The infinitesimal Hopf algebra and the operads of planar forests

Loïc Foissy

To cite this version:

Loïc Foissy. The infinitesimal Hopf algebra and the operads of planar forests. International Mathematics Research Notices, 2010. hal-00353236

HAL Id: hal-00353236

https://hal.science/hal-00353236

Submitted on 15 Jan 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The infinitesimal Hopf algebra and the operads of planar forests

Loïc Foissy
Laboratoire de Mathématiques, FRE3111, Université de Reims
Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : loic.foissy@univ-reims.fr

ABSTRACT. We introduce two operads which own the set of planar forests as a basis. With its usual product and two other products defined by different types of graftings, the algebra of planar rooted trees \mathcal{H} becomes an algebra over these operads. The compatibility with the infinitesimal coproduct of \mathcal{H} and these structures is studied. As an application, an inductive way of computing the dual basis of \mathcal{H} for its infinitesimal pairing is given. Moreover, three Cartier-Quillen-Milnor-Moore theorems are given for the operads of planar forests and a rigidity theorem for one of them.
KEYWORDS. Infinitesimal Hopf algebra, Planar rooted trees, Operads.
AMS CLASSIFICATION. 16W30, 05C05, 18D50.

Contents

1 Planar rooted forests and their infinitesimal Hopf algebra 3
1.1 Planar trees and forests 3
1.2 Infinitesimal Hopf algebra of planar forests 4
1.3 Pairing on \mathcal{H} 5
2 The operads of forests and graftings 5
2.1 A few recalls on non- Σ-operads 5
2.2 Presentations of the operads of forests 7
2.3 Grafting on the root 7
2.4 Grafting on the left leave 8
2.5 Dimensions of $\mathbb{P} \backslash$ and \mathbb{P} 9
2.6 A combinatorial description of the composition 11
3 Applications to the infinitesimal Hopf algebra \mathcal{H} 13
3.1 Antipode of \mathcal{H} 13
3.2 Inverse of the application γ 14
3.3 Elements of the dual basis 16
4 Primitive suboperads 18
4.1 Compatibilities between products and coproducts 18
4.2 Suboperad $\mathbb{P R} \mathbb{I M}^{(1)}$ 21
4.3 Another basis of $\operatorname{Prim}(\mathcal{H})$ 22
4.4 From the basis $\left(f_{t}\right)_{t \in \mathbf{T}}$ to the basis $\left(p_{t}\right)_{t \in \mathbf{T}_{b}}$ 23
4.5 Suboperad $\mathbb{P R I I M}{ }^{(2)}$ 24
4.6 Suboperad $\mathbb{P R I M}$ ㄱ 26

Introduction

The Connes-Kreimer Hopf algebra of rooted trees, introduced in [1, 6, 7, 8], is a commutative, non cocommutative Hopf algebra, its coproduct being given by admissible cuts of trees. A non commutative version, the Hopf algebra of planar rooted trees, is introduced in [3, 5]. We furthemore introduce in [4] an infinitesimal version of this object, replacing admissible cuts by left admissible cuts: this last object is here denoted by \mathcal{H}. Similarly with the Hopf case, \mathcal{H} is a self-dual object and it owns a non-degenerate, symmetric Hopf pairing, denoted by $\langle-,-\rangle$. This pairing is related to a partial order on the set of planar rooted forests, making it isomorphic to the Tamari poset. As a consequence, \mathcal{H} is given a dual basis denoted by $\left(f_{F}\right)_{F \in \mathbf{F}}$, indexed by the set \mathbf{F} of planar forest. In particular, the sub-family $\left(f_{t}\right)_{t \in \mathbf{T}}$ indexed by the set of planar rooted trees \mathbf{T} is a basis of the space of primitive elements of \mathcal{H}.

The aim of this text is to introduce two structures of operad on the space of planar forests. We introduce two (non-symmetric) operads \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow} defined in the following way:

1. \mathbb{P}_{\searrow} is generated by m and $\searrow \in \mathbb{P}_{\searrow}(2)$, with relations:

$$
\left\{\begin{aligned}
m \circ(\searrow, I) & =\searrow \circ(I, m), \\
m \circ(m, I) & =m \circ(I, m), \\
\searrow \circ(m, I) & =\searrow \circ(I, \searrow)
\end{aligned}\right.
$$

2. \mathbb{P}_{\nearrow} is generated by m and $\nearrow \in \mathbb{P}_{\nearrow}(2)$, with relations:

$$
\begin{cases}m \circ(\nearrow, I) & =\nearrow \circ(I, m), \\ m \circ(m, I) & =m \circ(I, m), \\ \nearrow \circ(\nearrow, I) & =\nearrow \circ(I, \nearrow)\end{cases}
$$

We then introduce two products on \mathcal{H} or on its augmentation ideal \mathcal{M}, denoted by \nearrow and \searrow. The product $F \nearrow G$ consists of grafting F on the left leave of G and the product $F \searrow G$ consists of grafting F on the left root of G. Together with its usual product m, \mathcal{M} becomes both a $\mathbb{P}_{\nearrow^{-}}$and a \mathbb{P}_{\nearrow}-algebra. More precisely, \mathcal{M} is the free $\mathbb{P}_{\searrow_{\nearrow}}$ - and \mathbb{P}_{\nearrow}-algebra generated by a single element .. As a consequence, \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow} inherits a combinatorial representation using planar forests, with composition iteratively described using the products \searrow and \nearrow.

We then give several applications of these operadic structures. For example, the antipode of \mathcal{H} is described in term of the operad \mathbb{P}_{\searrow}. We show how to compute elements f_{t} 's, with $t \in \mathbf{T}$, using the action of \mathbb{P}_{\searrow}, and the elements f_{F} 's, $F \in \mathbf{F}$ from the preceding ones using the action of \mathbb{P}_{\nearrow}. Combining all these results, it is possible to compute by induction the basis $\left(f_{F}\right)_{F \in \mathbf{F}}$.

We finally study the compatibilities of products m, \nearrow, \searrow, the coproduct $\tilde{\Delta}$ and the coproduct $\tilde{\Delta}_{\nearrow}$ dual of \nearrow. This leads to the definition of two types of \mathbb{P}_{\nearrow}-bialgebras, and one type of $\mathbb{P}_{\searrow-}$ bialgebras. Each type then define a suboperad of \mathbb{P}_{\nearrow} or \mathbb{P}_{\searrow} corresponding to primitive elements of \mathcal{M}, which are explicitively described:

1. The first one is a free operad, generated by the element $!-\ldots \in \mathbb{P}_{\nearrow}(2)$. As a consequence, the space of primitive elements of \mathcal{H} admits a basis $\left(p_{t}\right)_{t \in \mathbf{T}_{b}}$ indexed by the set of planar binary trees. The link with the basis $\left(f_{t}\right)_{t \in \mathbf{T}}$ is given with the help of the Tamari order.
2. The second one admits a combinatorial representation in terms of planar rooted trees. It is generated by the corollas $c_{n} \in \mathbb{P}_{\nearrow}(n), n \geq 2$, with the following relations: for all $k, l \geq 2$,

$$
c_{k} \circ(c_{l}, \underbrace{I, \ldots, I}_{k-1 \text { times }})=c_{l} \circ(\underbrace{I, \ldots, I}_{l-1 \text { times }}, c_{k}) .
$$

3. The third one admits a combinatorial representation in terms of planar rooted trees, and is freely generated by $\mathfrak{l} \in \mathbb{P}_{\searrow}(2)$.

We also give the definition of a double \mathbb{P}_{\nearrow}-bialgebra, combining the two types of \mathbb{P}_{\nearrow} bialgebras already introduced. We then prove a rigidity theorem: any double \mathbb{P}_{\nearrow}-bialgebra connected as a coalgebra is isomorphic to a decorated version of \mathcal{M}.

This text is organised as follows: the first section gives several recalls on the infinitesimal Hopf algebra of planar rooted trees and its pairing. The two products \searrow and \nearrow are introduced in section 2, as well as the combinatorial representation of the two associated operads. The applications to the computation of $\left(f_{F}\right)_{F \in \mathbf{F}}$ is given in section 3 . Section 4 is devoted to the study of the suboperads of primitive elements and the last section deals with the rigidity theorem for double \mathbb{P}_{\nearrow}-bialgebras.

Notations.

1. We shall denote by K a commutative field, of any characteristic. Every vector space, algebra, coalgebra, etc, will be taken over K.
2. Let (A, Δ, ε) be a counitary coalgebra. Let $1 \in A$, non zero, such that $\Delta(1)=1 \otimes 1$. We then define the non counitary coproduct:

$$
\tilde{\Delta}:\left\{\begin{aligned}
& \operatorname{Ker}(\varepsilon) \longrightarrow \\
& \operatorname{Ker}(\varepsilon) \otimes \operatorname{Ker}(\varepsilon) \\
& a \longrightarrow \tilde{\Delta}(a)=\Delta(a)-a \otimes 1-1 \otimes a .
\end{aligned}\right.
$$

We shall use the Sweedler notations $\Delta(a)=a^{(1)} \otimes a^{(2)}$ and $\tilde{\Delta}(a)=a^{\prime} \otimes a^{\prime \prime}$.

1 Planar rooted forests and their infinitesimal Hopf algebra

We here recall some results and notations of (4].

1.1 Planar trees and forests

1. The set of planar trees is denoted by \mathbf{T}, and the set of planar forests is denoted by \mathbf{F}. The weight of a planar forest is the number of its vertices. For all $n \in \mathbb{N}$, we denote by $\mathbf{F}(n)$ the set of planar forests of weight n.
Examples. Planar rooted trees of weight ≤ 5 :

$$
., \downarrow, \vee, \downarrow, \vee, \forall, \dot{\vee}, Y, \downarrow, \mathcal{V}, \dot{\vee}, \vee, \downarrow, \forall, V, V, \vee, Y, Y, Y, \downarrow
$$

Planar rooted forests of weight ≤ 4 :
2. The algebra \mathcal{H} is the free associative, unitary algebra generated by \mathbf{T}. As a consequence, a linear basis of \mathcal{H} is given by \mathbf{F}, and its product is given by the concatenation of planar forests.
3. We shall also need two partial orders and a total order on the set $\operatorname{Vert}(F)$ of vertices of $F \in \mathbf{F}$, defined in [3, 4]. We put $F=t_{1} \ldots t_{n}$, and let s, s^{\prime} be two vertices of F.
(a) We shall say that $s \geq_{h i g h} s^{\prime}$ if there exists a path from s^{\prime} to s in F, the edges of F being oriented from the roots to the leaves. Note that $\geq_{\text {high }}$ is a partial order, whose Hasse graph is the forest F.
(b) If s and s^{\prime} are not comparable for $\geq_{h i g h}$, we shall say that $s \geq_{l e f t} s^{\prime}$ if one of these assertions is satisfied:
i. s is a vertex of t_{i} and s^{\prime} is a vertex of t_{j}, with $i<j$.
ii. s and s^{\prime} are vertices of the same t_{i}, and $s \geq_{l e f t} s^{\prime}$ in the forest obtained from t_{i} by deleting its root.

This defines the partial order $\geq_{l e f t}$ for all forests F, by induction on the the weight.
(c) We shall say that $s \geq_{h, l} s^{\prime}$ if $s \geq_{h i g h} s^{\prime}$ or $s \geq_{l e f t} s^{\prime}$. This defines a total order on the vertices of F.

1.2 Infinitesimal Hopf algebra of planar forests

1. Let $F \in \mathbf{F}$. An admissible cut is a non empty cut of certain edges and trees of F, such that each path in a non-cut tree of F meets at most one cut edge. The set of admissible cuts of F will be denoted by $\operatorname{Adm}(F)$. If c is an admissible cut of F, the forest of the vertices which are over the cuts of c will be denoted by $P^{c}(t)$ (branch of the cut c), and the remaining forest will be denoted by $R^{c}(t)$ (trunk of the cut). An admissible cut of F will be said to be left-admissible if, for all vertices x and y of $F, x \in P^{c}(F)$ and $x \leq_{l e f t ~} y$ imply that $y \in P^{c}(F)$. The set of left-admissible cuts of F will be denoted by $A d m^{l}(F)$.
2. \mathcal{H} is given a coproduct by the following formula: for all $F \in \mathbf{F}$,

$$
\Delta(F)=\sum_{c \in \mathcal{A d m}^{l}(F)} P^{c}(F) \otimes R^{c}(F)+F \otimes 1+1 \otimes F
$$

Then (\mathcal{H}, Δ) is an infinitesimal bialgebra, that is to say: for all $x, y \in \mathcal{H}$,

$$
\Delta(x y)=(x \otimes 1) \Delta(y)+\Delta(x)(1 \otimes y)-x \otimes y
$$

Examples.

