q
q
q = q∨qq q

q q
q
q ց q q = q∨qq

q

q

q∨qq ց q
q

= q∨qq∨qq

q
q ց q∨qq

= q∨qq q

q

q q ց q∨qq

= q∨qq

�Hq q
q∨qq ց q q =

q∨qq

q q

q
q
q

ց q
q

= q∨qq

q

q

q
q ց q

q
q

= q∨qq

qq

q q ց q
q
q

= q∨qq q

q

q
q
q

ց q q = q
q
q
q

q .

Obviously, ց can be inductively defined in the following way: for F,G,H ∈ F − {1},






F ց q = B+(F ),
F ց (GH) = (F ց G)H

F ց B+(G) = B+(FG).

We denote by M the augmentation ideal of H, that is to say the vector space generated by
the elements of F − {1}. We extend ց: M⊗M −→ M by linearity.
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Proposition 2 For all x, y, z ∈ M:

x ց (yz) = (x ց y)z, (1)

x ց (y ց z) = (xy) ց z. (2)

Proof. We can restrict ourselves to x, y, z ∈ F − {1}. Then (1) is immediate. In order to
prove (2), we put z = B+(z1)z2, z1, z2 ∈ F. Then:

x ց (y ց z) = x ց (B+(yz1)z2) = B+(xyz1)z2 = (xy) ց (B+(z1)z2) = (xy) ց z,

which proves (2). �

Corollary 3 M is given a graded Pց-algebra structure by its products m and by ց.

Proof. Immediate, by proposition 2. �

2.4 Grafting on the left leave

Let F,G ∈ F. Suppose that G 6= 1. Then F ր G is the planar forest obtained by grafting F
on the leave of G which is at most on the left. For G = 1, we put F ր 1 = F . In particular,
F ր q = B+(F ).

Examples.

q q q ր q
q

=
q∨qq

q

q

q
q ր q q q = q

q
q

q q q q ր q q q = q∨qq

q q q q q ր q q = q∨qq q

q

q q
q ր q

q
=

q∨qq

q

q

q
q ր q q

q
= q

q
q

q
q

q q ր q q
q

= q∨qq

q
q

q q
q ր q q = q∨qq

q

q

q
q
q ր q

q
=

q∨qq

q

q

q
q ր q

q
q = q

q
q
q

q q q ր q
q
q =

q∨qq

q q q
q
q ր q q = q∨qq

q

q

q∨qq ր q
q

= q

q

q∨q q

q
q ր q∨qq

= q∨qq

q

q

q q ր q∨qq

= q∨qq∨qq

q∨qq ր q q =
q∨qq

q q

q
q
q

ր q
q

= q
q
q
q
q

q
q ր q

q
q

= q
q
q
q
q

q q ր q
q
q

= q

q

q∨q q

q
q
q

ր q q = q
q
q
q

q.

In an obvious way, ր can be inductively defined in the following way: for F,G,H ∈ F,







F ր 1 = F,
F ր (GH) = (F ր G)H if G 6= 1,

F ր B+(G) = B+(F ր G).

We extend ր: H⊗H −→ H by linearity.

Proposition 4 1. For all x, z ∈ H, y ∈ M:

x ր (yz) = (x ր y)z. (3)

2. For all x, y, z ∈ H:

x ր (y ր z) = (x ր y) ր z.

So (H,ր) is an associative algebra, with unitary element 1.
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Proof. Note that (3) is immediate for x, y, z ∈ F, with y 6= 1. This implies the first point.
In order to prove the second point, we consider:

Z = {z ∈ H / ∀x, y ∈ H, x ր (y ր z) = (x ր y) ր z}.

Let us first prove that 1 ∈ Z: for all x, y ∈ H,

x ր (y ր 1) = x ր y = (x ր y) ր 1.

Let z1, z2 ∈ Z. Let us show that z1z2 ∈ Z. By linearity, we can separate the proof into two
cases:

1. z1 = 1. Then it is obvious.

2. ε(z1) = 0. Let x, y ∈ H. By the first point:

x ր (y ր (z1z2)) = x ր ((y ր z1)z2))

= (x ր (y ր z1))z2

= ((x ր y) ր z1)z2

= (x ր y) ր (z1z2).

So Z is a subalgebra of H. Let us show that it is stable by B+. Let z ∈ Z, x, y ∈ H. Then:

x ր (y ր B+(z)) = x ր B+(y ր z)

= B+(x ր (y ր z))

= B+((x ր y) ր z)

= (x ր y) ր B+(z).

So Z is a subalgebra of H, stable by B+. Hence, Z = H. �

Remarks.

1. (3) is equivalent to: for any x, y, z ∈ H,

x ր (yz) − ε(y)x ր z = (x ր y)z − ε(y)xz.

2. Let F ∈ F − {1}. There exists a unique family ( qF1, . . . , qFn) of elements of F such that:

F = ( qF1) ր . . . ր ( qFn).

For example, q∨qq∨qq

q
q
q = ( q q) ր ( q q) ր ( q q

q
q). As a consequence, (H,ր) is freely generated

by qF as an associative algebra.

Corollary 5 M is given a graded Pր-algebra structure by its product m and by ր.

Proof. Immediate, by proposition 4. �

2.5 Dimensions of Pց and Pր

We now compute the dimensions of Pց(n) and Pր(n) for all n and deduce that M is the free
Pց- and Pր-algebra generated by q .

Notation. We denote by rn the number of planar rooted forests and we put R(X) =
+∞∑

n=1

rnXn. It is well-known (see [3, 13]) that R(X) =
1 − 2X −

√
1 − 4X

2X
.
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Proposition 6 For
?→ ∈ {ց,ր} and all n ∈ N

∗, in the P ?
→

-algebra M:

P ?
→

(n).( q , . . . , q) = V ect(planar forests of weight n).

As a consequence, M is generated as a P ?
→

-algebra by q .

Proof. ⊆. Immediate, as M is a graded P ?
→

-algebra.

⊇. Induction on n. For n = 1, I.( q) = q . For n ≥ 2, two cases are possible.

1. F = F1F2, weight(Fi) = ni < n. By the induction hypothesis, there exists p1, p2 ∈
P ?
→

, such that F1 = p1.( q, . . . , q) and F2 = p2.( q , . . . , q). Then (m ◦ (p1, p2)).( q , . . . , q) =

m.(F1, F2) = F1F2.

2. F ∈ T. Let us put F = B+(G). Then there exists p ∈ P ?
→

, such that p.( q , . . . , q) = G.

Then: {
(ց ◦(p, I)).( q , . . . , q) = G ց q = F,
(ր ◦(p, I)).( q , . . . , q) = G ր q = F.

Hence, in both cases, F ∈ P ?
→

(n).( q , . . . , q). �

Corollary 7 For all
?→ ∈ {ց,ր}, n ∈ N

∗, dim(P ?
→

(n)) ≥ rn.

Proof. Because we proved the surjectivity of the following application:

ev ?
→

:

{
P ?
→

(n) −→ V ect(planar forests of weight n)

p −→ p.( q , . . . , q).

�

Lemma 8 For all
?→ ∈ {ց,ր}, n ∈ N

∗, dim(P ?
→

(n)) ≤ rn.

Proof. We prove it for
?→ =ր. Let us fix n ∈ N

∗. Then Pր(n) is linearly generated by
planar binary trees whose internal vertices are decorated by m and ր. The following relations
hold:

�@
@�

ր

ր

=
�

�
@

@

ր

ր

,
�@

@�

m

ր

=
�

�
@

@

ր

m

,
�@

@�

m

m

=
�

�
@

@

m

m

.

In the sequel of the proof, we shall say that such a tree is admissible if it satisfies the following
conditions:

1. For each internal vertex s decorated by m, the left child of s is a leave.

2. For each internal vertex s decorated by ր, the left child of s is a leave or is decorated by
m.

For example, here are the admissible trees with 1, 2 or 3 leaves:

,
�@

m

,
�@

ր

,
�@

@�

ր

m

,
�

�
@

@

m

m

,
�

�
@

@

ր

m

,
�

�
@

@

m

ր

,
�

�
@

@

ր

ր

.