$$
\begin{aligned}
& \Delta(\cdot)=\cdot \otimes 1+1 \otimes \cdot, \\
& \Delta(\ldots)=\ldots \otimes 1+1 \otimes \ldots+\boldsymbol{\bullet}, \boldsymbol{,}, \\
& \Delta(\mathfrak{l})=\mathfrak{l} \otimes 1+1 \otimes \mathfrak{l}+\bullet \bullet, \\
& \Delta(\mathfrak{l} \cdot)=\mathfrak{l} \cdot \otimes 1+1 \otimes \mathfrak{l} \cdot+. \otimes \ldots+\mathfrak{l} \otimes ., \\
& \Delta(V)=\boldsymbol{V} \otimes 1+1 \otimes V+\ldots \otimes \cdot+\otimes \otimes 1, \\
& \Delta(\mathfrak{l})=!\otimes 1+1 \otimes!+\mathfrak{l} \otimes+\cdot \otimes \mathfrak{l},
\end{aligned}
$$

$$
\begin{aligned}
& \Delta(\mathfrak{l} . .)=\mathfrak{l} . . \otimes 1+1 \otimes \mathfrak{l} . .+. \otimes \ldots+\mathfrak{l} \otimes \ldots+\mathfrak{l} \otimes, \quad, \\
& \Delta(. \mathfrak{l} \cdot)=. \mathfrak{l} \cdot \otimes 1+1 \otimes . \mathfrak{l} \cdot+. \otimes \mathfrak{l} \cdot+\ldots \otimes \ldots+. \mathfrak{l} \otimes \cdot, \\
& \Delta(\ldots \mathfrak{l})=\ldots \mathfrak{l} \otimes 1+1 \otimes \ldots \mathfrak{l}+\otimes . \mathfrak{l}+\ldots \otimes \mathfrak{l}+\ldots \otimes \boldsymbol{\bullet}, \\
& \Delta(\cdot V)=. V \otimes 1+1 \otimes \cdot V+\cdot \otimes V+\ldots \otimes!+\ldots \otimes \cdot, \\
& \Delta(.!)=.!\otimes 1+1 \otimes .!+. \otimes!+\ldots \otimes \mathfrak{l}+.!\otimes ., \\
& \Delta(V \cdot)=V \cdot \otimes 1+1 \otimes V+. \otimes \mathfrak{I}+\ldots \otimes \ldots+V \otimes ., \\
& \Delta(!)=!. \otimes 1+1 \otimes!+\cdot \otimes \mathfrak{l} \cdot+\mathfrak{l} \otimes \ldots+!\otimes \cdot, \\
& \Delta(\mathfrak{l})=\mathfrak{!}!\otimes 1+1 \otimes!!+. \otimes .!+\mathfrak{l} \otimes!+\mathfrak{l} \otimes, \quad,
\end{aligned}
$$

$$
\begin{aligned}
& \Delta(\mathbb{V})=\boldsymbol{V} \otimes 1+1 \otimes \mathbb{V}+. \otimes \mathcal{V}+\ldots \otimes \mathfrak{l}+\ldots \otimes ., \\
& \Delta(V)=\eta \otimes 1+1 \otimes \vartheta+\cdot \otimes V+1 \otimes!+\mathfrak{V} \cdot \otimes \cdot, \\
& \Delta(\dot{V})=\boldsymbol{V} \otimes 1+1 \otimes \boldsymbol{V}+. \otimes!+\ldots \otimes!+.!\otimes, \text {, } \\
& \Delta(Y)=Y \otimes 1+1 \otimes Y . \otimes \mathfrak{l}+\ldots \otimes \mathfrak{l}+\boldsymbol{V} \otimes, \\
& \Delta(\vdots)=\ddagger \otimes 1+1 \otimes!+\cdot \otimes!+\mathfrak{l} \otimes \mathfrak{!}+\vdots \otimes .
\end{aligned}
$$

We proved in (4) that \mathcal{H} is an infinitesimal Hopf algebra, that is to say has an antipode S. This antipode satisfies $S(1)=1, S(t) \in \operatorname{Prim}(\mathcal{H})$ for all $t \in \mathbf{T}$, and $S(F)=0$ for all $F \in \mathbf{F}-(\mathbf{T} \cup\{1\})$.

1.3 Pairing on \mathcal{H}

1. We define the operator $B^{+}: \mathcal{H} \longrightarrow \mathcal{H}$, which associates, to a forest $F \in \mathbf{F}$, the tree obtained by grafting the roots of the trees of F on a common root. For example, $B^{+}(\mathcal{Y})=$. ϑ, and $B^{+}(. V)=\vartheta$.
2. The application γ is defined by:

$$
\gamma:\left\{\begin{array}{rlr}
\mathcal{H} & \longrightarrow \mathcal{H} \\
t_{1} \ldots t_{n} \in \mathbf{F} & \longrightarrow \delta_{t_{1}, t_{2}} \ldots t_{n} .
\end{array}\right.
$$

3. There exists a unique pairing $\langle-,-\rangle: \mathcal{H} \times \mathcal{H} \longrightarrow K$, satisfying:
i. $\langle 1, x\rangle=\varepsilon(x)$ for all $x \in \mathcal{H}$.
ii. $\langle x y, z\rangle=\langle y \otimes x, \Delta(z)\rangle$ for all $x, y, z \in \mathcal{H}$.
iii. $\left\langle B^{+}(x), y\right\rangle=\langle x, \gamma(y)\rangle$ for all $x, y \in \mathcal{H}$.

Moreover:
iv. $\langle-,-\rangle$ is symmetric and non-degenerate.
v . If x and y are homogeneous of different weights, $\langle x, y\rangle=0$.
vi. $\langle S(x), y\rangle=\langle x, S(y)\rangle$ for all $x, y \in \mathcal{H}$.

This pairing admits a combinatorial interpretation using the partial orders $\geq_{\text {left }}$ and $\geq_{\text {high }}$ and is related to the Tamari order on planar binary trees, see [7].
4. We denote by $\left(f_{F}\right)_{F \in \mathbf{F}}$ the dual basis of the basis of forests for the pairing $\langle-,-\rangle$. In other terms, for all $F \in \mathbf{F}, f_{F}$ is defined by $\left\langle f_{F}, G\right\rangle=\delta_{F, G}$, for all forest $G \in \mathbf{F}$. The family $\left(f_{t}\right)_{t \in \mathbf{T}}$ is a basis of the space $\operatorname{Prim}(\mathcal{H})$ of primitive elements of \mathcal{H}.

2 The operads of forests and graftings

2.1 A few recalls on non- Σ-operads

1. We shall work here with non- Σ-operads [1]. Recall that such an object is a family $\mathbb{P}=$ $(\mathbb{P}(n))_{n \in \mathbb{N}}$ of vector spaces, together with a composition for all $n, k_{1}, \ldots, k_{n} \in \mathbb{N}$:

$$
\left\{\begin{aligned}
\mathbb{P}(n) \otimes \mathbb{P}\left(k_{1}\right) \otimes \ldots \otimes \mathbb{P}\left(k_{n}\right) & \longrightarrow \mathbb{P}\left(k_{1}+\ldots+k_{n}\right) \\
p \otimes p_{1} \otimes \ldots \otimes p_{n} & \longrightarrow p \circ\left(p_{1}, \ldots, p_{n}\right) .
\end{aligned}\right.
$$

The following associativity condition is satisfied: for all $p \in \mathbb{P}(n), p_{1} \in \mathbb{P}\left(k_{1}\right), \ldots, p_{n} \in$ $\mathbb{P}\left(k_{n}\right), p_{1,1}, \ldots, p_{n, k_{n}} \in \mathbb{P}$,

$$
\begin{aligned}
& \left(p \circ\left(p_{1}, \ldots, p_{n}\right)\right) \circ\left(p_{1,1}, \ldots, p_{1, k_{1}}, \ldots, p_{n, 1}, \ldots, p_{n, k_{n}}\right) \\
= & p \circ\left(p_{1} \circ\left(p_{1,1}, \ldots, p_{1, k_{1}}\right), \ldots, p_{n} \circ\left(p_{n, 1}, \ldots, p_{n, k_{n}}\right)\right) .
\end{aligned}
$$

Moreover, there exists a unit element $I \in \mathbb{P}(1)$, satisfying: for all $p \in \mathbb{P}(n)$,

$$
\left\{\begin{aligned}
p \circ(I, \ldots, I) & =p \\
I \circ p & =p
\end{aligned}\right.
$$

An operad is a non- Σ-operad \mathbb{P} with a right action of the symmetric group S_{n} on $\mathbb{P}(n)$ for all n, satisfying a certain compatibility with the composition.
2. Let \mathbb{P} be a non- Σ-operad. A \mathbb{P}-algebra is a vector space A, together with an action of \mathbb{P} :

$$
\left\{\begin{aligned}
\mathbb{P}(n) \otimes A^{\otimes n} & \longrightarrow A \\
p \otimes a_{1} \otimes \ldots \otimes a_{n} & \longrightarrow p \cdot\left(a_{1}, \ldots, a_{n}\right),
\end{aligned}\right.
$$

satisfying the following compatibility: for all $p \in \mathbb{P}(n), p_{1} \in \mathbb{P}\left(k_{1}\right), \ldots, p_{n} \in \mathbb{P}\left(k_{n}\right)$, for all $a_{1,1}, \ldots, a_{n, k_{n}} \in A$,

$$
\begin{aligned}
& \left(p \circ\left(p_{1}, \ldots, p_{n}\right)\right) \cdot\left(a_{1,1}, \ldots, a_{1, k_{1}}, \ldots, a_{n, 1} \ldots, a_{n, k_{n}}\right) \\
= & p \cdot\left(p_{1} \cdot\left(a_{1,1}, \ldots, a_{1, k_{1}}\right), \ldots, p_{n} \cdot\left(a_{n, 1}, \ldots, a_{n, k_{n}}\right)\right) .
\end{aligned}
$$

Moreover, $I . a=a$ for all $a \in A$.
In particular, if V is a vector space, the free \mathbb{P}-algebra generated by V is:

$$
F_{\mathbb{P}}(V)=\bigoplus_{n \in \mathbb{N}} \mathbb{P}(n) \otimes V^{\otimes n}
$$

with the action of \mathbb{P} given by:

$$
\begin{aligned}
& p \cdot\left(\left(p_{1} \otimes a_{1,1} \otimes \ldots \otimes a_{1, k_{1}}\right), \ldots,\left(p_{n} \otimes a_{n, 1} \otimes \ldots \otimes a_{n, k_{n}}\right)\right) \\
= & \left(p \circ\left(p_{1}, \ldots, p_{n}\right)\right) \otimes a_{1,1} \otimes \ldots \otimes a_{1, k_{1}} \otimes \ldots \otimes a_{n, 1} \otimes \ldots \otimes a_{n, k_{n}}
\end{aligned}
$$

3. Let \mathbf{T}_{b} be the set of planar binary trees:

$$
\mathbf{T}_{b}=\{ı, Y, Y, Y, Y, Y, Y, Y, Y \ldots\}
$$

For all $n \in \mathbb{N}, \mathbb{T}_{b}(n)$ is the vector space generated by the elements of \mathbf{T}_{b} with n leaves:

$$
\begin{aligned}
\mathbb{T}_{b}(0) & =(0) \\
\mathbb{T}_{b}(1) & =\operatorname{Vect}(\mathrm{I}) \\
\mathbb{T}_{b}(2) & =\operatorname{Vect}(Y) \\
\mathbb{T}_{b}(3) & =\operatorname{Vect}(Y, Y) \\
\mathbb{T}_{b}(4) & =\operatorname{Vect}(Y, Y, Y, Y, Y)
\end{aligned}
$$

The family of vector spaces \mathbb{T}_{b} is given a structure of non- Σ-operad by graftings on the leaves. More precisely, if $t, t_{1}, \ldots, t_{n} \in \mathbf{T}_{b}, t$ with n leaves, then $t \circ\left(t_{1}, \ldots, t_{n}\right)$ is the binary tree obtained by grafting t_{1} on the first leave of t, t_{2} on the second leave of t, and so on (note that the leaves of t are ordered from left to right). The unit is \boldsymbol{I}.

It is known that \mathbb{T}_{b} is the free non- Σ-operad generated by $Y \in \mathbb{T}_{b}(2)$. Similarly, given elements m_{1}, \ldots, m_{k} in $\mathbb{P}(2)$, it is possible to describe the free non- Σ-operad \mathbb{P} generated by these elements in terms of planar binary trees whose internal vertices are decorated by m_{1}, \ldots, m_{k}.

2.2 Presentations of the operads of forests

Definition 1

1. \mathbb{P}_{\searrow} is the non- Σ-operad generated by m and $\searrow \in \mathbb{P}_{\searrow}(2)$, with relations:

$$
\left\{\begin{aligned}
m \circ(\searrow, I) & =\searrow \circ(I, m) \\
m \circ(m, I) & =m \circ(I, m) \\
\searrow \circ(m, I) & =\searrow \circ(I, \searrow)
\end{aligned}\right.
$$

2. \mathbb{P}_{\nearrow} is the non- Σ-operad generated by m and $\nearrow \in \mathbb{P}_{\nearrow}(2)$, with relations:

$$
\begin{cases}m \circ(\nearrow, I) & =\nearrow \circ(I, m) \\ m \circ(m, I) & =m \circ(I, m) \\ \nearrow \circ(\nearrow, I) & =\nearrow \circ(I, \nearrow)\end{cases}
$$

Remark. We shall prove in [2] that these quadratic operads are Koszul.

2.3 Grafting on the root

Let $F, G \in \mathbf{F}-\{1\}$. We put $G=t_{1} \ldots t_{n}$ and $t_{1}=B^{+}\left(G_{1}\right)$. We define:

$$
F \searrow G=B^{+}\left(F G_{1}\right) t_{2} \ldots t_{n}
$$

In other terms, F is grafted on the root of the first tree of G, on the left. In particular, $F \searrow \cdot=B^{+}(F)$.

Examples.

Obviously, \searrow can be inductively defined in the following way: for $F, G, H \in \mathbf{F}-\{1\}$,

$$
\left\{\begin{aligned}
F \searrow \cdot & =B^{+}(F), \\
F \searrow(G H) & =(F \searrow G) H \\
F \searrow B^{+}(G) & =B^{+}(F G)
\end{aligned}\right.
$$

We denote by \mathcal{M} the augmentation ideal of \mathcal{H}, that is to say the vector space generated by the elements of $\mathbf{F}-\{1\}$. We extend $\searrow: \mathcal{M} \otimes \mathcal{M} \longrightarrow \mathcal{M}$ by linearity.

Proposition 2 For all $x, y, z \in \mathcal{M}$:

$$
\begin{align*}
x \searrow(y z) & =(x \searrow y) z \tag{1}\\
x \searrow(y \searrow z) & =(x y) \searrow z \tag{2}
\end{align*}
$$

Proof. We can restrict ourselves to $x, y, z \in \mathbf{F}-\{1\}$. Then (11) is immediate. In order to prove (2), we put $z=B^{+}\left(z_{1}\right) z_{2}, z_{1}, z_{2} \in \mathbf{F}$. Then:

$$
x \searrow(y \searrow z)=x \searrow\left(B^{+}\left(y z_{1}\right) z_{2}\right)=B^{+}\left(x y z_{1}\right) z_{2}=(x y) \searrow\left(B^{+}\left(z_{1}\right) z_{2}\right)=(x y) \searrow z
$$

which proves (2).

Corollary $3 \mathcal{M}$ is given a graded \mathbb{P}_{\searrow}-algebra structure by its products m and by \searrow.

Proof. Immediate, by proposition 2 .

2.4 Grafting on the left leave

Let $F, G \in \mathbf{F}$. Suppose that $G \neq 1$. Then $F \nearrow G$ is the planar forest obtained by grafting F on the leave of G which is at most on the left. For $G=1$, we put $F \nearrow 1=F$. In particular, $F \nearrow .=B^{+}(F)$.

Examples.

In an obvious way, \nearrow can be inductively defined in the following way: for $F, G, H \in \mathbf{F}$,

$$
\left\{\begin{aligned}
F \nearrow 1 & =F \\
F \nearrow(G H) & =(F \nearrow G) H \text { if } G \neq 1 \\
F \nearrow B^{+}(G) & =B^{+}(F \nearrow G)
\end{aligned}\right.
$$

We extend $\nearrow: \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$ by linearity.