The preceding relations imply that Pր(n) is linearly generated by admissible trees with n
leaves. So dim(Pր(n)) is smaller than an, the number of admissible trees with n leaves. For
n ≥ 2, we denote by bn the number of admissible trees with n leaves whose root is decorated by
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m, and by cn the number of admissible trees with n leaves whose root is decorated by ր. We
also put b1 = 1 and c1 = 0. Finally, we define:

A(X) =
∑

n≥1

anXn, B(X) =
∑

n≥1

bnXn, C(X) =
∑

n≥1

cnXn.

Immediately, A(X) = B(X) + C(X). Every admissible tree with n ≥ 2 leaves whose root is
decorated by m is of the form m ◦ (I, t), where t is an admissible tree with n− 1 leaves. Hence,
B(X) = XA(X)+X. Moreover, every admissible tree with n ≥ 2 leaves whose root is decorated
by ր is of the form ր ◦(t1, t2), where t1 is an admissible tree with k leaves whose eventual root
is decorated by m and t2 an admissible tree with n − k leaves (1 ≤ k ≤ n − 1). Hence, for all

n ≥ 2, cn =

n−1∑

k=1

bkan−k, so C(X) = B(X)A(X). As a conclusion:







A(X) = B(X) + C(X),
B(X) = XA(X) + X,
C(X) = B(X)A(X).

So A(X) = XA(X) + X + B(X)A(X) = XA(X) + X + XA(X)2 + XA(X), and:

XA(X)2 + (2X − 1)A(X) + X = 0.

As a1 = 1:

A(X) =
1 − 2X −

√
1 − 4X

2X
= R(X).

So, for all n ≥ 1, dim(Pր(n)) ≤ an = rn. The proof is similar for Pց. �

As immediate consequences:

Theorem 9 For
?→ ∈ {ց,ր}, n ∈ N

∗, dim(P ?
→

(n)) = rn. Moreover, the following appli-

cation is bijective:

ev ?
→

:

{
P ?
→

(n) −→ V ect(planar forests of weight n) ⊆ M
p −→ p.( q , . . . , q).

Corollary 10 1. (M,m,ց) is the free Pց-algebra generated by q .

2. (M,m,ր) is the free Pր-algebra generated by q .

2.6 A combinatorial description of the composition

Let
?→ ∈ {ց,ր}. We identify P ?

→
and the vector space of non-empty planar forests via theorem

9. In other terms, we identify F ∈ F(n) and ev−1
?
→

(F ) ∈ P ?
→

(n).

Notations.

1. In order to distinguish the compositions in Pց and Pր, we now denote:

(a) Fց◦ (F1, . . . , Fn) the composition of Pց,

(b) Fր◦ (F1, . . . , Fn) the composition of Pր.

2. In order to distinguish the action of the operads Pց and Pր on M, we now denote:

(a) Fց• (x1, . . . , xn) the action of Pց on M,

(b) Fր• (x1, . . . , xn) the action of Pր on M.

11



Our aim in this paragraph is to describe the compositions of Pց and Pր in term of forests.
We shall prove the following result:

Theorem 11 1. The composition of Pց in the basis of planar forests can be inductively
defined in this way:







qց◦ (H) = H,
B+(F )ց◦ (H1, . . . ,Hn+1) = (Fց◦ (H1, . . . ,Hn)) ց Hn+1,
FGց◦ (H1, . . . ,Hn1+n2

) = Fց◦ (H1, . . . ,Hn1
)Gց◦ (Hn1+1, . . . ,Hn1+n2

).

2. The composition of Pր in the basis of planar forests can be inductively defined in this way:







qր◦ (H) = H,
B+(F )ր◦ (H1, . . . ,Hn+1) = (Fր◦ (H1, . . . ,Hn)) ր Hn+1,
FGր◦ (H1, . . . ,Hn1+n2

) = Fր◦ (H1, . . . ,Hn1
)Gր◦ (Hn1+1, . . . ,Hn1+n2

).

Examples. Let F1, F2, F3 ∈ F − {1}.

q qր◦ (F1, F2) = F1F2, q qց◦ (F1, F2) = F1F2,
q
qր◦ (F1, F2) = F1 ր F2, q

qց◦ (F1, F2) = F1 ց F2,
q q qր◦ (F1, F2, F3) = F1F2F3, q q qց◦ (F1, F2, F3) = F1F2F3,
q q
qր◦ (F1, F2, F3) = F1(F2 ր F3), q q

qց◦ (F1, F2, F3) = F1(F2 ց F3),
q
q
qր◦ (F1, F2, F3) = (F1 ր F2)F3, q

q
qց◦ (F1, F2, F3) = (F1 ց F2)F3,

q∨qq ր◦ (F1, F2, F3) = (F1F2) ր F3, q∨qq ց◦ (F1, F2, F3) = (F1F2) ց F3,

q
q
q

ր◦ (F1, F2, F3) = (F1 ր F2) ր F3, q
q
q

ց◦ (F1, F2, F3) = (F1 ց F2) ց F3.

Proposition 12 Let
?→ ∈ {ց,ր}.

1. q is the unit element of P ?
→

.

2. q q = m in P ?
→

(2). Consequently, in P ?
→

, q q ◦ (F,G) = FG for all F,G ∈ F − {1}.

3. Let F,G ∈ F. In P ?
→

, q
q
=

?→. Consequently, q
q ?→◦ (F,G) = F

?→G for all F,G ∈ F − {1}.

Proof.

1. Indeed, ev ?
→

( q) = q = ev ?
→

(I). Hence, q = I.

2. By definition, ev ?
→

( q q) = q q = ev ?
→

(m). So q q = m in P ?
→

(2). Moreover, for all F,G ∈
F − {1}:

ev ?
→

(FG) = FG

= m
?→• (F,G)

= m
?→• (F

?→• ( q , . . . , q), G
?→• ( q , . . . , q))

=
(

m
?→◦ (F,G)

)
?→• ( q , . . . , q)

= ev ?
→

(m
?→◦ (F,G)).

So FG = m
?→◦ (F,G) = q q

?→◦ (F,G).
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3. Indeed, ev ?
→

( q
q
) = q

?→ q = ev ?
→

(
?→). So q

q
=

?→ in P ?
→

(2). Moreover:

ev ?
→

(F
?→G) = F

?→G

=
?→ ?→• (F,G)

=
?→ ?→• (F

?→• ( q , . . . , q), G
?→• ( q , . . . , q))

= (
?→ ?→◦ (F,G)).( q , . . . , q)

= ev ?
→

(
?→ ?→◦ (F,G)).

So, F
?→G =

?→ ?→◦ (F,G) = q
q ?→◦ (F,G).

�

Proposition 13 1. Let F,G ∈ F, different from 1, of respective weights n1 and n2. Let

H1,1, . . . ,H1,n1
and H2,1, . . . ,H2,n2

∈ F − {1}. Let
?→ ∈ {ց,ր}. Then, in P ?

→
:

(FG)
?→◦ (H1,1, . . . ,H1,n1

,H2,1, . . . ,H2,n2
) = F

?→◦ (H1,1, . . . ,H1,n1
)G

?→◦ (H2,1, . . . ,H2,n2
).

2. Let F ∈ F, of weight n ≥ 1. Let H1, . . . ,Hn+1 ∈ F. In P ?
→

:

B+(F )
?→◦ (H1, . . . ,Hn+1) = (F

?→◦ (H1, . . . ,Hn))
?→Hn+1.

Proof.

1. Indeed, in P ?
→

:

(FG)
?→◦ (H1,1, . . . ,H1,n1

,H2,1, . . . ,H2,n2
)

= (m
?→◦ (F,G))

?→◦ (H1,1, . . . ,H1,n1
,H2,1, . . . ,H2,n2

)

= m
?→◦ (F

?→◦ (H1,1, . . . ,H1,n1
), G

?→◦ (H2,1, . . . ,H2,n2
))

= F
?→◦ (H1,1, . . . ,H1,n1

)G
?→◦ (H2,1, . . . ,H2,n2

)).