Proposition 4 1. For all $x, z \in \mathcal{H}, y \in \mathcal{M}$:

$$
\begin{equation*}
x \nearrow(y z)=(x \nearrow y) z \tag{3}
\end{equation*}
$$

2. For all $x, y, z \in \mathcal{H}$:

$$
x \nearrow(y \nearrow z)=(x \nearrow y) \nearrow z .
$$

So (\mathcal{H}, \nearrow) is an associative algebra, with unitary element 1.

Proof. Note that (3) is immediate for $x, y, z \in \mathbf{F}$, with $y \neq 1$. This implies the first point. In order to prove the second point, we consider:

$$
Z=\{z \in \mathcal{H} / \forall x, y \in \mathcal{H}, x \nearrow(y \nearrow z)=(x \nearrow y) \nearrow z\}
$$

Let us first prove that $1 \in Z$: for all $x, y \in \mathcal{H}$,

$$
x \nearrow(y \nearrow 1)=x \nearrow y=(x \nearrow y) \nearrow 1
$$

Let $z_{1}, z_{2} \in Z$. Let us show that $z_{1} z_{2} \in Z$. By linearity, we can separate the proof into two cases:

1. $z_{1}=1$. Then it is obvious.
2. $\varepsilon\left(z_{1}\right)=0$. Let $x, y \in \mathcal{H}$. By the first point:

$$
\begin{aligned}
x \nearrow\left(y \nearrow\left(z_{1} z_{2}\right)\right) & \left.=x \nearrow\left(\left(y \nearrow z_{1}\right) z_{2}\right)\right) \\
& =\left(x \nearrow\left(y \nearrow z_{1}\right)\right) z_{2} \\
& =\left((x \nearrow y) \nearrow z_{1}\right) z_{2} \\
& =(x \nearrow y) \nearrow\left(z_{1} z_{2}\right)
\end{aligned}
$$

So Z is a subalgebra of \mathcal{H}. Let us show that it is stable by B^{+}. Let $z \in Z, x, y \in \mathcal{H}$. Then:

$$
\begin{aligned}
x \nearrow\left(y \nearrow B^{+}(z)\right) & =x \nearrow B^{+}(y \nearrow z) \\
& =B^{+}(x \nearrow(y \nearrow z)) \\
& =B^{+}((x \nearrow y) \nearrow z) \\
& =(x \nearrow y) \nearrow B^{+}(z)
\end{aligned}
$$

So Z is a subalgebra of \mathcal{H}, stable by B^{+}. Hence, $Z=\mathcal{H}$.

Remarks.

1. (3) is equivalent to: for any $x, y, z \in \mathcal{H}$,

$$
x \nearrow(y z)-\varepsilon(y) x \nearrow z=(x \nearrow y) z-\varepsilon(y) x z
$$

2. Let $F \in \mathbf{F}-\{1\}$. There exists a unique family $\left(. F_{1}, \ldots, . F_{n}\right)$ of elements of \mathbf{F} such that:

$$
F=\left(. F_{1}\right) \nearrow \ldots \nearrow\left(. F_{n}\right)
$$

For example, $\bigvee_{\imath}=(\ldots) \nearrow(\ldots) \nearrow(.!$.$) . As a consequence, (\mathcal{H}, \nearrow)$ is freely generated by . \mathbf{F} as an associative algebra.

Corollary $5 \mathcal{M}$ is given a graded $\mathbb{P}_{\nearrow \text {-algebra structure by }}$ its product m and by \nearrow.
Proof. Immediate, by proposition \uparrow

2.5 Dimensions of \mathbb{P}_{\backslash} and \mathbb{P}_{\nearrow}

We now compute the dimensions of $\mathbb{P}_{\searrow}(n)$ and $\mathbb{P}_{\nearrow}(n)$ for all n and deduce that \mathcal{M} is the free \mathbb{P}_{\searrow} - and \mathbb{P}_{\nearrow}-algebra generated by ..

Notation. We denote by r_{n} the number of planar rooted forests and we put $R(X)=$ $\sum_{n=1}^{+\infty} r_{n} X^{n}$. It is well-known (see [3, [13]) that $R(X)=\frac{1-2 X-\sqrt{1-4 X}}{2 X}$.

Proposition 6 For $\xrightarrow{?} \in\{\searrow, \nearrow\}$ and all $n \in \mathbb{N}^{*}$ ，in the $\mathbb{P}_{? \rightarrow}$－algebra \mathcal{M} ：

$$
\mathbb{P}_{马}(n) \cdot(\cdot, \ldots, \cdot)=\operatorname{Vect}(\text { planar forests of weight } n) .
$$

As a consequence， \mathcal{M} is generated as a $\mathbb{P}_{?}$－algebra by ．．
Proof．\subseteq ．Immediate，as \mathcal{M} is a graded $\mathbb{P}_{\text {？}}$－algebra．
〇．Induction on n ．For $n=1, I .(\cdot)=\ldots$ For $n \geq 2$ ，two cases are possible．
1．$F=F_{1} F_{2}$ ，weight $\left(F_{i}\right)=n_{i}<n$ ．By the induction hypothesis，there exists $p_{1}, p_{2} \in$ $\mathbb{P}_{?}^{?}$ ，such that $F_{1}=p_{1} \cdot(\cdot, \ldots, \cdot)$ and $F_{2}=p_{2} \cdot(\cdot, \ldots, \cdot)$ ．Then $\left(m \circ\left(p_{1}, p_{2}\right)\right) \cdot(\cdot, \ldots, \cdot)=$ $\overrightarrow{m .}\left(F_{1}, F_{2}\right)=F_{1} F_{2}$ ．

2．$F \in \mathbf{T}$ ．Let us put $F=B^{+}(G)$ ．Then there exists $p \in \mathbb{P}_{\underline{?}}$ ，such that $p .(\cdot, \ldots, \cdot)=G$ ． Then：

$$
\left\{\begin{array}{l}
(\searrow \circ(p, I)) \cdot(\cdot, \ldots, \cdot)=G \searrow \cdot=F, \\
(\nearrow \circ(p, I)) \cdot(\cdot, \ldots, \cdot)=G \nearrow \cdot=F .
\end{array}\right.
$$

Hence，in both cases，$F \in \mathbb{P}_{马}(n) \cdot(\cdot, \ldots,$.$) ．$
Corollary 7 For all $\xrightarrow{?} \in\{\searrow, \nearrow\}, n \in \mathbb{N}^{*}, \operatorname{dim}\left(\mathbb{P}_{?}(n)\right) \geq r_{n}$ ．
Proof．Because we proved the surjectivity of the following application：

$$
e v_{?}:\left\{\begin{aligned}
\mathbb{P}_{?}(n) & \longrightarrow V e c t(\text { planar forests of weight } n) \\
p & \longrightarrow p \cdot(\cdot, \ldots, \cdot) .
\end{aligned}\right.
$$

Lemma 8 For all $\xrightarrow{?} \in\{\searrow, \nearrow\}, n \in \mathbb{N}^{*}, \operatorname{dim}\left(\mathbb{P}_{?}(n)\right) \leq r_{n}$ ．
Proof．We prove it for $\xrightarrow{?}=\nearrow$ ．Let us fix $n \in \mathbb{N}^{*}$ ．Then $\mathbb{P} \nearrow(n)$ is linearly generated by planar binary trees whose internal vertices are decorated by m and \nearrow ．The following relations hold：

In the sequel of the proof，we shall say that such a tree is admissible if it satisfies the following conditions：

1．For each internal vertex s decorated by m ，the left child of s is a leave．
2．For each internal vertex s decorated by \nearrow ，the left child of s is a leave or is decorated by m ．

For example，here are the admissible trees with 1,2 or 3 leaves：

The preceding relations imply that $\mathbb{P}_{\nearrow}(n)$ is linearly generated by admissible trees with n leaves．So $\operatorname{dim}(\mathbb{P} /(n))$ is smaller than a_{n} ，the number of admissible trees with n leaves．For $n \geq 2$ ，we denote by b_{n} the number of admissible trees with n leaves whose root is decorated by
m, and by c_{n} the number of admissible trees with n leaves whose root is decorated by \nearrow. We also put $b_{1}=1$ and $c_{1}=0$. Finally, we define:

$$
A(X)=\sum_{n \geq 1} a_{n} X^{n}, \quad B(X)=\sum_{n \geq 1} b_{n} X^{n}, \quad C(X)=\sum_{n \geq 1} c_{n} X^{n}
$$

Immediately, $A(X)=B(X)+C(X)$. Every admissible tree with $n \geq 2$ leaves whose root is decorated by m is of the form $m \circ(I, t)$, where t is an admissible tree with $n-1$ leaves. Hence, $B(X)=X A(X)+X$. Moreover, every admissible tree with $n \geq 2$ leaves whose root is decorated by \nearrow is of the form $\nearrow \circ\left(t_{1}, t_{2}\right)$, where t_{1} is an admissible tree with k leaves whose eventual root is decorated by m and t_{2} an admissible tree with $n-k$ leaves $(1 \leq k \leq n-1)$. Hence, for all $n \geq 2, c_{n}=\sum_{k=1}^{n-1} b_{k} a_{n-k}$, so $C(X)=B(X) A(X)$. As a conclusion:

$$
\left\{\begin{array}{l}
A(X)=B(X)+C(X) \\
B(X)=X A(X)+X \\
C(X)=B(X) A(X)
\end{array}\right.
$$

So $A(X)=X A(X)+X+B(X) A(X)=X A(X)+X+X A(X)^{2}+X A(X)$, and:

$$
X A(X)^{2}+(2 X-1) A(X)+X=0
$$

As $a_{1}=1$:

$$
A(X)=\frac{1-2 X-\sqrt{1-4 X}}{2 X}=R(X)
$$

So, for all $n \geq 1, \operatorname{dim}\left(\mathbb{P}_{\nearrow}(n)\right) \leq a_{n}=r_{n}$. The proof is similar for \mathbb{P}_{\searrow}.
As immediate consequences:
Theorem 9 For $\xrightarrow{?} \in\{\searrow, \nearrow\}, n \in \mathbb{N}^{*}, \operatorname{dim}\left(\mathbb{P}_{?}^{?}(n)\right)=r_{n}$. Moreover, the following application is bijective:

$$
e v_{?}:\left\{\begin{aligned}
\mathbb{P}_{?}(n) & \longrightarrow V e c t(\text { planar forests of weight } n) \subseteq \mathcal{M} \\
p & \longrightarrow(\bullet, \ldots, \bullet) .
\end{aligned}\right.
$$

Corollary 10 1. $(\mathcal{M}, m, \searrow)$ is the free \mathbb{P}_{\searrow}-algebra generated by ..
2. $(\mathcal{M}, m, \nearrow)$ is the free \mathbb{P}_{\nearrow}-algebra generated by ..

2.6 A combinatorial description of the composition

Let $\stackrel{?}{\rightarrow} \in\{\searrow, \nearrow\}$. We identify $\mathbb{P}_{\xrightarrow{?}}$ and the vector space of non-empty planar forests via theorem 9. In other terms, we identify $F \in \mathbf{F}(n)$ and $e v_{?}^{-1}(F) \in \underset{\rightarrow}{\mathbb{P}_{?}}(n)$.

Notations.

1. In order to distinguish the compositions in \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow}, we now denote:
(a) $F Q_{\perp}\left(F_{1}, \ldots, F_{n}\right)$ the composition of \mathbb{P}_{\searrow},
(b) $F \varnothing^{\top}\left(F_{1}, \ldots, F_{n}\right)$ the composition of \mathbb{P}_{\nearrow}.
2. In order to distinguish the action of the operads \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow} on \mathcal{M}, we now denote:
(a) $F \bigcup_{1}\left(x_{1}, \ldots, x_{n}\right)$ the action of \mathbb{P}_{\searrow} on \mathcal{M},
(b) $F \boldsymbol{\rho}^{\boldsymbol{r}}\left(x_{1}, \ldots, x_{n}\right)$ the action of $\mathbb{P} \nearrow$ on \mathcal{M}.

Our aim in this paragraph is to describe the compositions of \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow} in term of forests. We shall prove the following result:

Theorem 11 1. The composition of \mathbb{P}_{\searrow} in the basis of planar forests can be inductively defined in this way:

$$
\left\{\begin{aligned}
\cdot Q_{1}(H) & =H \\
B^{+}(F) Q_{\perp}\left(H_{1}, \ldots, H_{n+1}\right) & =\left(F Q_{\perp}\left(H_{1}, \ldots, H_{n}\right)\right) \searrow H_{n+1} \\
F G Q_{\perp}\left(H_{1}, \ldots, H_{n_{1}+n_{2}}\right) & =F Q_{\perp}\left(H_{1}, \ldots, H_{n_{1}}\right) G Q_{\perp}\left(H_{n_{1}+1}, \ldots, H_{n_{1}+n_{2}}\right)
\end{aligned}\right.
$$

2. The composition of \mathbb{P}_{\nearrow} in the basis of planar forests can be inductively defined in this way:

$$
\left\{\begin{aligned}
\cdot \not \varnothing^{(}(H) & =H \\
B^{+}(F) \varnothing^{\nearrow}\left(H_{1}, \ldots, H_{n+1}\right) & =\left(F \varnothing^{\prime}\left(H_{1}, \ldots, H_{n}\right)\right) \nearrow H_{n+1}, \\
F G \not \varnothing^{\prime}\left(H_{1}, \ldots, H_{n_{1}+n_{2}}\right) & =F \varnothing^{\prime}\left(H_{1}, \ldots, H_{n_{1}}\right) G \not \varnothing^{\prime}\left(H_{n_{1}+1}, \ldots, H_{n_{1}+n_{2}}\right) .
\end{aligned}\right.
$$

Examples. Let $F_{1}, F_{2}, F_{3} \in \mathbf{F}-\{1\}$.

$$
\begin{aligned}
& \text {.. ø }\left(F_{1}, F_{2}\right)=F_{1} F_{2} \text {, } \\
& \mathfrak{l} \varnothing^{\boldsymbol{\prime}}\left(F_{1}, F_{2}\right)=F_{1} \nearrow F_{2}, \\
& \cdots \not \varnothing^{\nearrow}\left(F_{1}, F_{2}, F_{3}\right)=F_{1} F_{2} F_{3} \text {, } \\
& \text {. } \boldsymbol{\varnothing}\left(F_{1}, F_{2}, F_{3}\right)=F_{1}\left(F_{2} \nearrow F_{3}\right) \text {, } \\
& \text { !. } \varnothing^{\top}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} \nearrow F_{2}\right) F_{3} \text {, } \\
& \vee \not \varnothing^{\nearrow}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} F_{2}\right) \nearrow F_{3} \text {, } \\
& \downarrow\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} \nearrow F_{2}\right) \nearrow F_{3} \text {, } \\
& . Q_{1}\left(F_{1}, F_{2}\right)=F_{1} F_{2}, \\
& : Q_{1}\left(F_{1}, F_{2}\right)=F_{1} \searrow F_{2} \text {, } \\
& \ldots Q_{1}\left(F_{1}, F_{2}, F_{3}\right)=F_{1} F_{2} F_{3} \text {, } \\
& .!Q_{1}\left(F_{1}, F_{2}, F_{3}\right)=F_{1}\left(F_{2} \searrow F_{3}\right) \text {, } \\
& \text { !. } Q_{1}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} \searrow F_{2}\right) F_{3} \text {, } \\
& \vee Q\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} F_{2}\right) \searrow F_{3} \text {, } \\
& !Q^{(}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1} \searrow F_{2}\right) \searrow F_{3} \text {. }
\end{aligned}
$$

Proposition 12 Let $\xrightarrow{?} \in\{\searrow, \nearrow\}$.

1. . is the unit element of $\underset{\rightarrow}{\mathbb{P}_{?}}$.
2...$=m$ in $\mathbb{P}_{\xrightarrow{?}}(2)$. Consequently, in $\mathbb{P}_{\xrightarrow{?}}$, .. $\circ(F, G)=F G$ for all $F, G \in \mathbf{F}-\{1\}$.
2. Let $F, G \in \mathbf{F}$. In $\mathbb{P}_{?}, \mathbf{:}=\stackrel{?}{\rightarrow}$. Consequently, $: \stackrel{?}{\oplus}(F, G)=F \stackrel{?}{\rightarrow} G$ for all $F, G \in \mathbf{F}-\{1\}$.

Proof.

1. Indeed, $e v_{\xrightarrow[?]{ }}^{\rightarrow}(\cdot)=\cdot=e v_{\xrightarrow[?]{?}}(I)$. Hence, $\cdot=I$.
2. By definition, $e v_{\xrightarrow[?]{?}}(\ldots)=\ldots=e v_{?}^{?}(m)$. So $\ldots=m$ in $\mathbb{P}_{\xrightarrow{?}}(2)$. Moreover, for all $F, G \in$ $\mathbf{F}-\{1\}:$

$$
\begin{aligned}
e v_{\xrightarrow[?]{?}}(F G) & =F G \\
& =m \stackrel{?}{\bullet}(F, G) \\
& =m \stackrel{?}{\bullet}(F \stackrel{?}{\bullet}(\cdot, \ldots, \cdot), G \bullet \stackrel{?}{\bullet}(\cdot, \ldots, \cdot)) \\
& =(m \stackrel{?}{\bullet}(F, G)) \stackrel{?}{\bullet}(\cdot, \ldots, \cdot) \\
& =e v_{\xrightarrow[?]{?}}(m \stackrel{?}{\bullet}(F, G)) .
\end{aligned}
$$

So $F G=m \stackrel{?}{\ominus}(F, G)=\ldots \stackrel{?}{\ominus}(F, G)$.
3. Indeed, $e v_{\vec{\rightarrow}}(\mathfrak{t})=\cdot \xrightarrow{?} \cdot=e v_{?}(\xrightarrow{?})$. So $\mathfrak{t}=\xrightarrow{?}$ in $\mathbb{P}_{?}(2)$. Moreover:

$$
\begin{aligned}
& e v_{?}(F \xrightarrow{?} G)=F \xrightarrow{?} G \\
& =\stackrel{?}{\rightarrow} \cdot(F, G) \\
& =\stackrel{?}{\rightarrow} \cdot(F \cdot \stackrel{?}{\bullet}(\cdot, \ldots, \cdot), G \stackrel{?}{\bullet}(\cdot, \ldots, \cdot)) \\
& =(\stackrel{?}{\rightarrow}(F, G)) \cdot(\cdot, \ldots, \cdot) \\
& =e v_{?}(\stackrel{?}{\rightarrow} \stackrel{?}{\oplus}(F, G)) \text {. }
\end{aligned}
$$

So, $F \xrightarrow{?} G=\stackrel{?}{\rightarrow} \stackrel{?}{\oplus}(F, G)=1 \stackrel{?}{\oplus}(F, G)$.

Proposition 13 1. Let $F, G \in \mathbf{F}$, different from 1, of respective weights n_{1} and n_{2}. Let $H_{1,1}, \ldots, H_{1, n_{1}}$ and $H_{2,1}, \ldots, H_{2, n_{2}} \in \mathbf{F}-\{1\} . \operatorname{Let} \xrightarrow{?} \in\{\searrow, \nearrow\}$. Then, in $\mathbb{P}_{?}$:

$$
(F G) \stackrel{?}{\oplus}\left(H_{1,1}, \ldots, H_{1, n_{1}}, H_{2,1}, \ldots, H_{2, n_{2}}\right)=F \stackrel{?}{\oplus}\left(H_{1,1}, \ldots, H_{1, n_{1}}\right) G \stackrel{?}{\ominus}\left(H_{2,1}, \ldots, H_{2, n_{2}}\right) .
$$

2. Let $F \in \mathbf{F}$, of weight $n \geq 1$. Let $H_{1}, \ldots, H_{n+1} \in \mathbf{F}$. In $\mathbb{P}_{马}$:

$$
B^{+}(F) \stackrel{?}{\oplus}\left(H_{1}, \ldots, H_{n+1}\right)=\left(F \stackrel{?}{\oplus}\left(H_{1}, \ldots, H_{n}\right)\right) \stackrel{?}{\rightarrow} H_{n+1} .
$$

Proof.

1. Indeed, in $\mathbb{P}_{马}$:

$$
\begin{aligned}
& (F G) \stackrel{?}{\varnothing}\left(H_{1,1}, \ldots, H_{1, n_{1}}, H_{2,1}, \ldots, H_{2, n_{2}}\right) \\
& =(m \stackrel{?}{\rightarrow}(F, G)) \stackrel{?}{\oplus}\left(H_{1,1}, \ldots, H_{1, n_{1}}, H_{2,1}, \ldots, H_{2, n_{2}}\right) \\
& =m \stackrel{?}{\rightarrow}\left(F \stackrel{?}{\oplus}\left(H_{1,1}, \ldots, H_{1, n_{1}}\right), G \stackrel{?}{\ominus}\left(H_{2,1}, \ldots, H_{2, n_{2}}\right)\right) \\
& \left.=F \stackrel{?}{\rightarrow}\left(H_{1,1}, \ldots, H_{1, n_{1}}\right) G \stackrel{?}{\oplus}\left(H_{2,1}, \ldots, H_{2, n_{2}}\right)\right) \text {. }
\end{aligned}
$$

2. $\operatorname{In} \mathbb{P}_{?}$:

$$
\begin{aligned}
& B^{+}(F) \stackrel{?}{\oplus}\left(H_{1}, \ldots, H_{n+1}\right)=(F \xrightarrow{?} .) \stackrel{?}{\oplus}\left(H_{1}, \ldots, H_{n+1}\right) \\
& =(1 \stackrel{?}{\circ}(F, \cdot)) \stackrel{?}{\dot{\circ}}\left(H_{1}, \ldots, H_{n+1}\right) \\
& =\mathrm{t} \stackrel{?}{\ominus}\left(F \stackrel{?}{\ominus}\left(H_{1}, \ldots, H_{n}\right), \cdot \stackrel{?}{\ominus}\left(H_{n+1}\right)\right) \\
& =\mathrm{t} \text { ? }\left(F \stackrel{?}{\ominus}\left(H_{1}, \ldots, H_{n}\right), H_{n+1}\right) \\
& =\left(F \stackrel{?}{\oplus}\left(H_{1}, \ldots, H_{n}\right)\right) \xrightarrow{?} H_{n+1} \text {. }
\end{aligned}
$$

Combining propositions 12 and 13, we obtain theorem 11.

3 Applications to the infinitesimal Hopf algebra \mathcal{H}

3.1 Antipode of \mathcal{H}

We here give a description of the antipode of \mathcal{H} in terms of the action of the operad \mathbb{P}_{\searrow}.

Notations. For all $n \in \mathbb{N}^{*}$, we denote $l_{n}=\left(B^{+}\right)^{n}(1) \in \mathbf{F}(n)$. For example:

$$
l_{1}=., l_{2}=\mathfrak{\downarrow}, l_{3}=\grave{\vdots}, l_{4}=\mathfrak{\vdots}, l_{5}=\vdots \ldots
$$

Lemma 14 Let $t \in \mathbf{T}$. There exists a unique $k \in \mathbb{N}^{*}$, and a unique family $\left(t_{2} \ldots, t_{k}\right) \in \mathbf{T}^{k-1}$ such that:

$$
t=l_{k}\left(., t_{2}, \ldots, t_{k}\right)
$$

Proof. Induction on the weight n of t. If $n=1$, then $t=$., so $k=1$ and the family is empty. We suppose the result at all rank $<n$. We put $t=B^{+}\left(s_{1} \ldots s_{m}\right)$. Necessarily, $t_{k}=B^{+}\left(s_{2} \ldots s_{m}\right)$ and $l_{n-1}\left(., t_{2}, \ldots, t_{k-1}\right)=s_{1}$. We conclude with the induction hypothesis on s_{1}.

Example.

$$
\forall=(\cdot, \downarrow, \downarrow, V)
$$

Definition 15 For all $n \in \mathbb{N}^{*}$, we put $p_{n}=\sum_{k=1}^{n} \sum_{\substack{a_{1}+\ldots+a_{k}=n \\ \forall i, a_{i}>0}}(-1)^{k} l_{a_{1}} \ldots l_{a_{k}}$.

Examples.

$$
\begin{aligned}
p_{1} & =\bullet \\
p_{2} & =-1+\ldots \\
p_{3} & =-!+1 .+.!-\ldots \\
p_{4} & =-\vdots+!.+1!+.!-!\ldots-.!.-\ldots!+\ldots
\end{aligned}
$$

Remark that p_{n} is in fact the antipode of l_{n} in \mathcal{H}. It is also the antipode of l_{n} in the non commutative Connes-Kreimer Hopf algebra of planar trees [3].

Corollary 16 Let $t \in \mathbf{T}$, written under the form $t=l_{k}\left(t_{1}, \ldots, t_{k}\right)$, with $t_{1}=\ldots$ Then:

$$
S(t)=p_{k}\left(t_{1}, \ldots, t_{k}\right) .
$$

Proof. Corollary of proposition 15 of [4], observing that left cuts are cuts on edges from the root of t_{i} to the root of t_{i+1} in t, for $i=1, \ldots, n-1$.

3.2 Inverse of the application γ

Proposition 17 The restriction $\gamma: \operatorname{Prim}(\mathcal{H}) \longrightarrow \mathcal{H}$ is bijective.
Proof. By proposition 21 of (4):

$$
\gamma_{\mid \operatorname{Prim}(\mathcal{H})}:\left\{\begin{array}{rl}
\operatorname{Prim}(\mathcal{H}) & \longrightarrow \mathcal{H} \\
f_{B^{+}(F)}(F \in \mathbf{F}) & \longrightarrow
\end{array} f_{F} .\right.
$$

So this restriction is clearly bijective.
We shall denote $\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}: \mathcal{H} \longrightarrow \operatorname{Prim}(\mathcal{H})$ the inverse of this restriction. Then, for all $F \in \mathbf{F}, \gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{F}\right)=f_{B^{+}(F)}$. Our aim is to express $\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}$ in the basis of forests.

We define inductively a sequence $\left(q_{n}\right)_{n \in \mathbb{N}^{*}}$ of elements of \mathbb{P}_{\backslash} :

$$
\left\{\begin{aligned}
q_{1} & =\cdot \in \mathbb{P} \backslash(1), \\
q_{2} & =. \ddot{1} \in \mathbb{P} \backslash(2), \\
q_{n+1} & =(. .-1) Q_{\perp}\left(q_{n}, \cdot\right) \in \mathbb{P} \backslash(n+1) \text { for } n \geq 1 .
\end{aligned}\right.
$$

For all $F \in \mathbf{F}, \ldots Q_{\perp}(F, \bullet)=F$. and $\mathbf{I} Q_{\perp}(F, \bullet)=B^{+}(F)$. So, q_{n} can also be defined in the following way:

$$
\left\{\begin{aligned}
q_{1} & =\cdot \in \mathbb{P}_{\backslash}(1), \\
q_{n+1} & =q_{n} \cdot-B^{+}\left(q_{n}\right) \in \mathbb{P}_{\backslash}(n+1) \text { for } n \geq 1 .
\end{aligned}\right.
$$

Examples.

$$
\begin{aligned}
& q_{3}=\ldots-1 .-V+\mathfrak{i}, \\
& q_{4}=\ldots-1 . .-V \cdot+!-V+\bigvee+Y-\downarrow \text {, } \\
& q_{5}=\ldots .-1 \ldots-V \ldots+\vdots . .-V .+\bigvee .+Y .-\vdots . \\
& -V+W+Y-V+Y-Y-\ddagger+\ddagger
\end{aligned}
$$

Lemma 18 Let $F \in \mathbf{F}-\{1\}$, and $t \in \mathbf{T}$. Then, in \mathcal{H} :

$$
\Delta(F \searrow t)=(F \searrow t) \otimes 1+1 \otimes(F \searrow t)+F^{\prime} \otimes F^{\prime \prime} \searrow t+F t^{\prime} \otimes t^{\prime \prime}+F \otimes t
$$

Proof. The non-empty and non-total left-admissible cuts of the tree $F \searrow t$ are:

- The cut on the edges relating F to t. For this cut $c, P^{c}(F \searrow t)=F$ and $R^{c}(F \searrow t)=t$.
- Cuts acting only on edges of F or on edges relating F to t, at the exception of the preceding case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c^{\prime} of F, such that $P^{c}(F \searrow t)=P^{c^{\prime}}(F)$ and $R^{c}(F \searrow t)=R^{c^{\prime}}(F) \searrow t$.
- Cuts acting on edges of t. Then necessarily $F \subseteq P^{c}(F \searrow t)$. For such a cut, there exists a unique non-empty, non-total left-admissible cut c^{\prime} of t, such that $P^{c}(F \searrow t)=F P^{c^{\prime}}(t)$ and $R^{c}(F \searrow t)=R^{c^{\prime}}(t)$.
Summing these cuts, we obtain the announced compatibility.
Proposition 19 Let $F=t_{1} \ldots t_{n} \in \mathbf{F}$. Then:

$$
\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}(F)=q_{n+1} \quad\left(., t_{1}, \ldots, t_{n}\right) .
$$