2. In P ?
→

:

B+(F )
?→◦ (H1, . . . ,Hn+1) = (F

?→ q)
?→◦ (H1, . . . ,Hn+1)

= ( q
q ?→◦ (F, q))

?→◦ (H1, . . . ,Hn+1)

= q
q ?→◦ (F

?→◦ (H1, . . . ,Hn), q
?→◦ (Hn+1))

= q
q ?→◦ (F

?→◦ (H1, . . . ,Hn),Hn+1)

= (F
?→◦ (H1, . . . ,Hn))

?→Hn+1.

�

Combining propositions 12 and 13, we obtain theorem 11.

3 Applications to the infinitesimal Hopf algebra H
3.1 Antipode of H
We here give a description of the antipode of H in terms of the action ց• of the operad Pց.
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Notations. For all n ∈ N
∗, we denote ln = (B+)n(1) ∈ F(n). For example:

l1 = q , l2 = q
q
, l3 = q

q
q

, l4 = q
q
q
q

, l5 = q
q
q
q
q

. . .

Lemma 14 Let t ∈ T. There exists a unique k ∈ N
∗, and a unique family (t2 . . . , tk) ∈ Tk−1

such that:
t = lkց• ( q , t2, . . . , tk).

Proof. Induction on the weight n of t. If n = 1, then t = q, so k = 1 and the family
is empty. We suppose the result at all rank < n. We put t = B+(s1 . . . sm). Necessarily,
tk = B+(s2 . . . sm) and ln−1ց• ( q , t2, . . . , tk−1) = s1. We conclude with the induction hypothesis
on s1. �

Example.

q∨qq q∨q q∨q q

q

= l4ց• ( q , q
q
q

, q
q
, q∨qq

).

Definition 15 For all n ∈ N
∗, we put pn =

n∑

k=1

∑

a1+...+ak=n
∀i, ai>0

(−1)kla1
. . . lak

.

Examples.

p1 = q ,

p2 = − q
q
+ q q ,

p3 = − q
q
q

+ q
q
q + q q

q − q q q ,

p4 = − q
q
q
q

+ q
q
q

q + q
q

q
q
+ q q

q
q

− q
q
q q − q q

q
q − q q q

q
+ q q q q .

Remark that pn is in fact the antipode of ln in H. It is also the antipode of ln in the non
commutative Connes-Kreimer Hopf algebra of planar trees [3].

Corollary 16 Let t ∈ T, written under the form t = lkց• (t1, . . . , tk), with t1 = q . Then:

S(t) = pkց• (t1, . . . , tk).

Proof. Corollary of proposition 15 of [4], observing that left cuts are cuts on edges from the
root of ti to the root of ti+1 in t, for i = 1, . . . , n − 1. �

3.2 Inverse of the application γ

Proposition 17 The restriction γ : Prim(H) −→ H is bijective.

Proof. By proposition 21 of [4]:

γ|Prim(H) :

{
Prim(H) −→ H

fB+(F ) (F ∈ F) −→ fF .

So this restriction is clearly bijective. �

We shall denote γ−1
|Prim(H) : H −→ Prim(H) the inverse of this restriction. Then, for all

F ∈ F, γ−1
|Prim(H)(fF ) = fB+(F ). Our aim is to express γ−1

|Prim(H) in the basis of forests.
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We define inductively a sequence (qn)n∈N∗ of elements of Pց:






q1 = q ∈ Pց(1),
q2 = q q − q

q ∈ Pց(2),
qn+1 = ( q q − q

q
)ց◦ (qn, q) ∈ Pց(n + 1) for n ≥ 1.

For all F ∈ F, q qց◦ (F, q) = F q and q
qց◦ (F, q) = B+(F ). So, qn can also be defined in the

following way:
{

q1 = q ∈ Pց(1),
qn+1 = qn q − B+(qn) ∈ Pց(n + 1) for n ≥ 1.

Examples.

q3 = q q q − q
q
q − q∨qq

+ q
q
q

,

q4 = q q q q − q
q
q q − q∨qq

q + q
q
q

q − q∨qq q

+ q∨qq

q

+
q∨qq

q − q
q
q
q

,

q5 = q q q q q − q
q
q q q − q∨qq

q q + q
q
q

q q − q∨qq q

q + q∨qq

q

q +
q∨qq

q q − q
q
q
q

q

− q∨qq

�Hq q
+ q∨qq q

q

+ q∨qq∨qq

− q∨qq

q

q

+
q∨qq

q

q

− q∨qq

q

q

− q

q

q∨q q

+ q
q
q
q
q

.

Lemma 18 Let F ∈ F − {1}, and t ∈ T. Then, in H:

∆(F ց t) = (F ց t) ⊗ 1 + 1 ⊗ (F ց t) + F ′ ⊗ F ′′ ց t + Ft′ ⊗ t′′ + F ⊗ t.

Proof. The non-empty and non-total left-admissible cuts of the tree F ց t are:

- The cut on the edges relating F to t. For this cut c, P c(F ց t) = F and Rc(F ց t) = t.

- Cuts acting only on edges of F or on edges relating F to t, at the exception of the preceding
case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c′ of
F , such that P c(F ց t) = P c′(F ) and Rc(F ց t) = Rc′(F ) ց t.

- Cuts acting on edges of t. Then necessarily F ⊆ P c(F ց t). For such a cut, there exists a
unique non-empty, non-total left-admissible cut c′ of t, such that P c(F ց t) = FP c′(t)
and Rc(F ց t) = Rc′(t).

Summing these cuts, we obtain the announced compatibility. �

Proposition 19 Let F = t1 . . . tn ∈ F. Then:

γ−1
|Prim(H)(F ) = qn+1ց• ( q , t1, . . . , tn).

Proof. First step. Let us show the following property: for all x ∈ Prim(H), t ∈ T,
q2ց• (x, t) is primitive. By lemma 18, using the linearity in F :

∆(x ց t) = (x ց t) ⊗ 1 + 1 ⊗ (x ց t) + x ⊗ t + xt′ ⊗ t′′,

∆(xt) = xt ⊗ 1 + 1 ⊗ xt + x ⊗ t + xt′ ⊗ t′′,

∆(q2ց• (x, t)) = ∆(xt − x ց t)

= (xt − x ց t) ⊗ 1 + 1 ⊗ (xt − x ց t).

Second step. Let us show that for all x ∈ Prim(H), t1, . . . , tn ∈ T, qn+1ց• (x, t1, . . . , tn) ∈
Prim(H) by induction on n. This is obvious for n = 0, as q1ց• (x) = x. Suppose the result at
rank n − 1. Then:

qn+1ց• (x, t1, . . . , tn) = (q2ց◦ (qn, I))ց• (x, t1, . . . , tn)

= q2ց• (qnց• (x, t1, . . . , tn−1)
︸ ︷︷ ︸

∈Prim(H)

, tn) ∈ Prim(H),
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by the first step. As the tree q is primitive, we deduce that, for all forest F = t1 . . . tn ∈ F,
qn+1ց• ( q , t1, . . . , tn) ∈ Prim(H).

Third step. Let us show that for all x, y ∈ M, γ(q2ց• (x, y)) = γ(x)y. We can limit ourselves
to x, y ∈ F − {1}. Then q2ց• (x, y) = xy − x ց y. Moreover, by definition of ց, x ց y is a
forest whose first tree is not equal to q . Hence, γ(q2ց• (x, y)) = γ(xy) − 0 = γ(x)y.

Last step. Let us show by induction on n that γ(qn+1ց• ( q , t1, . . . , tn)) = t1 . . . tn. As
q1ց• ( q) = q , this is obvious if n = 0. Let us suppose the result at rank n− 1. By the third step:

γ(qn+1ց• ( q , t1, . . . , tn)) = γ(q2ց• (qnց• ( q , t1, . . . , tn−1), tn))

= γ(qnց• ( q , t1, . . . , tn−1))tn

= t1 . . . tn.