Proof. First step. Let us show the following property: for all $x \in \operatorname{Prim}(\mathcal{H}), t \in \mathbf{T}$, $q_{2}(x, t)$ is primitive. By lemma 18, using the linearity in F :

$$
\begin{aligned}
\Delta(x \searrow t) & =(x \searrow t) \otimes 1+1 \otimes(x \searrow t)+x \otimes t+x t^{\prime} \otimes t^{\prime \prime}, \\
\Delta(x t) & =x t \otimes 1+1 \otimes x t+x \otimes t+x t^{\prime} \otimes t^{\prime \prime}, \\
\Delta\left(q_{2} \backslash(x, t)\right) & =\Delta(x t-x \searrow t) \\
& =(x t-x \searrow t) \otimes 1+1 \otimes(x t-x \searrow t) .
\end{aligned}
$$

Second step. Let us show that for all $x \in \operatorname{Prim}(\mathcal{H}), t_{1}, \ldots, t_{n} \in \mathbf{T}, q_{n+1}\left(x, t_{1}, \ldots, t_{n}\right) \in$ $\operatorname{Prim}(\mathcal{H})$ by induction on n. This is obvious for $n=0$, as $q_{1}(x)=x$. Suppose the result at rank $n-1$. Then:

$$
\begin{aligned}
q_{n+1} \cdot\left(x, t_{1}, \ldots, t_{n}\right) & =\left(q_{2} Q_{1}\left(q_{n}, I\right)\right) \cdot\left(x, t_{1}, \ldots, t_{n}\right) \\
& =q_{2} \underbrace{q_{n}\left(x, t_{1}, \ldots, t_{n-1}\right)}_{\in \operatorname{Prim}(\mathcal{H})}, t_{n}) \in \operatorname{Prim}(\mathcal{H}),
\end{aligned}
$$

by the first step. As the tree . is primitive, we deduce that, for all forest $F=t_{1} \ldots t_{n} \in \mathbf{F}$, $q_{n+1}\left(., t_{1}, \ldots, t_{n}\right) \in \operatorname{Prim}(\mathcal{H})$.

Third step. Let us show that for all $x, y \in \mathcal{M}, \gamma\left(q_{2}(x, y)\right)=\gamma(x) y$. We can limit ourselves to $x, y \in \mathbf{F}-\{1\}$. Then $q_{2}(x, y)=x y-x \searrow y$. Moreover, by definition of $\searrow, x \searrow y$ is a forest whose first tree is not equal to .. Hence, $\gamma\left(q_{2}\right.$, $\left.(x, y)\right)=\gamma(x y)-0=\gamma(x) y$.

Last step. Let us show by induction on n that $\gamma\left(q_{n+1}{ }_{1}\left(\cdot, t_{1}, \ldots, t_{n}\right)\right)=t_{1} \ldots t_{n}$. As $q_{1}(\cdot)=\cdot$, this is obvious if $n=0$. Let us suppose the result at rank $n-1$. By the third step:

$$
\begin{aligned}
\gamma\left(q_{n+1} \bullet\left(., t_{1}, \ldots, t_{n}\right)\right) & =\gamma\left(q_{2} \bullet\left(q_{n}\left(., t_{1}, \ldots, t_{n-1}\right), t_{n}\right)\right) \\
& =\gamma\left(q_{n} \bullet\left(., t_{1}, \ldots, t_{n-1}\right)\right) t_{n} \\
& =t_{1} \ldots t_{n}
\end{aligned}
$$

Consequently, $x=q_{n+1}\left(\cdot, t_{1}, \ldots, t_{n}\right) \in \operatorname{Prim}(\mathcal{H})$, and satisfies $\gamma(x)=t_{1} \ldots t_{n}$, which proves proposition 19.

Examples. Let $t_{1}, t_{2}, t_{3} \in \mathbf{T}$.

$$
\begin{aligned}
\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}\left(t_{1}\right)= & \cdot t_{1}-\bullet \searrow t_{1} \\
\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}\left(t_{1} t_{2}\right)= & \cdot t_{1} t_{2}-\left(\cdot \searrow t_{1}\right) t_{2}-\left(\cdot t_{1}\right) \searrow t_{2}+\left(\cdot \searrow t_{1}\right) \searrow t_{2}, \\
\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}\left(t_{1} t_{2} t_{3}\right)= & \cdot t_{1} t_{2} t_{3}-\left(\cdot \searrow t_{1}\right) t_{2} t_{3}-\left(\cdot t_{1}\right) \searrow t_{2} t_{3}+\left(\cdot \searrow t_{1}\right) \searrow t_{2} t_{3}-\left(\cdot t_{1} t_{2}\right) \searrow t_{3} \\
& +\left(\cdot \searrow t_{1} t_{2}\right) \searrow t_{3}+\left(\left(\cdot t_{1}\right) \searrow t_{2}\right) \searrow t_{3}-\left(\left(\cdot \searrow t_{1}\right) \searrow t_{2}\right) \searrow t_{3} .
\end{aligned}
$$

3.3 Elements of the dual basis

Lemma 20 For all $x, y \in \mathcal{H}, \Delta(x \nearrow y)=x \nearrow y^{(1)} \otimes y^{(2)}+x^{(1)} \otimes x^{(2)} \nearrow y-x \otimes y$. In other terms, $(\mathcal{H}, \nearrow, \Delta)$ is an infinitesimal Hopf algebra.

Proof. We restrict to $x=F \in \mathbf{F}-\{1\}, y=G \in \mathbf{F}-\{1\}$. The non-empty and non-total left-admissible cuts of the tree $F \nearrow G$ are:

- The cut on the edges relating F to G. For this cut $c, P^{c}(F \nearrow G)=F$ and $R^{c}(F \nearrow G)=G$.
- Cuts acting only on edges of F or on edges relating F to G, at the exception of the preceding case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c^{\prime} of F, such that $P^{c}(F \nearrow G)=P^{c^{\prime}}(F)$ and $R^{c}(F \nearrow G)=R^{c^{\prime}}(F) \nearrow G$.
- Cuts acting on edges of G. Then necessarily $F \subseteq P^{c}(F \nearrow G)$. For such a cut, there exists a unique non-empty, non-total left-admissible cut c^{\prime} of t, such that $P^{c}(F \nearrow G)=F \nearrow$ $P^{c^{\prime}}(G)$ and $R^{c}(F \nearrow G)=R^{c^{\prime}}(G)$.

Summing these cuts, we obtain, denoting $\Delta(F)=F \otimes 1+1 \otimes F+F^{\prime} \otimes F^{\prime \prime}$ and $\Delta(G)=$ $G \otimes 1+1 \otimes G+G^{\prime} \otimes G^{\prime \prime}:$

$$
\begin{aligned}
\tilde{\Delta}(F \nearrow G) & =(F \nearrow G) \otimes 1+1 \otimes(F \nearrow G)+F \otimes G+F^{\prime} \otimes F^{\prime \prime} \nearrow G+F \nearrow G^{\prime} \otimes G^{\prime \prime} \\
& =(F \otimes 1) \nearrow \Delta(G)+\Delta(F) \nearrow(1 \otimes G)-F \otimes G .
\end{aligned}
$$

So $(\mathcal{H}, \nearrow, \Delta)$ is an infinitesimal bialgebra. As it is graded and connected, it has an antipode.
Proposition 21 Let $F=t_{1} \ldots t_{n} \in \mathbf{F}$. Then $f_{F}=f_{t_{n}} \nearrow \ldots \nearrow f_{t_{1}}$.
Proof. First step. We show the following result: for all $F \in \mathbf{F}, t \in \mathbf{T}, f_{F} \nearrow f_{t}=f_{t F}$. We proceed by induction on the weight n of F. If $n=0$, then $F=1$ and the result is obvious. We now suppose that the result is true at all rank $<n$. Let be $G \in \mathbf{F}$, and let us prove that $\left\langle f_{F} \nearrow f_{t}, G\right\rangle=\delta_{t F, G}$. Three cases are possible.

1. $G=1$. Then $\left\langle f_{F} \nearrow f_{t}, G\right\rangle=\left\langle f_{F} \nearrow f_{t}, 1\right\rangle=\varepsilon\left(f_{F} \nearrow f_{t}\right)=0=\delta_{t F, G}$.
2. $G=G_{1} G_{2}, G_{i} \neq 1$. Then, by lemma 2a:

$$
\begin{aligned}
\left\langle f_{F} \nearrow f_{t}, G\right\rangle= & \left\langle\Delta\left(f_{F} \nearrow f_{t}\right), G_{2} \otimes G_{1}\right\rangle \\
= & \sum_{F_{1} F_{2}=F}\left\langle f_{F_{2}} \otimes f_{F_{1}} \nearrow f_{t}, G_{2} \otimes G_{1}\right\rangle \\
& +\left\langle f_{F} \nearrow f_{t} \otimes 1+f_{F} \nearrow 1 \otimes f_{t}, G_{2} \otimes G_{1}\right\rangle-\left\langle f_{F} \otimes f_{t}, G_{2} \otimes G_{1}\right\rangle \\
= & \sum_{\substack{F_{1} F_{2}=F, \\
\text { weight }\left(F_{1}\right)<n}}\left\langle f_{F_{2}} \otimes f_{F_{1}} \nearrow f_{t}, G_{2} \otimes G_{1}\right\rangle+\left\langle 1 \otimes f_{F} \nearrow f_{t}, G_{2} \otimes G_{1}\right\rangle \\
& +\left\langle f_{F} \nearrow f_{t} \otimes 1, G_{2} \otimes G_{1}\right\rangle+\left\langle f_{F} \otimes f_{t}, G_{2} \otimes G_{1}\right\rangle-\left\langle f_{F} \otimes f_{t}, G_{2} \otimes G_{1}\right\rangle \\
= & \sum_{\substack{F_{1} F_{2}=F, \\
\text { weight }\left(F_{1}\right)<n}}\left\langle f_{F_{2}} \otimes f_{t F_{1}}, G_{2} \otimes G_{1}\right\rangle \\
= & \sum_{\substack{F_{1} F_{2}=F, \\
\text { weight }\left(F_{1}\right)<n}} \delta_{F_{2}, G_{2}} \delta_{t F_{1}, G_{1}} \\
= & \delta_{t F, G} .
\end{aligned}
$$

3. $G=B^{+}\left(G_{1}\right)$. Note that $f_{F} \nearrow f_{t}$ is a linear span of forests $H_{1} \nearrow H_{2}$, with $H_{1}, H_{2} \neq 1$. By definition of \nearrow, the first tree of such a forest is not . . Hence, $\gamma\left(f_{F} \nearrow f_{t}\right)=0$ and:

$$
\left\langle f_{F} \otimes f_{t}, G\right\rangle=\left\langle\gamma\left(f_{F} \otimes f_{t}\right), G_{1}\right\rangle=0=\delta_{t F, G},
$$

as $t F \notin \mathbf{T}$ because $F \neq 1$.

Second step. We now prove proposition 21 by induction on n. It is obvious for $n=1$. Suppose the result at rank $n-1$. By the first step:

$$
f_{t_{1} \ldots t_{n}}=f_{t_{2} \ldots t_{n}} \nearrow f_{t_{1}}=\left(f_{t_{n}} \nearrow \ldots \nearrow f_{t_{2}}\right) \nearrow f_{t_{1}}=f_{t_{n}} \nearrow \ldots \nearrow f_{t_{2}} \nearrow f_{t_{1}},
$$

using the induction hypothesis for the second equality.

Remarks.

1. As an immediate corollary, because \nearrow is associative, for all forests $F_{1}, \ldots, F_{k} \in \mathbf{F}$, $f_{F_{1} \ldots F_{k}}=f_{F_{k}} \nearrow \ldots \nearrow f_{F_{1}}$.
2. In term of operads, proposition 21 can be rewritten in the following way:

Corollary 22 Let $F_{1}, \ldots, F_{n} \in \mathbf{F}$. Then $f_{F_{1} \ldots F_{n}}=l_{n} \not \varnothing^{\not x}\left(f_{F_{n}}, \ldots, f_{F_{1}}\right)$.

Remark. Hence, the dual basis $\left(f_{F}\right)_{F \in \mathbf{F}}$ can be inductively computed, using proposition 21 of (4) , together with propositions 19 and 21 of the present text:

$$
\left\{\begin{aligned}
f_{1} & =1, \\
f_{t_{1} \ldots t_{n}} & =f_{t_{n}} \nearrow \ldots \nearrow f_{t_{1}} \\
f_{B^{+}\left(t_{1} \ldots t_{n}\right)} & =\gamma_{\mid \operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{t_{1} \ldots t_{n}}\right) .
\end{aligned}\right.
$$

4 Primitive suboperads

4.1 Compatibilities between products and coproducts

We define another coproduct Δ_{\nearrow} on \mathcal{H} in the following way: for all $x, y, z \in \mathcal{H}$,

$$
\left\langle\Delta_{\nearrow}(x), y \otimes z\right\rangle=\langle x, z \nearrow y\rangle .
$$

Lemma 23 For all forest $F \in \mathbf{F}, \Delta_{\nearrow}(F)=\sum_{\substack{F_{1}, F_{2} \in \mathbf{F} \\ F_{1} F_{2}=F}} F_{1} \otimes F_{2}$.
Proof. Let $F, G, H \in \mathbf{F}$. Then:

$$
\begin{aligned}
\left\langle\Delta_{\nearrow}(F), f_{G} \otimes f_{H}\right\rangle & =\left\langle F, f_{H} \nearrow f_{G}\right\rangle \\
& =\left\langle F, f_{G H}\right\rangle \\
& =\delta_{F, G H} \\
& =\sum_{\substack{F_{1}, F_{2} \in \mathbf{F} \\
F_{1} F_{2}=F}}\left\langle F_{1} \otimes F_{2}, f_{G} \otimes f_{H}\right\rangle .
\end{aligned}
$$

As $\left(f_{F}\right)_{F \in \mathbf{F}}$ is a basis of \mathcal{H} and $\langle-,-\rangle$ is non degenerate, this proves the result.
Remark. As a consequence, the elements of \mathbf{T} are primitive for this coproduct.
We now have defined three products, namely m, \nearrow, and \searrow, and two coproducts, namely $\tilde{\Delta}$ and $\tilde{\Delta}_{\nearrow}$, on \mathcal{M}, obtained from Δ and Δ, by substracting their primitive parts. The following properties sum up the different compatibilities.

Proposition 24 For all $x, y \in \mathcal{M}$:

$$
\begin{align*}
\tilde{\Delta}(x y) & =(x \otimes 1) \tilde{\Delta}(y)+\tilde{\Delta}(x)(1 \otimes y)+x \otimes y \tag{4}\\
\tilde{\Delta}(x \nearrow y) & =(x \otimes 1) \nearrow \tilde{\Delta}(y)+\tilde{\Delta}(x) \nearrow(1 \otimes y)+x \otimes y \tag{5}\\
\tilde{\Delta}_{\nearrow}(x y) & =(x \otimes 1) \tilde{\Delta} \nearrow(y)+\tilde{\Delta}_{\nearrow}(x)(1 \otimes y)+x \otimes y \tag{6}\\
\tilde{\Delta}_{\nearrow}(x \nearrow y) & =(x \otimes 1) \nearrow \tilde{\Delta}_{\nearrow}(y) \tag{7}\\
\tilde{\Delta}_{\nearrow}(x \searrow y) & =(x \otimes 1) \searrow \tilde{\Delta}_{\nearrow}(y) . \tag{8}
\end{align*}
$$

Proof. It remains to consider the compatibility between \nearrow or \searrow and $\tilde{\Delta}^{/}$. Let $F, G \in$ $\mathbf{F}-\{1\}$. We put $G=t_{1} \ldots t_{n}$, where the t_{i} 's are trees. Then $F \nearrow G=\left(F \nearrow t_{1}\right) t_{2} \ldots t_{n}$, and $F \nearrow t_{1}$ is a tree. Hence:

$$
\begin{aligned}
\tilde{\Delta}_{\nearrow}(F \nearrow G) & =\sum_{i=1}^{n-1}\left(F \nearrow t_{1}\right) t_{2} \ldots t_{i} \otimes t_{i+1} \ldots t_{n} \\
& =\sum_{i=1}^{n-1} F \nearrow\left(t_{1} t_{2} \ldots t_{i}\right) \otimes t_{i+1} \ldots t_{n} \\
& =(F \otimes 1) \nearrow \tilde{\Delta}_{\nearrow}(G) .
\end{aligned}
$$

The proof is similar for $F \searrow G$. So all these compatibilities are satisfied.
Remark. There is no similar compatibility between $\tilde{\Delta}$ and \searrow. In particular, lemma 19 is not available for $t \notin \mathbf{T}$.

This justifies the following definitions:

Definition 25

1. A $\mathbb{P} \nearrow$-bialgebra of type 1 is a family $(A, m, \nearrow, \tilde{\Delta})$, such that:
(a) (A, m, \nearrow) is a \mathbb{P}_{\nearrow}-algebra.
(b) $(A, \tilde{\Delta})$ is a coassociative, non counitary coalgebra.
(c) Compatibilities (4) and (5) are satisfied.
2. A \mathbb{P}_{\nearrow}-bialgebra of type 2 is a family $\left(A, m, \nearrow, \tilde{\Delta}_{\nearrow}\right)$, such that:
(a) (A, m, \nearrow) is a \mathbb{P}_{\nearrow}-algebra.
(b) $\left(A, \tilde{\Delta}_{\nearrow}\right)$ is a coassociative, non counitary coalgebra.
(c) Compatibilities (6) and (7) are satisfied.

(a) (A, m, \searrow) is a \mathbb{P}_{\backslash}-algebra.
(b) $\left(A, \tilde{\Delta}_{\nearrow}\right)$ is a coassociative, non counitary coalgebra.
(c) Compatibilities (6) and (8) are satisfied.

Example. The augmentation ideal \mathcal{M} of the infinitesimal Hopf algebra of trees \mathcal{H} is both a \mathbb{P}_{\nearrow}-infinitesimal bialgebra of type 1 and 2 , and also a $\mathbb{P}_{\lambda_{-}}$-infinitesimal bialgebra.

If A is a bialgebra of such a type, we denote by $\operatorname{Prim}(A)$ the kernel of the coproduct. We deduce the definition of the following suboperads:

Definition 26 Let $n \in \mathbb{N}$. We put:

$$
\begin{aligned}
& \left\{{\mathbb{P R} \mathbb{M M}_{\nearrow}^{(1)}(n)=\left\{p \in \mathbb{P}_{\nearrow}(n) /\right.}^{\text {For all } A, \mathbb{P}_{\nearrow} \text {-infinitesimal bialgebra of type } 1,} \begin{array}{c}
\text { and for } a_{1}, \ldots, a_{n} \in \operatorname{Prim}(A), \\
p .\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Prim}(A) .
\end{array}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\backslash}(n)=\left\{\begin{array}{c}
\text { For all } A, \mathbb{P}_{\searrow} \text {-infinitesimal bialgebra, } \\
\text { and for } a_{1}, \ldots, a_{n} \in \operatorname{Prim} \\
p \in \mathbb{P}_{\backslash(A),}(n) /\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Prim}_{\nearrow}(A) .
\end{array}\right\} .
\end{aligned}
$$

We identify $\mathbb{P}_{\nearrow}(n)$ and $\mathbb{P}_{\backslash}(n)$ with the homogeneous component of weight n of \mathcal{M}. We put $\operatorname{Prim}(\mathcal{M})=\operatorname{Ker}(\tilde{\Delta})$ and $\operatorname{Prim} \nearrow(\mathcal{M})=\operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)$. We obtain:

Proposition 27 1. For all $n \in \mathbb{N}$:

$$
\mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\nearrow}^{(1)}(n)=\left\{p \in \mathbb{P}_{\nearrow}(n) / p \boldsymbol{\bullet}^{\top}(\cdot, \ldots, \cdot) \in \operatorname{Prim}(\mathcal{M})\right\}=\mathbb{P}_{\nearrow}(n) \cap \operatorname{Prim}(\mathcal{M}) .
$$

2. For all $n \in \mathbb{N}$:

$$
\mathbb{P R}_{\mathbb{R}}^{\mathbb{M}_{\nearrow}^{(2)}}(n)=\left\{p \in \mathbb{P}_{\nearrow}(n) / p \boldsymbol{\bullet}^{\top}(\cdot, \ldots, \cdot) \in \operatorname{Prim}_{\nearrow}(\mathcal{M})\right\}=\mathbb{P}_{\nearrow}(n) \cap \operatorname{Prim} \not(\mathcal{M})
$$

3. For all $n \in \mathbb{N}$:

$$
\mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\searrow}(n)=\left\{p \in \mathbb{P}_{\backslash}(n) / p \bullet_{\perp}(\cdot, \ldots, \cdot) \in \operatorname{Prim}_{\nearrow}(\mathcal{M})\right\}=\mathbb{P}_{\backslash}(n) \cap \operatorname{Prim}_{\nearrow}(\mathcal{M})
$$

Proof. As \mathcal{M} is a \mathbb{P}_{\nearrow}-infinitesimal bialgebra, by definition:

$$
\mathbb{P}_{\mathbb{R}}^{\mathbb{M}_{\nearrow}^{(1)}}(n) \subseteq\left\{p \in \mathbb{P}_{\nearrow}(n) / p \bullet^{\boldsymbol{\bullet}}(\cdot, \ldots, \cdot) \in \operatorname{Prim}(\mathcal{M})\right\}
$$

Moreover, $\left\{p \in \mathbb{P}_{\nearrow}(n) / p \boldsymbol{\bullet}^{\nearrow}(., \ldots,.) \in \operatorname{Prim}(\mathcal{M})\right\}=\mathbb{P}_{\nearrow}(n) \cap \operatorname{Prim}(\mathcal{M})$, as, for all $p \in \mathbb{P}_{\nearrow}(n)$, $p \boldsymbol{\circ}(\cdot, \ldots,)=.p \in \mathcal{M}$.

We now show that $\left\{p \in \mathbb{P}_{\nearrow}(n) / p \boldsymbol{\bullet}^{\boldsymbol{C}}(., \ldots,.) \in \operatorname{Prim}(\mathcal{M})\right\} \subseteq \mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\nearrow}^{(1)}(n)$. We take $p \in$ $\mathbb{P}_{\nearrow}(n)$, such that $p \boldsymbol{\bullet}^{\boldsymbol{C}}(\cdot, \ldots, \cdot) \in \operatorname{Prim}(\mathcal{M})$. Let $\mathcal{D}=\{1, \ldots, n\}$ and let A be the free $\mathbb{P}_{\nearrow^{-}}$ algebra generated by \mathcal{D} (with a unit). It can be described as the associative algebra $\mathcal{H}^{\mathcal{D}}$ generated by the set of planar rooted trees decorated by \mathcal{D}, and can be given a structure of \mathbb{P}_{\nearrow}-infinitesimal bialgebra. As \mathcal{M} is freely generated by \cdot as a \mathbb{P}_{\nearrow}-algebra, there exists a unique morphism of $\mathbb{P}_{\boldsymbol{\gamma}}$-algebras from \mathcal{M} to $\mathcal{M}^{\mathcal{D}}$, augmentation ideal of $\mathcal{H}^{\mathcal{D}}$:

$$
\xi:\left\{\begin{array}{rll}
\mathcal{M} & \longrightarrow & \mathcal{M}^{\mathcal{D}} \\
\cdot & \longrightarrow & \cdot^{1}+\ldots+\bullet_{n}
\end{array}\right.
$$

As $\cdot \in \operatorname{Prim}(\mathcal{M})$ and $\cdot{ }_{1}+\ldots+{ }_{\cdot n} \in \operatorname{Prim}(A), \xi$ is a \mathbb{P}_{\nearrow}-infinitesimal bialgebra morphism from \mathcal{M} to $\mathcal{M}^{\mathcal{D}}$. So, $\xi\left(p \boldsymbol{\circ}^{\boldsymbol{\prime}}(., \ldots, \cdot)\right) \in \operatorname{Prim}(A)$.

Let $F \in A$ be a forest, and $s_{1} \geq_{h, l} \ldots \geq_{h, l} s_{k}$ its vertices. For all $i \in\{1, \ldots, k\}$, we put d_{i} the decoration of s_{i}. The decoration word associated to F is the word $d_{1} \ldots d_{n}$. It belongs to $M(\mathcal{D})$, the free monoid generated by the elements of \mathcal{D}. For all $w \in M(\mathcal{D})$, Let A_{w} be the subspace of A generated by forests whose decoration word is w. This defines a $M(\mathcal{D})$-gradation of A, as a \mathbb{P}_{\nearrow}-infinitesimal bialgebra of type 1 .

Consider the projection $\pi_{1, \ldots, n}$ onto $A_{1, \ldots, n}$. We get:

$$
\begin{aligned}
& \pi_{1, \ldots, n} \circ \xi\left(p \boldsymbol{\rho}^{\boldsymbol{r}}(\cdot, \ldots, \bullet)\right) \in \operatorname{Prim}(A), \\
& =\pi_{1, \ldots, n}\left(p \boldsymbol{\rho}^{\boldsymbol{\bullet}}(\xi(\cdot), \ldots, \xi(\cdot))\right) \\
& =\pi_{1, \ldots, n}\left(p \boldsymbol{\bullet}^{\square}\left(\cdot 1+\ldots+{ }_{\bullet}, \ldots, \bullet{ }_{1}+\ldots+{ }^{n}\right)\right) \\
& =p \boldsymbol{\theta}^{\boldsymbol{1}}\left(\cdot 1, \ldots,{ }_{n}\right) \text {. }
\end{aligned}
$$

So $p \boldsymbol{\bullet}^{\boldsymbol{\bullet}}\left({ }_{\cdot 1}, \ldots,{ }_{n}\right) \in \operatorname{Prim}(A)$.
Let B be a \mathbb{P}_{\nearrow}-infinitesimal bialgebra and let $a_{1}, \ldots, a_{n} \in \operatorname{Prim}(B)$. As $\mathcal{M}^{\mathcal{D}}$ is freely generated by the \cdot_{i} 's, there exists a unique morphism of \mathbb{P}_{\nearrow}-algebras:

$$
\chi:\left\{\begin{array}{rll}
A & \longrightarrow & B \\
\bullet_{i} & \longrightarrow & a_{i} .
\end{array}\right.
$$

As the \cdot_{i} and the a_{i} 's are primitive, χ is a \mathbb{P}-infinitesimal bialgebra morphism. So:

$$
\xi\left(p \boldsymbol{\bullet}^{\bullet}\left(\cdot{ }_{\cdot 1}, \ldots, \bullet_{n}\right)\right)=p \cdot\left(\xi\left(\bullet_{1}\right), \ldots, \xi\left(\bullet_{n}\right)\right)=p \cdot\left(a_{1}, \ldots, a_{n}\right) \in \chi\left(\operatorname{prim}\left(\mathcal{M}^{\mathcal{D}}\right)\right) \subseteq \operatorname{Prim}(A) .
$$

Hence, $p \in \mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\nearrow}^{(1)}(n)$. The proof is similar for $\mathbb{P R} \mathbb{R M}_{\nearrow}^{(2)}$ and $\mathbb{P R} \mathbb{R} \mathbb{M}_{\searrow}$.

4.2 Suboperad $\mathbb{P R} \mathbb{I M}^{(1)}$

Lemma 28 We define inductively the following elements of \mathbb{P}_{\nearrow} :

$$
\left\{\begin{aligned}
q_{1} & =., \\
q_{n+1} & =(. .-1) \varnothing^{(}\left(q_{n}, \cdot\right)=q_{n} \cdot-B^{+}\left(q_{n}\right), \text { for } n \geq 1 .
\end{aligned}\right.
$$

Then, for all $n \geq 1, q_{n}$ belongs to $\mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\nearrow}^{(1)}$. Moreover, for all $x_{1}, \ldots, x_{n} \in \operatorname{Prim}(\mathcal{M})$:

$$
\gamma\left(q_{n}{ }^{\top}\left(x_{1}, \ldots, x_{n}\right)\right)=\gamma\left(x_{1}\right) x_{2} \ldots x_{n}
$$

Remark. These q_{n} 's are the same as the q_{n} 's defined in section 3.2.
Proof. Let us remark that $f_{1}=\ldots-\mathfrak{l} \in \operatorname{Prim}(\mathcal{M})$. By proposition $27, \ldots-1 \in \mathbb{P R I M}_{\text {/ }}^{(1)}(2)$. As $\mathbb{P} \mathbb{R} \mathbb{M}_{\nearrow}^{(1)}$ is a suboperad of \mathbb{P}_{\nearrow}, it follows that all the q_{n} 's belongs to $\mathbb{P} \mathbb{R}_{\mathbb{M}_{\nearrow}^{(1)}}(n)$.