Consequently, x = qn+1ց• ( q, t1, . . . , tn) ∈ Prim(H), and satisfies γ(x) = t1 . . . tn, which proves
proposition 19. �

Examples. Let t1, t2, t3 ∈ T.

γ−1
|Prim(H)(t1) = qt1 − q ց t1,

γ−1
|Prim(H)(t1t2) = qt1t2 − ( q ց t1)t2 − ( qt1) ց t2 + ( q ց t1) ց t2,

γ−1
|Prim(H)(t1t2t3) = qt1t2t3 − ( q ց t1)t2t3 − ( qt1) ց t2t3 + ( q ց t1) ց t2t3 − ( qt1t2) ց t3

+( q ց t1t2) ց t3 + (( qt1) ց t2) ց t3 − (( q ց t1) ց t2) ց t3.

3.3 Elements of the dual basis

Lemma 20 For all x, y ∈ H, ∆(x ր y) = x ր y(1) ⊗ y(2) + x(1) ⊗ x(2) ր y − x ⊗ y. In
other terms, (H,ր,∆) is an infinitesimal Hopf algebra.

Proof. We restrict to x = F ∈ F − {1}, y = G ∈ F − {1}. The non-empty and non-total
left-admissible cuts of the tree F ր G are:

- The cut on the edges relating F to G. For this cut c, P c(F ր G) = F and Rc(F ր G) = G.

- Cuts acting only on edges of F or on edges relating F to G, at the exception of the preceding
case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c′ of
F , such that P c(F ր G) = P c′(F ) and Rc(F ր G) = Rc′(F ) ր G.

- Cuts acting on edges of G. Then necessarily F ⊆ P c(F ր G). For such a cut, there exists
a unique non-empty, non-total left-admissible cut c′ of t, such that P c(F ր G) = F ր
P c′(G) and Rc(F ր G) = Rc′(G).

Summing these cuts, we obtain, denoting ∆(F ) = F ⊗ 1 + 1 ⊗ F + F ′ ⊗ F ′′ and ∆(G) =
G ⊗ 1 + 1 ⊗ G + G′ ⊗ G′′:

∆̃(F ր G) = (F ր G) ⊗ 1 + 1 ⊗ (F ր G) + F ⊗ G + F ′ ⊗ F ′′ ր G + F ր G′ ⊗ G′′

= (F ⊗ 1) ր ∆(G) + ∆(F ) ր (1 ⊗ G) − F ⊗ G.

So (H,ր,∆) is an infinitesimal bialgebra. As it is graded and connected, it has an antipode. �

Proposition 21 Let F = t1 . . . tn ∈ F. Then fF = ftn ր . . . ր ft1 .

Proof. First step. We show the following result: for all F ∈ F, t ∈ T, fF ր ft = ftF . We
proceed by induction on the weight n of F . If n = 0, then F = 1 and the result is obvious.
We now suppose that the result is true at all rank < n. Let be G ∈ F, and let us prove that
〈fF ր ft, G〉 = δtF,G. Three cases are possible.
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1. G = 1. Then 〈fF ր ft, G〉 = 〈fF ր ft, 1〉 = ε(fF ր ft) = 0 = δtF,G.

2. G = G1G2, Gi 6= 1. Then, by lemma 20:

〈fF ր ft, G〉 = 〈∆(fF ր ft), G2 ⊗ G1〉
=

∑

F1F2=F

〈fF2
⊗ fF1

ր ft, G2 ⊗ G1〉

+〈fF ր ft ⊗ 1 + fF ր 1 ⊗ ft, G2 ⊗ G1〉 − 〈fF ⊗ ft, G2 ⊗ G1〉
=

∑

F1F2=F,
weight(F1)<n

〈fF2
⊗ fF1

ր ft, G2 ⊗ G1〉 + 〈1 ⊗ fF ր ft, G2 ⊗ G1〉

+〈fF ր ft ⊗ 1, G2 ⊗ G1〉 + 〈fF ⊗ ft, G2 ⊗ G1〉 − 〈fF ⊗ ft, G2 ⊗ G1〉
=

∑

F1F2=F,
weight(F1)<n

〈fF2
⊗ ftF1

, G2 ⊗ G1〉

=
∑

F1F2=F,
weight(F1)<n

δF2,G2
δtF1,G1

= δtF,G.

3. G = B+(G1). Note that fF ր ft is a linear span of forests H1 ր H2, with H1, H2 6= 1.
By definition of ր, the first tree of such a forest is not q . Hence, γ(fF ր ft) = 0 and:

〈fF ⊗ ft, G〉 = 〈γ(fF ⊗ ft), G1〉 = 0 = δtF,G,

as tF /∈ T because F 6= 1.

Second step. We now prove proposition 21 by induction on n. It is obvious for n = 1.
Suppose the result at rank n − 1. By the first step:

ft1...tn = ft2...tn ր ft1 = (ftn ր . . . ր ft2) ր ft1 = ftn ր . . . ր ft2 ր ft1 ,

using the induction hypothesis for the second equality. �

Remarks.

1. As an immediate corollary, because ր is associative, for all forests F1, . . . , Fk ∈ F,
fF1...Fk

= fFk
ր . . . ր fF1

.

2. In term of operads, proposition 21 can be rewritten in the following way:

Corollary 22 Let F1, . . . , Fn ∈ F. Then fF1...Fn
= lnր◦ (fFn

, . . . , fF1
).

Remark. Hence, the dual basis (fF )F∈F can be inductively computed, using proposition 21
of [4], together with propositions 19 and 21 of the present text:







f1 = 1,
ft1...tn = ftn ր . . . ր ft1 ,

fB+(t1...tn) = γ−1
|Prim(H)(ft1...tn).
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For example:

f1 = 1 f q = q

f q q = q
q

f q
q = − q

q
+ q q

f q q q = q
q
q

f q q
q = − q

q
q

+ q∨qq

f q
q
q = − q

q
q

+ q
q
q f

q∨qq = − q∨qq

+ q q
q

f
q
q
q = q

q
q

− q
q
q − q q

q
+ q q q f q q q q = q

q
q
q

f q q q
q = − q

q
q
q

+
q∨qq

q f q q
q
q = − q

q
q
q

+ q∨qq

q

f
q q∨qq = − q∨qq

q + q∨qq

q

f
q q
q
q = q

q
q
q

− q∨qq

q

− q∨qq

q

+ q∨qq q

f q
q
q q = − q

q
q
q

+ q
q
q

q f q
q

q
q = q

q
q
q

− q∨qq

q − q
q
q

q + q∨qq

q

f
q∨qq

q
= − q∨qq

q

+ q
q

q
q

f
q
q
q

q

= q
q
q
q

− q
q
q

q − q
q

q
q
+ q

q
q q

f
q∨qq q = − q∨qq

q

+ q q
q
q

f
q∨qq

q = q∨qq

q

− q∨qq q − q q
q
q

+ q q∨qq

f
q∨qq

q =
q∨qq

q − q∨qq

q − q q
q
q

+ q q
q
q f

q∨qq

q

= q∨qq

q

− q
q

q
q − q q∨qq

+ q q q
q

f

q
q
q
q = − q

q
q
q

+ q
q
q

q + q
q

q
q − q

q
q q + q q

q
q

− q q
q
q − q q q

q
+ q q q q .

4 Primitive suboperads

4.1 Compatibilities between products and coproducts

We define another coproduct ∆ր on H in the following way: for all x, y, z ∈ H,

〈∆ր(x), y ⊗ z〉 = 〈x, z ր y〉.

Lemma 23 For all forest F ∈ F, ∆ր(F ) =
∑

F1,F2∈F

F1F2=F

F1 ⊗ F2.

Proof. Let F,G,H ∈ F. Then:

〈∆ր(F ), fG ⊗ fH〉 = 〈F, fH ր fG〉
= 〈F, fGH〉
= δF,GH

=
∑

F1,F2∈F

F1F2=F

〈F1 ⊗ F2, fG ⊗ fH〉.

As (fF )F∈F is a basis of H and 〈−,−〉 is non degenerate, this proves the result. �

Remark. As a consequence, the elements of T are primitive for this coproduct.

We now have defined three products, namely m, ր, and ց, and two coproducts, namely ∆̃
and ∆̃ր, on M, obtained from ∆ and ∆ր by substracting their primitive parts. The following
properties sum up the different compatibilities.
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Proposition 24 For all x, y ∈ M:

∆̃(xy) = (x ⊗ 1)∆̃(y) + ∆̃(x)(1 ⊗ y) + x ⊗ y, (4)

∆̃(x ր y) = (x ⊗ 1) ր ∆̃(y) + ∆̃(x) ր (1 ⊗ y) + x ⊗ y, (5)

∆̃ր(xy) = (x ⊗ 1)∆̃ր(y) + ∆̃ր(x)(1 ⊗ y) + x ⊗ y, (6)

∆̃ր(x ր y) = (x ⊗ 1) ր ∆̃ր(y), (7)

∆̃ր(x ց y) = (x ⊗ 1) ց ∆̃ր(y). (8)

Proof. It remains to consider the compatibility between ր or ց and ∆̃ր. Let F,G ∈
F − {1}. We put G = t1 . . . tn, where the ti’s are trees. Then F ր G = (F ր t1)t2 . . . tn, and
F ր t1 is a tree. Hence:

∆̃ր(F ր G) =
n−1∑

i=1

(F ր t1)t2 . . . ti ⊗ ti+1 . . . tn

=
n−1∑

i=1

F ր (t1t2 . . . ti) ⊗ ti+1 . . . tn

= (F ⊗ 1) ր ∆̃ր(G).

The proof is similar for F ց G. So all these compatibilities are satisfied. �

Remark. There is no similar compatibility between ∆̃ and ց. In particular, lemma 19 is
not available for t /∈ T.

This justifies the following definitions:

Definition 25

1. A Pր-bialgebra of type 1 is a family (A,m,ր, ∆̃), such that:

(a) (A,m,ր) is a Pր-algebra.

(b) (A, ∆̃) is a coassociative, non counitary coalgebra.

(c) Compatibilities (4) and (5) are satisfied.

2. A Pր-bialgebra of type 2 is a family (A,m,ր, ∆̃ր), such that:

(a) (A,m,ր) is a Pր-algebra.

(b) (A, ∆̃ր) is a coassociative, non counitary coalgebra.

(c) Compatibilities (6) and (7) are satisfied.

3. A Pց-bialgebra is a family (A,m,ց, ∆̃ր), such that:

(a) (A,m,ց) is a Pց-algebra.

(b) (A, ∆̃ր) is a coassociative, non counitary coalgebra.

(c) Compatibilities (6) and (8) are satisfied.

Example. The augmentation ideal M of the infinitesimal Hopf algebra of trees H is both
a Pր-infinitesimal bialgebra of type 1 and 2, and also a Pց-infinitesimal bialgebra.

If A is a bialgebra of such a type, we denote by Prim(A) the kernel of the coproduct. We
deduce the definition of the following suboperads:
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Definition 26 Let n ∈ N. We put:







PRIM
(1)
ր (n) =






p ∈ Pր(n) /

For all A, Pր-infinitesimal bialgebra of type 1,
and for a1, . . . , an ∈ Prim(A),

p.(a1, . . . , an) ∈ Prim(A).






,

PRIM
(2)
ր (n) =






p ∈ Pր(n) /

For all A, Pր-infinitesimal bialgebra of type 2,
and for a1, . . . , an ∈ Primր(A),

p.(a1, . . . , an) ∈ Primր(A).






,

PRIMց(n) =






p ∈ Pց(n) /

For all A, Pց-infinitesimal bialgebra,
and for a1, . . . , an ∈ Primր(A),

p.(a1, . . . , an) ∈ Primր(A).






.

We identify Pր(n) and Pց(n) with the homogeneous component of weight n of M. We put
Prim(M) = Ker(∆̃) and Primր(M) = Ker(∆̃ր). We obtain:

Proposition 27 1. For all n ∈ N:

PRIM
(1)
ր (n) = {p ∈ Pր(n) / pր• ( q , . . . , q) ∈ Prim(M)} = Pր(n) ∩ Prim(M).

2. For all n ∈ N:

PRIM
(2)
ր (n) = {p ∈ Pր(n) / pր• ( q , . . . , q) ∈ Primր(M)} = Pր(n) ∩ Primր(M).

3. For all n ∈ N:

PRIMց(n) = {p ∈ Pց(n) / pց• ( q , . . . , q) ∈ Primր(M)} = Pց(n) ∩ Primր(M).

Proof. As M is a Pր-infinitesimal bialgebra, by definition:

PRIM
(1)
ր (n) ⊆ {p ∈ Pր(n) / pր• ( q , . . . , q) ∈ Prim(M)} .

Moreover, {p ∈ Pր(n) / pր• ( q , . . . , q) ∈ Prim(M)} = Pր(n)∩Prim(M), as, for all p ∈ Pր(n),
pր• ( q , . . . , q) = p ∈ M.

We now show that {p ∈ Pր(n) / pր• ( q, . . . , q) ∈ Prim(M)} ⊆ PRIM
(1)
ր (n). We take p ∈

Pր(n), such that pր• ( q , . . . , q) ∈ Prim(M). Let D = {1, . . . , n} and let A be the free Pր-
algebra generated by D (with a unit). It can be described as the associative algebra HD generated
by the set of planar rooted trees decorated by D, and can be given a structure of Pր-infinitesimal
bialgebra. As M is freely generated by q as a Pր-algebra, there exists a unique morphism of
Pր-algebras from M to MD, augmentation ideal of HD:

ξ :

{
M −→ MD

q −→ q1 + . . . + qn.

As q ∈ Prim(M) and q1 + . . .+ qn ∈ Prim(A), ξ is a Pր-infinitesimal bialgebra morphism from
M to MD. So, ξ(pր• ( q , . . . , q)) ∈ Prim(A).

Let F ∈ A be a forest, and s1 ≥h,l . . . ≥h,l sk its vertices. For all i ∈ {1, . . . , k}, we put
di the decoration of si. The decoration word associated to F is the word d1 . . . dn. It belongs
to M(D), the free monoid generated by the elements of D. For all w ∈ M(D), Let Aw be the
subspace of A generated by forests whose decoration word is w. This defines a M(D)-gradation
of A, as a Pր-infinitesimal bialgebra of type 1.
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Consider the projection π1,...,n onto A1,...,n. We get:

π1,...,n ◦ ξ(pր• ( q , . . . , q)) ∈ Prim(A),

= π1,...,n(pր• (ξ( q), . . . , ξ( q)))

= π1,...,n(pր• ( q1 + . . . + qn, . . . , q1 + . . . + qn))

= pր• ( q1 , . . . , qn).

So pր• ( q1 , . . . , qn) ∈ Prim(A).

Let B be a Pր-infinitesimal bialgebra and let a1, . . . , an ∈ Prim(B). As MD is freely
generated by the q i ’s, there exists a unique morphism of Pր-algebras:

χ :

{
A −→ B
q i −→ ai.

As the q i and the ai’s are primitive, χ is a P-infinitesimal bialgebra morphism. So:

ξ(pր• ( q1 , . . . , qn)) = p.(ξ( q1 ), . . . , ξ( qn)) = p.(a1, . . . , an) ∈ χ(prim(MD)) ⊆ Prim(A).

Hence, p ∈ PRIM
(1)
ր (n). The proof is similar for PRIM

(2)
ր and PRIMց. �

4.2 Suboperad PRIM
(1)
ր

Lemma 28 We define inductively the following elements of Pր:

{
q1 = q,

qn+1 = ( q q − q
q
)ր◦ (qn, q) = qn q − B+(qn), for n ≥ 1.