Let $x_{1}, \ldots, x_{n} \in \operatorname{Prim}(\mathcal{M})$. Let us show that $\gamma\left(q_{n} \boldsymbol{\sigma}^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right)=\gamma\left(x_{1}\right) x_{2} \ldots x_{n}$ by induction on n. If $n=1$, this is immediate. For $n=2, q_{2} \boldsymbol{\rho}^{\prime}\left(x_{1} x_{2}\right)=x_{1} x_{2}-x_{1} \nearrow x_{2}$. Moreover, $x_{1} \nearrow$ x_{2} is a linear span of forests whose first tree is not . So $\gamma\left(q_{2} \boldsymbol{\rho}^{\boldsymbol{\gamma}}\left(x_{1}, x_{2}\right)\right)=\gamma\left(x_{1} x_{2}\right)-0=\gamma\left(x_{1}\right) x_{2}$.

Suppose now the result true at rank $n-1$. Then:

$$
\left.\left.\begin{array}{rl}
q_{n}\left(x_{1}, \ldots, x_{n}\right) & =q_{2}(\underbrace{q_{n-1}}_{\in \operatorname{Prim}(\mathcal{M})}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right), x_{n}\right), \quad \begin{aligned}
\gamma\left(q_{n}\left(x_{1}, \ldots, x_{n}\right)\right) & =\gamma\left(q_{2} \boldsymbol{\rho}^{x}\left(q_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right)\right) \\
& =\gamma\left(q_{n-1} \boldsymbol{\rho}^{x}\left(x_{1}, \ldots, x_{n-1}\right)\right) x_{n} \\
& =\gamma\left(x_{1}\right) x_{2} \ldots x_{n} .
\end{aligned}
$$

Theorem 29 The non- Σ-operad $\mathbb{P R} \mathbb{R M}_{\text {(1) }}^{\text {(1) }}$ is freely generated by $\mathfrak{l}-\ldots$

Proof. Let us first show that the family $\left(q_{n}\right)_{n \geq 1}$ generates $\mathbb{P R} \mathbb{M}_{\nearrow}^{(1)}$. Let \mathbb{P} be the suboperad of $\mathbb{P R} \mathbb{M M}_{\nearrow}^{(1)}$ generated by the q_{n} 's. Let us prove by induction on k that $\mathbb{P R}_{\mathbb{R}} \mathbb{M}_{\nearrow}^{(1)}(k)=\mathbb{P}(k)$. If $k=1, \mathbb{P}(1)=\mathbb{P} \mathbb{R} \mathbb{M}_{\nearrow}^{(1)}(1)=K$. Suppose the result at all ranks $\leq k-1$. By the rigidity theorem for infinitesimal bialgebra of [10], a basis of \mathcal{H} is $\left(f_{t_{1}} \ldots f_{t_{n}}\right)_{t_{1} \ldots t_{n} \in \mathbf{F}}$, so a basis of $\operatorname{Prim}(\mathcal{M})$ is:

$$
\left(\gamma_{\operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{t_{1}} \ldots f_{t_{n}}\right)\right)_{t_{1} \ldots t_{n} \in \mathbf{F}}
$$

So, a basis of $\mathbb{P R I M}^{(1)}(k)$ is $\left(\gamma_{\operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{t_{1}} \ldots f_{t_{n}}\right)\right)_{\substack{t_{1} \ldots t_{n} \in \mathbf{F} \\ \text { weight }\left(t_{1} \ldots t_{n}\right)=k-1}}$. By lemma 28:

$$
\gamma_{\operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{t_{1}} \ldots f_{t_{n}}\right)=q_{n+1} \boldsymbol{\rho}^{x}\left(\cdot, f_{t_{1}}, \ldots f_{t_{n}}\right)
$$

By the induction hypothesis, the $f_{t_{i}}$'s belongs to \mathbb{P}. So:

$$
\gamma_{\operatorname{Prim}(\mathcal{H})}^{-1}\left(f_{t_{1}} \ldots f_{t_{n}}\right)=q_{n+1} \varnothing^{\boldsymbol{\gamma}}\left(\cdot, f_{t_{1}}, \ldots f_{t_{n}}\right) \in \mathbb{P}(n) .
$$

So $\mathbb{P R} \mathbb{I M}_{\nearrow}^{(1)}=\mathbb{P}$.
Moreover, if we denote by \mathbb{P}^{\prime} the suboperad of $\mathbb{P R} \mathbb{M}_{\nearrow}^{(1)}$ generated by q_{2}, then, immediately, $\mathbb{P}^{\prime} \subseteq \mathbb{P}$. Finally, by induction on $n, q_{n} \in \mathbb{P}^{\prime}(n)$ for all $n \geq 1$ and $\mathbb{P} \subseteq \mathbb{P}^{\prime}$. So $\mathbb{P}^{\prime}=\mathbb{P}=\mathbb{P} \mathbb{R}^{(1)}$ is generated by q_{2}.

Let $\mathbb{P}_{q_{2}}$ be the non- Σ-operad freely generated by q_{2}. There is a non- Σ-operad epimorphism:

$$
\Psi:\left\{\begin{array}{rll}
\mathbb{P}_{q_{2}} & \longrightarrow & \mathbb{P} \mathbb{R} \mathbb{M}_{\nearrow}^{(1)} \\
q_{2} & \longrightarrow & q_{2}
\end{array}\right.
$$

The dimension of $\mathbb{P}_{q_{2}}(n)$ is the number of planar binary rooted trees with n leaves, that is to say the Catalan number $c_{n}=\frac{(2 n-2)!}{(n-1)!n!}$. On the other side, the dimension of $\mathbb{P R}_{\mathbb{R}}^{\mathbb{M}_{\nearrow}^{(1)}}(n)$ is the number of planar rooted trees with n vertices, that is to say c_{n}. So Ψ is an isomorphism.

In other terms, in the language of [9]:
Theorem 30 The triple of operads $\left(\mathbb{A} s s, \mathbb{P}_{\nearrow}^{\Sigma}, \mathbb{F} \mathbb{R} \mathbb{E}_{2}\right)$, where $\mathbb{P}_{\nearrow}^{\Sigma}$ is the symmetrisation of \mathbb{P}_{\nearrow} and $\mathbb{F} \mathbb{R} \mathbb{E}_{2}$ is the free operad generated by an element in $\mathbb{F} \mathbb{R} \mathbb{E}_{2}(2)$, is a good triple of operads.

Remark. Note that if A is a $\mathbb{P} \not{ }_{\nearrow}$-bialgebra of type 1 , then $(A, m, \tilde{\Delta})$ is a non unitary infinitesimal bialgebra. Hence, if $(K \oplus A, m, \Delta)$ has an antipode S, then $-S$ is an eulerian idempotent for A.

4.3 Another basis of $\operatorname{Prim}(\mathcal{H})$

Recall that \mathbb{T}_{b} is freely generated (as a non- Σ-operad) by Y. In particular, if $t_{1}, t_{2} \in \mathbf{T}_{b}$, we denote:

$$
t_{1} \vee t_{2}=Y \circ\left(t_{1}, t_{2}\right)
$$

Every element $t \in \mathbf{T}_{b}-\{1\}$ can be uniquely written as $t=t^{l} \vee t^{r}$.

There exists a morphism of operads:

$$
\Theta:\left\{\begin{array}{rll}
\mathbf{T}_{b} & \longrightarrow & \mathbb{P}_{\nearrow} \\
Y & \longrightarrow & \ldots-!
\end{array}\right.
$$

By theorem 29, Θ is injective and its image is $\mathbb{P R} \mathbb{M}_{M^{(1)}}$. So, we obtain a basis of $\mathbb{P} \mathbb{R} \mathbb{M} \mathbb{M}^{(1)}$ indexed by \mathbf{T}_{b}, given by $p_{t}=\Theta(t)$. It is also a basis of $\operatorname{Prim}(\mathcal{M})$, which can be inductively computed by:

$$
\left\{\begin{aligned}
p_{1} & =\ddot{.} \\
p_{t_{1} \vee t_{2}} & =(. .-\mathfrak{l}) \not \varnothing^{\top}\left(p_{t_{1}}, p_{t_{2}}\right)=p_{t_{1}} p_{t_{2}}-p_{t_{1}} \nearrow p_{t_{2}} .
\end{aligned}\right.
$$

4.4 From the basis $\left(f_{t}\right)_{t \in \mathbf{T}}$ to the basis $\left(p_{t}\right)_{t \in \mathbf{T}_{b}}$

We define inductively the application $\kappa: \mathbf{T}_{b} \longrightarrow \mathbf{T}$ in the following way:

$$
\kappa:\left\{\begin{array}{rlr}
\mathbf{T}_{b} & \longrightarrow \mathbf{T} \\
\mathbf{I} & \longrightarrow & \cdot \\
t_{1} \vee t_{2} & \longrightarrow & \kappa\left(t_{2}\right) \searrow \kappa\left(t_{1}\right) .
\end{array}\right.
$$

Examples.

It is easy to show that κ is bijective, with inverse given by:

$$
\kappa^{-1}:\left\{\begin{aligned}
\mathbf{T} & \longrightarrow \mathbf{T}_{b} \\
\mathbf{e} & \longrightarrow \mathrm{I} \\
B^{+}\left(s_{1} \ldots s_{m}\right) & \longrightarrow \kappa^{-1}\left(B^{+}\left(s_{2} \ldots s_{m}\right)\right) \vee \kappa^{-1}\left(s_{1}\right) .
\end{aligned}\right.
$$

Let us recall the partial order \leq, defined in [4], on the set \mathbf{F} of planar forests, making it isomorphic to the Tamari poset.

Definition 31 Let $F \in \mathbf{F}$.

1. An admissible transformation on F is a local transformation of F of one of the following types (the part of F which is not in the frame remains unchanged):

First kind:

Second kind:

2. Let F and $G \in \mathbf{F}$. We shall say that $F \leq G$ if there exists a finite sequence F_{0}, \ldots, F_{k} of elements of \mathbf{F} such that:
(a) For all $i \in\{0, \ldots, k-1\}, F_{i+1}$ is obtained from F_{i} by an admissible transformation.
(b) $F_{0}=F$.
(c) $F_{k}=G$.

The aim of this section is to prove the following result:

Theorem 32 Let $t \in \mathbf{T}_{b}$. Then $p_{t}=\sum_{\substack{s \in \mathbf{T} \\ s \leq \kappa(t)}} f_{s}$.
Proof. By induction on the number n of leaves of t. If $n=1$, then $t=1$ and $p_{\mathbf{I}}=\boldsymbol{\bullet}=f_{\bullet}$. Suppose the result at all ranks $\leq n-1$. As p_{t} is primitive, we can put:

$$
p_{t}=\sum_{s \in \mathbf{T}} a_{s} f_{s}
$$

Write $t=t_{1} \vee t_{2}$. By the induction hypothesis:

$$
p_{t_{1}}=\sum_{\substack{s_{1} \in \mathbf{T} \\ s_{1} \leq \kappa\left(t_{1}\right)}} f_{s_{1}} \text { and } p_{t_{2}}=\sum_{\substack{s_{2} \in \mathbf{T} \\ s_{2} \leq \kappa\left(t_{2}\right)}} f_{s_{2}}
$$

As $t=t_{1} \vee t_{2}, p_{t}=(\ldots-\mathfrak{l}) \not \varnothing^{\nearrow}\left(p_{t_{1}}, p_{t_{2}}\right)=p_{t_{1}} p_{t_{2}}-p_{t_{1}} \nearrow p_{t_{2}}$. So, for all $s \in \mathbf{T}$, as s is primitive for Δ_{\nearrow} :

$$
\begin{aligned}
a_{s} & =\left\langle p_{t}, s\right\rangle \\
& =\left\langle p_{t_{1}} p_{t_{2}}-p_{t_{1}} \nearrow p_{t_{2}}, s\right\rangle \\
& =\left\langle p_{t_{2}} \otimes p_{t_{1}}, \Delta(s)-\Delta \nearrow(s)\right\rangle \\
& =\left\langle p_{t_{2}} \otimes p_{t_{1}}, \Delta(s)\right\rangle \\
& =\sum_{\substack{s_{1} \in \mathbf{T} \\
s_{1} \leq \kappa\left(t_{1}\right)}} \sum_{\substack{s_{2} \in \mathbf{T} \\
s_{2} \leq \kappa\left(t_{2}\right)}}\left\langle f_{s_{2}} \otimes f_{s_{1}}, \Delta(s)\right\rangle .
\end{aligned}
$$

So a_{s} is the number of left-admissible cuts c of s, such that $P^{c}(s) \leq \kappa\left(t_{2}\right)$ and $R^{c}(s) \leq \kappa\left(t_{1}\right)$.

Suppose that $a_{s} \neq 0$. Then, there exists a left-admissible cut c of s, such that $P^{c}(s) \leq \kappa\left(t_{2}\right)$ and $R^{c}(s) \leq \kappa\left(t_{1}\right)$. As s is a tree, $s \leq \kappa\left(t_{2}\right) \searrow \kappa\left(t_{1}\right)=\kappa(t)$. Moreover, by considering the degree of $P^{c}(s)$, this cut c is unique, so $a_{s}=1$. Reciproquely, if $s \leq \kappa(t)$, if c is the unique left admissible cut such that weight $\left(P^{c}(s)\right)=$ weight $\left(t_{2}\right)$, then $P^{c}(s) \leq \kappa\left(t_{2}\right)$ and $R^{c}(s) \leq \kappa\left(t_{1}\right)$. So $a_{s} \neq 0$. Hence, $(s \leq \kappa(t)) \Longrightarrow\left(a_{s} \neq 0\right) \Longrightarrow\left(a_{s}=1\right) \Longrightarrow(s \leq \kappa(t))$. This proves theorem 32.

Let μ be the Möbius function of the poset $\mathbf{F}(\sqrt[12]{12}, \boxed{13})$. By the Möbius inversion formula:
Corollary 33 Let $s \in \mathbf{T}$. Then $f_{s}=\sum_{t \in T_{b}, \kappa(t) \leq s} \mu(\kappa(t), s) p_{t}$.