Then, for all n ≥ 1, qn belongs to PRIM
(1)
ր . Moreover, for all x1, . . . , xn ∈ Prim(M):

γ(qnր• (x1, . . . , xn)) = γ(x1)x2 . . . xn.

Remark. These qn’s are the same as the qn’s defined in section 3.2.

Proof. Let us remark that f q
q = q q− q

q ∈ Prim(M). By proposition 27, q q− q
q ∈ PRIM

(1)
ր (2).

As PRIM
(1)
ր is a suboperad of Pր, it follows that all the qn’s belongs to PRIM

(1)
ր (n).

Let x1, . . . , xn ∈ Prim(M). Let us show that γ(qnր• (x1, . . . , xn)) = γ(x1)x2 . . . xn by induc-
tion on n. If n = 1, this is immediate. For n = 2, q2ր• (x1x2) = x1x2−x1 ր x2. Moreover, x1 ր
x2 is a linear span of forests whose first tree is not q . So γ(q2ր• (x1, x2)) = γ(x1x2)−0 = γ(x1)x2.

Suppose now the result true at rank n − 1. Then:

qnր• (x1, . . . , xn) = q2ր• (qn−1ր• (x1, . . . , xn−1)
︸ ︷︷ ︸

∈Prim(M)

, xn),

γ(qnր• (x1, . . . , xn)) = γ(q2ր• (qn−1ր• (x1, . . . , xn−1), xn))

= γ(qn−1ր• (x1, . . . , xn−1))xn

= γ(x1)x2 . . . xn.

�

Theorem 29 The non-Σ-operad PRIM
(1)
ր is freely generated by q

q − q q .
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Proof. Let us first show that the family (qn)n≥1 generates PRIM
(1)
ր . Let P be the suboperad

of PRIM
(1)
ր generated by the qn’s. Let us prove by induction on k that PRIM

(1)
ր (k) = P(k). If

k = 1, P(1) = PRIM
(1)
ր (1) = K q . Suppose the result at all ranks ≤ k−1. By the rigidity theorem

for infinitesimal bialgebra of [10], a basis of H is (ft1 . . . ftn)t1...tn∈F, so a basis of Prim(M) is:
(

γ−1
Prim(H)(ft1 . . . ftn)

)

t1...tn∈F

.

So, a basis of PRIM
(1)
ր (k) is

(

γ−1
Prim(H)(ft1 . . . ftn)

)

t1...tn∈F

weight(t1...tn)=k−1

. By lemma 28:

γ−1
Prim(H)(ft1 . . . ftn) = qn+1ր• ( q , ft1 , . . . ftn).

By the induction hypothesis, the fti ’s belongs to P. So:

γ−1
Prim(H)(ft1 . . . ftn) = qn+1ր◦ ( q , ft1 , . . . ftn) ∈ P(n).

So PRIM
(1)
ր = P.

Moreover, if we denote by P
′ the suboperad of PRIM

(1)
ր generated by q2, then, immediately,

P
′ ⊆ P. Finally, by induction on n, qn ∈ P

′(n) for all n ≥ 1 and P ⊆ P
′. So P

′ = P = PRIM
(1)
ր is

generated by q2.

Let Pq2
be the non-Σ-operad freely generated by q2. There is a non-Σ-operad epimorphism:

Ψ :

{

Pq2
−→ PRIM

(1)
ր

q2 −→ q2.

The dimension of Pq2
(n) is the number of planar binary rooted trees with n leaves, that is

to say the Catalan number cn =
(2n − 2)!

(n − 1)!n!
. On the other side, the dimension of PRIM

(1)
ր (n)

is the number of planar rooted trees with n vertices, that is to say cn. So Ψ is an isomorphism. �

In other terms, in the language of [9]:

Theorem 30 The triple of operads (Ass, PΣ
ր, FREE2), where P

Σ
ր is the symmetrisation of

Pր and FREE2 is the free operad generated by an element in FREE2(2), is a good triple of
operads.

Remark. Note that if A is a Pր-bialgebra of type 1, then (A,m, ∆̃) is a non unitary
infinitesimal bialgebra. Hence, if (K ⊕ A,m,∆) has an antipode S, then −S is an eulerian
idempotent for A.

4.3 Another basis of Prim(H)

Recall that Tb is freely generated (as a non-Σ-operad) by ∨ . In particular, if t1, t2 ∈ Tb, we
denote:

t1 ∨ t2 = ∨ ◦ (t1, t2).

Every element t ∈ Tb − { } can be uniquely written as t = tl ∨ tr.

There exists a morphism of operads:

Θ :

{

Tb −→ Pր

∨ −→ q q − q
q
.
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By theorem 29, Θ is injective and its image is PRIM
(1)
ր . So, we obtain a basis of PRIM

(1)
ր indexed

by Tb, given by pt = Θ(t). It is also a basis of Prim(M), which can be inductively computed
by:

{
p = q ,

pt1∨t2 = ( q q − q
q
)ր◦ (pt1 , pt2) = pt1pt2 − pt1 ր pt2 .

4.4 From the basis (ft)t∈T to the basis (pt)t∈Tb

We define inductively the application κ : Tb −→ T in the following way:

κ :







Tb −→ T

−→ q,
t1 ∨ t2 −→ κ(t2) ց κ(t1).

Examples.

∨ −→ q
q ∨∨ −→ q∨qq ∨∨ −→ q

q
q

�H −→ q∨qq

q

∨∨
∨

−→ q∨qq q ∨∨
∨

−→ q∨qq

q

∨∨
∨

−→ q∨qq

q
∨∨
∨

−→ q
q
q
q

It is easy to show that κ is bijective, with inverse given by:

κ−1 :







T −→ Tb

q −→ ,
B+(s1 . . . sm) −→ κ−1(B+(s2 . . . sm)) ∨ κ−1(s1).

Let us recall the partial order ≤, defined in [4], on the set F of planar forests, making it
isomorphic to the Tamari poset.

Definition 31 Let F ∈ F.

1. An admissible transformation on F is a local transformation of F of one of the following
types (the part of F which is not in the frame remains unchanged):

First kind: t

t

t@@ ��s
...

XXX ���... ...

����
��...

−→
t�
�

A
A
t ts

XXX ���... ...








...

�
��

��
...

Second kind: t�
�

A
A
t ts

���...









...

�
��

��
...

−→
t

t

t
s

�
��

��
...

�
�
�
�
��

...

��...

2. Let F and G ∈ F. We shall say that F ≤ G if there exists a finite sequence F0, . . . , Fk of
elements of F such that:

(a) For all i ∈ {0, . . . , k − 1}, Fi+1 is obtained from Fi by an admissible transformation.

(b) F0 = F .

(c) Fk = G.

The aim of this section is to prove the following result:
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Theorem 32 Let t ∈ Tb. Then pt =
∑

s∈T

s≤κ(t)

fs.

Proof. By induction on the number n of leaves of t. If n = 1, then t = and p = q = f q .
Suppose the result at all ranks ≤ n − 1. As pt is primitive, we can put:

pt =
∑

s∈T

asfs.

Write t = t1 ∨ t2. By the induction hypothesis:

pt1 =
∑

s1∈T

s1≤κ(t1)

fs1
and pt2 =

∑

s2∈T

s2≤κ(t2)

fs2
.

As t = t1 ∨ t2, pt = ( q q − q
q
)ր◦ (pt1 , pt2) = pt1pt2 − pt1 ր pt2 . So, for all s ∈ T, as s is primitive

for ∆ր:

as = 〈pt, s〉
= 〈pt1pt2 − pt1 ր pt2 , s〉
= 〈pt2 ⊗ pt1,∆(s) − ∆ր(s)〉
= 〈pt2 ⊗ pt1,∆(s)〉
=

∑

s1∈T

s1≤κ(t1)

∑

s2∈T

s2≤κ(t2)

〈fs2
⊗ fs1

,∆(s)〉.

So as is the number of left-admissible cuts c of s, such that P c(s) ≤ κ(t2) and Rc(s) ≤ κ(t1).

Suppose that as 6= 0. Then, there exists a left-admissible cut c of s, such that P c(s) ≤ κ(t2)
and Rc(s) ≤ κ(t1). As s is a tree, s ≤ κ(t2) ց κ(t1) = κ(t). Moreover, by considering the
degree of P c(s), this cut c is unique, so as = 1. Reciproquely, if s ≤ κ(t), if c is the unique left
admissible cut such that weight(P c(s)) = weight(t2), then P c(s) ≤ κ(t2) and Rc(s) ≤ κ(t1). So
as 6= 0. Hence, (s ≤ κ(t)) =⇒ (as 6= 0) =⇒ (as = 1) =⇒ (s ≤ κ(t)). This proves theorem 32. �

Let µ be the Möbius function of the poset F ([12, 13]). By the Möbius inversion formula:

Corollary 33 Let s ∈ T. Then fs =
∑

t∈Tb, κ(t)≤s

µ(κ(t), s)pt.

4.5 Suboperad PRIM
(2)
ր

For all n ∈ N, we put cn+1 = B+( q
n). In other terms, cn+1 is the corolla tree with n+1 vertices,

or equivalently with n leaves.

Examples. c1 = q , c2 = q
q
, c3 = q∨qq

, c4 = q∨qq q

, c5 = q∨qq

�Hq q
. . .

Lemma 34 The set T is a basis of the operad PRIM
(2)
ր . As an operad, PRIM

(2)
ր is generated

by the cn’s, n ≥ 2. Moreover, for all k, l ≥ 2,

ckր◦ (cl, q , . . . , q

︸ ︷︷ ︸

k − 1 times

) = clր◦ ( q , . . . , q

︸ ︷︷ ︸

l − 1 times

, ck).
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Proof. The operad PRIM
(2)
ր is identified with Primր(M) by proposition 27. So Primր(M)

is equal to V ect(T). Let P be the suboperad of PRIM
(2)
ր generated by the corollas. Let t ∈ T,

of weight n. Let us prove that t ∈ P by induction on n. If n = 1, then t = q ∈ P. If n ≥ 2, we
can suppose that t = B+(t1 . . . tk), with t1, . . . , tk ∈ P. Then, by theorem 11:

ck+1ր◦ (t1, . . . , tk, q) = ( q
kր◦ (t1, . . . , tk)) ր q = (t1 . . . tk) ր q = B+(t1 . . . tk) = t.

So t ∈ P. hence, P = PRIM
(2)
ր .

Let k, l ≥ 2. Then, by theorem 11:

ckր◦ (cl, q , . . . , q) = ( q
k−1ր◦ (cl, q , . . . , q)) ր q

= (cl q
k−2) ր q

= B+(cl q
k−2)

= B+(B+( q
l−1) q

k−2).

On the other hand:

clր◦ ( q, . . . , q , ck) = ( q
l−1ր◦ ( q , . . . , q)) ր ck

= ( q
l−1) ր ck

= ( q
l−1) ր B+(ck−1)

= B+((( q
l−1) ր q) q

k−2)

= B+(B+( q
l−1) q

k−2).

So ckր◦ (cl, q , . . . , q) = clր◦ ( q , . . . , q , ck). �

Definition 35 The operad T is the non-Σ-operad generated by elements cn ∈ T(n), for
n ≥ 2, and the following relations: for all k, l ≥ 2,

ck ◦ (cl, I, . . . , I
︸ ︷︷ ︸

k − 1 times

) = cl ◦ ( I, . . . , I
︸ ︷︷ ︸

l − 1 times

, ck).

In other terms, a T-algebra A has a family of n-multilinear products [., . . . , .] : A⊗n −→ A for
all n ≥ 2, with the associativity condition:

[[a1, . . . , al], al+1, . . . , al+k] = [a1, . . . , al−1, [al, . . . , al+k]].

In particular, [., .] is associative.

Theorem 36 The operads T and PRIM
(2)
ր are isomorphic.

Proof. By lemma 34, there is an epimorphism of operads:
{

T −→ PRIM
(2)
ր

cn −→ cn.

In order to prove this is an isomorphism, it is enough to prove that dim(T(n)) ≤ dim(PRIM
(2)
ր (n))

for all n ≥ 2. By lemma 34, dim(PRIM
(2)
ր (n)) is the n-th Catalan number. Because of the defin-

ing relations, T(n) is generated as a vector space by elements of the form cl ◦ (I, b2, . . . , bl), with
bi ∈ T(ni), such that n1 + . . . + nl = n − 1. Hence, we define inductively the following subsets
the free non-Σ-operad generated by the cn’s, n ≥ 2:

X(n) =







{I} if n = 1,
n⋃

l=2

⋃

i2+...+il=n−1

cl ◦ (I,X(i2), . . . ,X(il)) if n ≥ 2.
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Then the images of the elements of X(n) linearly generate T(n), so dim(T(n)) ≤ card(X(n))
for all n. We now put an = card(X(n)) and prove that an is the n-th Catalan number. We
denote by A(h) their generating formal series. Then:







a1 = 1,

an =

n∑

l=2

∑

i2+...+il=n−1

ai1 . . . ail if n ≥ 2.

In terms of generating series:

A(h) − a1h = h
A(x)

1 − A(x)
.

So A(h)2 − A(h) + h = 0. As A(h) = 1:

A(h) =
1 −

√
1 − 4h

2
.

So an is the n-th Catalan number for all n ≥ 1. �

In other terms:

Theorem 37 The triple of operads (Ass, PΣ
ր, TΣ) is a good triple of operads.

Remark. Note that if A is a Pր-bialgebra of type 2, then (A,m, ∆̃ր) is a non unitary
infinitesimal bialgebra. Hence, if (K ⊕A,m,∆ր) has an antipode Sր, then −Sր is an eulerian
idempotent for A.

4.6 Suboperad PRIMց

Lemma 38 The set T is a basis of the operad PRIMց. As an operad, PRIMց is generated
by q

q
.

Proof. Let P be the suboperad of PRIMց generated by q
q
. Let t ∈ T, of weight n. Let

us prove that t ∈ P by induction on n. If n = 1 or 2, this is obvious. If n ≥ 2, suppose that
t = B+(t1 . . . tk). By the induction hypothesis, t1 and B+(t2 . . . tk) belong to P. Then:

t = t1 ց B+(t2 . . . tk) = q
qց◦ (t1, B

+(t2 . . . tk)).

So t ∈ P. �

Theorem 39 The non-Σ-operad PRIMց is freely generated by q
q
.

Proof. Similar as the proof of theorem 29. �

In other terms:

Theorem 40 The triple of operads (Ass, PΣ
ց, F2), where F2 is the free operad generated by

an element in F2(2), is a good triple of operads.

Remark. Note that if A is a Pց-bialgebra, then (A,m, ∆̃) is a non unitary infinitesimal
bialgebra. Hence, if (K ⊕A,m,∆) has an antipode S, then −S is an eulerian idempotent for A.
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5 A rigidity theorem for Pր-algebras

5.1 Double Pր-infinitesimal bialgebras

Definition 41 A double Pր-infinitesimal bialgebra is a family (A,m,ր, ∆̃, ∆̃ր) where
m,ր: A ⊗ A −→ A, ∆̃, ∆̃ր : A −→ A ⊗ A, with the following compatibilities:

1. (A,m,ր) is a (non unitary) Pր-algebra.

2. For all x ∈ A: 





(∆̃ ⊗ Id) ◦ ∆̃(x) = (Id ⊗ ∆̃) ◦ ∆̃(x),

(∆̃ր ⊗ Id) ◦ ∆̃ր(x) = (Id ⊗ ∆̃ր) ◦ ∆̃ր(x),

(∆̃ ⊗ Id) ◦ ∆̃ր(x) = (Id ⊗ ∆̃ր) ◦ ∆̃(x).

In other terms, (A, ∆̃cop, ∆̃cop
ր ) is a Pր-coalgebra.

3. (A,m,ր, ∆̃) is a Pր-bialgebra of type 1.

4. (A,m,ր, ∆̃ր) is a Pր-bialgebra of type 2.

Remark. If (A,m,ր, ∆̃, ∆̃ր) is a graded double Pր-infinitesimal bialgebra, with finite-
dimensional homogeneous components, then its graded dual (A∗, ∆̃∗,op, ∆̃∗,op

ր ,m∗,cop,ր∗,cop) also
is.

Theorem 42 (M,m,ր, ∆̃, ∆̃ր) is a double P-infinitesimal bialgebra.

Proof. We already now that (M,m,ր) is a Pր-algebra. Moreover, (M, ∆̃cop, ∆̃cop
ր ) is

isomorphic to (M∗,m∗,ր∗) via the pairing 〈−,−〉, so it is a Pր-coalgebra. It is already known
that (M,m, ∆̃) and (M,ր, ∆̃) are infinitesimal bialgebras. As (M,ր, ∆̃) is isomorphic to
(Mop,mop, ∆̃cop

ր ) via the pairing 〈−,−〉, it is also an infinitesimal bialgebra. So all the needed
compatibilities are satisfied. �

Remarks.

1. Via the pairing 〈−,−〉, M is isomorphic to its graded dual as an double Pր-infinitesimal
bialgebra. As a consequence, as M is the free Pր-algebra generated by q , then Mcop is
also the cofree Pր-coalgebra cogenerated by q .

2. All these results can be easily extended to infinitesimal Hopf algebras of decorated planar
rooted trees, in other terms to every free Pր-algebras.

Lemma 43 In the double infinitesimal Pր-algebra M, Ker(∆̃) ∩ Ker(∆̃ր) = V ect( q).

Proof. ⊇. Obvious.
⊆. Let x ∈ Ker(∆̃) ∩ Ker(∆̃ր). Then ∆̃ր(x) = 0, so x is a linear span of trees. We can

write:
x =

∑

t∈T

att.

Consider the terms in M⊗ q of ∆̃(x). We get
∑

t∈T−{ q}

atB
−(t)⊗ q = 0, where B−(t) is the forest

obtained by deleting the root of t. So, if t 6= q, then at = 0. So x ∈ vect( q). �

Remark. This lemma can be extended to any free Pր-algebra: if V is a vector space,
then the free Pր-algebra FPր

(V ) generated by V is given a structure of double Pր-infinitesimal

bialgebra by ∆̃(v) = ∆̃ր(v) = 0 for all v ∈ V . In this case, Ker(∆̃) ∩ Ker(∆̃ր) = V for
FPր

(V ).
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5.2 Connected double Pր-infinitesimal bialgebras

Notations. Let A be a double Pր-infinitesimal bialgebra. The iterated coproducts will be
denoted in the following way: for all n ∈ N,

∆̃n :

{
A −→ A⊗(n+1)

a −→ a(1) ⊗ . . . ⊗ a(n+1),

∆̃n
ր :

{

A −→ A⊗(n+1)

a −→ a
(1)
ր ⊗ . . . ⊗ a

(n+1)
ր .

Definition 44 Let A be a double Pր-infinitesimal bialgebra. It will be said connected if,
for any a ∈ A, every iterated coproduct A −→ A⊗(n+1) vanishes on a for a great enough n.

Theorem 45 Let A be a connected double Pր-infinitesimal bialgebra. Then A is isomorphic
to the free Pր-algebra generated by Prim(A) = Ker(∆̃)∩Ker(∆̃ր) as a double Pր-infinitesimal
bialgebra.

Proof. First step. We shall use the results on infinitesimal Hopf algebras of [4]. We show
that A = Prim(A) + A.A + A ր A. As (A,ր, ∆̃) is a connected non unitary infinitesimal
bialgebra, it (or more precisely its unitarisation) has an antipode Sր, defined by:

Sր :







A −→ A

a −→
∞∑

i=0

(−1)i+1a(1) ր . . . ր a(i+1).

As (A, ∆̃) is connected, this makes sense. Moreover, −Sր is the projector on Ker(∆̃) in the
direct sum A = Ker(∆̃) ⊕ A ր A.

In the same order of idea, as (A,m, ∆̃ր) is a connected infinitesimal bialgebra, we can define
its antipode Sր by:

Sր :







A −→ A

a −→
∞∑

i=0

(−1)i+1a
(1)
ր . . . a

(i+1)
ր ,

and −Sր is the projector on Ker(∆̃ր) in the direct sum A = Ker(∆̃ր) ⊕ A.A.
Let a ∈ A, b ∈ Ker(∆̃ր). Then ∆̃ր(a ր b) = (a ⊗ 1)∆̃ր(b) = 0. So A ր Ker(∆̃ր) is a

subset of Ker(∆̃ր). Moreover, if ∆̃ր(a) = 0, then (Id ⊗ ∆̃ր) ◦ ∆̃(a) = (∆̃ ⊗ Id) ◦ ∆̃ր(a) = 0.
So ∆̃(a) ∈ A ⊗ Ker(∆̃ր). As a consequence, if n ≥ 1:

∆̃n(a) = (∆̃n−1 ⊗ Id) ◦ ∆̃(a) ∈ A⊗n ⊗ Ker(∆̃ր).

Hence, for all n ∈ N, ∆̃n(Ker(∆̃ր)) ∈ A⊗n⊗Ker(∆̃ր). Finally, we deduce that Sր(Ker(∆̃ր)) ⊆
Ker(∆̃ր).

Let a ∈ A. Then Sր(a) ∈ Ker(∆̃ր) and Sր ◦ Sր(a) ∈ Ker(∆̃)∩Ker(∆̃ր) = Prim(A) by
the preceding point. Moreover:

Sր(a) = −a + A.A,

Sր ◦ Sր(a) = −Sր(a) + A ր A,

Sր ◦ Sր(a) = a + A.A + A ր A.

This proves the first step.

Second step. As A is connected, it classically inherits a filtration of Pր-algebra given by the
kernels of the iterated coproducts. We denote by degp the associated degree. In particular, for
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all x ∈ A, degp(x) ≤ 1 if, and only if, x ∈ Prim(A). Let B be the Pր-subalgebra of A generated
by Prim(A). Let a ∈ A, let us show that a ∈ B by induction on n = degp(a). If n ≤ 1, then
a ∈ Prim(A) ⊆ B. Suppose the result true at all ranks ≤ n− 1. Then, by the first step, we can
write:

a = b +
∑

i

aibi +
∑

j

cjdj ,

with b ∈ Prim(A), ai, bi, cj , dj ∈ A. Because of the filtration, we can suppose that degp(ai),
degp(bi), degp(cj), degp(dj) < n. By the induction hypothesis, they belong to B, so a ∈ B.

Last step. So, there is an epimorphism of Pր-algebras:

φ :

{
FPր

(Prim(A)) −→ A

a ∈ Prim(A) −→ a,

where FPր
(Prim(A)) is the free Pր-algebra generated by Prim(A). As the elements of Prim(A)

are primitive both in A and FPր
(Prim(A)), this is a morphism of double Pր-infinitesimal bial-

gebras. Suppose that it is not monic. Take then x ∈ Ker(φ), non-zero, of minimal degree. Then
it is primitive, so belongs to Prim(A) (lemma 43). Hence, φ(a) = a = 0: this is a contradiction.
So φ is a bijection. �

In other terms:

Corollary 46 The triple of operads
(

(PΣ
ր)op, PΣ

ր, VECT

)

is a good triple. Here, VECT

denotes the operad of vector spaces:

VECT(k) =

{
KI if k = 1,

0 if k 6= 1,

where I is the unit of VECT.

We also showed that Sր◦Sր is the projection on Prim(A) in the direct sum A = Prim(A)⊕
(A.A + A ր A). So Sր ◦ Sր is the eulerian idempotent.
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