4.5 Suboperad $\mathbb{P R I M} \mathbb{M}^{(2)}$

For all $n \in \mathbb{N}$, we put $c_{n+1}=B^{+}\left(.^{n}\right)$. In other terms, c_{n+1} is the corolla tree with $n+1$ vertices, or equivalently with n leaves.

Examples. $c_{1}=., c_{2}=\mathfrak{i}, c_{3}=\boldsymbol{V}, c_{4}=\mathbb{V}, c_{5}=\mathcal{Y} \ldots$

Lemma 34 The set \mathbf{T} is a basis of the operad $\mathbb{P R} \mathbb{I M}_{\nearrow}^{(2)}$. As an operad, $\mathbb{P R} \mathbb{I}_{\mathbb{M}^{(2)}}^{(\text {is }}$ is generated by the c_{n} 's, $n \geq 2$. Moreover, for all $k, l \geq 2$,

$$
c_{k} \varnothing^{\nearrow}(c_{l}, \underbrace{\cdot, \ldots, .}_{k-1 \text { times }})=c_{l} \varnothing^{\varnothing}(\underbrace{\cdot, \ldots, .}_{l-1 \text { times }}, c_{k}) .
$$

Proof. The operad $\mathbb{P R I M}_{\nearrow}^{(2)}$ is identified with $\operatorname{Prim}_{\nearrow}(\mathcal{M})$ by proposition 27 . So $\operatorname{Prim} \nearrow(\mathcal{M})$ is equal to $\operatorname{Vect}(\mathbf{T})$. Let \mathbb{P} be the suboperad of $\mathbb{P} \mathbb{R} \mathbb{M}_{\nearrow}^{(2)}$ generated by the corollas. Let $t \in \mathbf{T}$, of weight n. Let us prove that $t \in \mathbb{P}$ by induction on n. If $n=1$, then $t=. \in \mathbb{P}$. If $n \geq 2$, we can suppose that $t=B^{+}\left(t_{1} \ldots t_{k}\right)$, with $t_{1}, \ldots, t_{k} \in \mathbb{P}$. Then, by theorem 11:

$$
c_{k+1} \varnothing^{\top}\left(t_{1}, \ldots, t_{k}, \cdot\right)=\left(.^{k} \varnothing^{(}\left(t_{1}, \ldots, t_{k}\right)\right) \nearrow \cdot=\left(t_{1} \ldots t_{k}\right) \nearrow \cdot=B^{+}\left(t_{1} \ldots t_{k}\right)=t
$$

So $t \in \mathbb{P}$. hence, $\mathbb{P}=\mathbb{P R} \mathbb{I M}_{\nearrow}^{(2)}$.
Let $k, l \geq 2$. Then, by theorem 11:

$$
\begin{aligned}
c_{k} \not \varnothing^{\nearrow}\left(c_{l}, \cdot, \ldots, \bullet\right) & =\left(\cdot^{k-1} \not \varnothing^{\prime}\left(c_{l}, \cdot, \ldots, \bullet\right)\right) \nearrow . \\
& =\left(c_{l} \cdot{ }^{k-2}\right) \nearrow \cdot \\
& =B^{+}\left(c_{l} \cdot{ }^{k-2}\right) \\
& =B^{+}\left(B^{+}\left(\bullet^{l-1}\right) \cdot{ }^{k-2}\right) .
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
c_{l} \not \varnothing^{l}\left(\cdot, \ldots, \cdot, c_{k}\right) & =\left(\cdot{ }^{l-1} \not \varnothing^{\nearrow}(\cdot, \ldots, \cdot)\right) \nearrow c_{k} \\
& =\left(\cdot{ }^{l-1}\right) \nearrow c_{k} \\
& =\left(\cdot^{l-1}\right) \nearrow B^{+}\left(c^{k-1}\right) \\
& =B^{+}\left(\left(\left(\cdot^{l-1}\right) \nearrow \cdot\right) \cdot{ }^{k-2}\right) \\
& =B^{+}\left(B^{+}\left(\cdot{ }^{l-1}\right) \cdot{ }^{k-2}\right) .
\end{aligned}
$$

So $c_{k} \varnothing^{\nearrow}\left(c_{l}, \bullet, \ldots, \bullet\right)=c_{l} \varnothing^{\nearrow}\left(\bullet, \ldots, \bullet, c_{k}\right)$.
Definition 35 The operad \mathbb{T} is the non- Σ-operad generated by elements $c_{n} \in \mathbb{T}(n)$, for $n \geq 2$, and the following relations: for all $k, l \geq 2$,

$$
c_{k} \circ(c_{l}, \underbrace{I, \ldots, I}_{k-1 \text { times }})=c_{l} \circ(\underbrace{I, \ldots, I}_{l-1 \text { times }}, c_{k}) .
$$

In other terms, a \mathbb{T}-algebra A has a family of n-multilinear products $[., \ldots,]:. A^{\otimes n} \longrightarrow A$ for all $n \geq 2$, with the associativity condition:

$$
\left[\left[a_{1}, \ldots, a_{l}\right], a_{l+1}, \ldots, a_{l+k}\right]=\left[a_{1}, \ldots, a_{l-1},\left[a_{l}, \ldots, a_{l+k}\right]\right]
$$

In particular, [.,.] is associative.
Theorem 36 The operads \mathbb{T} and $\mathbb{P R}_{\mathbb{R}}^{\mathbb{M}_{\nearrow}^{(2)}}$ are isomorphic.
Proof. By lemma 34, there is an epimorphism of operads:

$$
\left\{\begin{array}{rll}
\mathbb{T} & \longrightarrow \mathbb{P} \mathbb{I M}_{\nearrow}^{(2)} \\
c_{n} & \longrightarrow & c_{n}
\end{array}\right.
$$

In order to prove this is an isomorphism, it is enough to prove that $\operatorname{dim}(\mathbb{T}(n)) \leq \operatorname{dim}\left(\mathbb{P} \mathbb{R} \mathbb{M}_{\nearrow}^{(2)}(n)\right)$ for all $n \geq 2$. By lemma $34, \operatorname{dim}\left(\mathbb{P R} \mathbb{I M}^{(2)}(n)\right)$ is the n-th Catalan number. Because of the defining relations, $\mathbb{T}(n)$ is generated as a vector space by elements of the form $c_{l} \circ\left(I, b_{2}, \ldots, b_{l}\right)$, with $b_{i} \in \mathbb{T}\left(n_{i}\right)$, such that $n_{1}+\ldots+n_{l}=n-1$. Hence, we define inductively the following subsets the free non- Σ-operad generated by the c_{n} 's, $n \geq 2$:

$$
X(n)=\left\{\begin{array}{l}
\{I\} \text { if } n=1, \\
\bigcup_{l=2}^{n} \bigcup_{i_{2}+\ldots+i_{l}=n-1} c_{l} \circ\left(I, X\left(i_{2}\right), \ldots, X\left(i_{l}\right)\right) \text { if } n \geq 2
\end{array}\right.
$$

Then the images of the elements of $X(n)$ linearly generate $\mathbb{T}(n)$, so $\operatorname{dim}(\mathbb{T}(n)) \leq \operatorname{card}(X(n))$ for all n. We now put $a_{n}=\operatorname{card}(X(n))$ and prove that a_{n} is the n-th Catalan number. We denote by $A(h)$ their generating formal series. Then:

$$
\left\{\begin{array}{l}
a_{1}=1, \\
a_{n}=\sum_{l=2}^{n} \sum_{i_{2}+\ldots+i_{l}=n-1} a_{i_{1}} \ldots a_{i_{l}} \text { if } n \geq 2
\end{array}\right.
$$

In terms of generating series:

$$
A(h)-a_{1} h=h \frac{A(x)}{1-A(x)}
$$

So $A(h)^{2}-A(h)+h=0$. As $A(h)=1$:

$$
A(h)=\frac{1-\sqrt{1-4 h}}{2}
$$

So a_{n} is the n-th Catalan number for all $n \geq 1$.

In other terms:

Theorem 37 The triple of operads $\left(\mathbb{A} s s, \mathbb{P}_{\nearrow}^{\Sigma}, \mathbb{T}^{\Sigma}\right)$ is a good triple of operads.
 infinitesimal bialgebra. Hence, if $\left(K \oplus A, m, \Delta_{\nearrow}\right)$ has an antipode S_{\nearrow}, then $-S_{\nearrow}$ is an eulerian idempotent for A.

4.6 Suboperad $\mathbb{P R} \mathbb{R} \mathbb{M} \backslash$

Lemma 38 The set \mathbf{T} is a basis of the operad $\mathbb{P} \mathbb{R} \mathbb{M} \backslash$. As an operad, $\mathbb{P} \mathbb{R} \mathbb{M} \backslash$ is generated by!.

Proof. Let \mathbb{P} be the suboperad of $\mathbb{P R} \mathbb{M} \backslash$ generated by $\mathfrak{1}$. Let $t \in \mathbf{T}$, of weight n. Let us prove that $t \in \mathbb{P}$ by induction on n. If $n=1$ or 2 , this is obvious. If $n \geq 2$, suppose that $t=B^{+}\left(t_{1} \ldots t_{k}\right)$. By the induction hypothesis, t_{1} and $B^{+}\left(t_{2} \ldots t_{k}\right)$ belong to \mathbb{P}. Then:

$$
t=t_{1} \searrow B^{+}\left(t_{2} \ldots t_{k}\right)=!Q_{1}\left(t_{1}, B^{+}\left(t_{2} \ldots t_{k}\right)\right)
$$

So $t \in \mathbb{P}$.

Theorem 39 The non- Σ-operad $\mathbb{P R} \mathbb{M} \backslash$ is freely generated by \mathfrak{d}.

Proof. Similar as the proof of theorem 29.

In other terms:

Theorem 40 The triple of operads $\left(\mathbb{A} s s, \mathbb{P}_{\searrow}^{\Sigma}, \mathbb{F}_{2}\right)$, where \mathbb{F}_{2} is the free operad generated by an element in $\mathbb{F}_{2}(2)$, is a good triple of operads.

Remark. Note that if A is a \mathbb{P}_{\searrow}-bialgebra, then $(A, m, \tilde{\Delta})$ is a non unitary infinitesimal bialgebra. Hence, if $(K \oplus A, m, \Delta)$ has an antipode S, then $-S$ is an eulerian idempotent for A.

5 A rigidity theorem for \mathbb{P}_{\nearrow}-algebras

5.1 Double \mathbb{P}_{γ}-infinitesimal bialgebras

Definition 41 A double \mathbb{P}_{\nearrow}-infinitesimal bialgebra is a family $(A, m, \nearrow, \tilde{\Delta}, \tilde{\Delta} \nearrow)$ where $m, \nearrow: A \otimes A \longrightarrow A, \tilde{\Delta}, \tilde{\Delta} \nearrow: A \longrightarrow A \otimes A$, with the following compatibilities:

1. (A, m, \nearrow) is a (non unitary) \mathbb{P}_{\nearrow}-algebra.
2. For all $x \in A$:

$$
\left\{\begin{aligned}
(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}(x) & =(I d \otimes \tilde{\Delta}) \circ \tilde{\Delta}(x), \\
\left(\tilde{\Delta}(\mathbb{\Delta} \otimes I d) \circ \tilde{\Delta}_{\nearrow}(x)\right. & =(I d \otimes \tilde{\Delta} /) \circ \tilde{\Delta}(x), \\
(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}_{\nearrow}(x) & =\left(I d \otimes \tilde{\Delta}_{\nearrow}\right) \circ \tilde{\Delta}(x) .
\end{aligned}\right.
$$

In other terms, $\left(A, \tilde{\Delta}^{\text {cop }}, \tilde{\Delta}_{\nearrow}^{\text {cop }}\right)$ is a $\mathbb{P} \nearrow^{\prime}$-coalgebra.
3. $(A, m, \nearrow, \tilde{\Delta})$ is a \mathbb{P}_{\nearrow}-bialgebra of type 1 .
4. $\left(A, m, \nearrow, \tilde{\Delta}_{\nearrow}\right)$ is a \mathbb{P}_{\nearrow}-bialgebra of type 2 .

Remark. If $\left(A, m, \nearrow, \tilde{\Delta}, \tilde{\Delta}_{\nearrow}\right)$ is a graded double \mathbb{P}_{\nearrow}-infinitesimal bialgebra, with finitedimensional homogeneous components, then its graded dual ($A^{*}, \tilde{\Delta}^{*, o p}, \tilde{\Delta}^{*, o p}, m^{*, c o p}, \nearrow^{*, c o p}$) also is.

Theorem $42\left(\mathcal{M}, m, \nearrow, \tilde{\Delta}^{\prime} \tilde{\Delta}_{\nearrow}\right)$ is a double \mathbb{P}-infinitesimal bialgebra.
Proof. We already now that $(\mathcal{M}, m, \nearrow)$ is a \mathbb{P}_{\nearrow}-algebra. Moreover, $\left(\mathcal{M}, \tilde{\Delta}^{\text {cop }}, \tilde{\Delta}_{\nearrow}^{\text {cop }}\right)$ is isomorphic to $\left(\mathcal{M}^{*}, m^{*}, \nearrow^{*}\right)$ via the pairing $\langle-,-\rangle$, so it is a \mathbb{P}_{\nearrow}-coalgebra. It is already known that $(\mathcal{M}, m, \tilde{\Delta})$ and $(\mathcal{M}, \nearrow, \tilde{\Delta})$ are infinitesimal bialgebras. As $(\mathcal{M}, \nearrow, \tilde{\Delta})$ is isomorphic to $\left(\mathcal{M}^{o p}, m^{o p}, \tilde{\Delta}_{\nearrow}^{\text {cop }}\right)$ via the pairing $\langle-,-\rangle$, it is also an infinitesimal bialgebra. So all the needed compatibilities are satisfied.

Remarks.

1. Via the pairing $\langle-,-\rangle, \mathcal{M}$ is isomorphic to its graded dual as an double \mathbb{P}_{\nearrow}-infinitesimal bialgebra. As a consequence, as \mathcal{M} is the free \mathbb{P}_{\nearrow}-algebra generated by ., then $\mathcal{M}^{\text {cop }}$ is also the cofree \mathbb{P}_{\nearrow}-coalgebra cogenerated by ..
2. All these results can be easily extended to infinitesimal Hopf algebras of decorated planar rooted trees, in other terms to every free \mathbb{P}_{\nearrow}-algebras.

Lemma 43 In the double infinitesimal \mathbb{P}_{\nearrow}-algebra $\mathcal{M}, \operatorname{Ker}(\tilde{\Delta}) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)=\operatorname{Vect}(\cdot)$.
Proof. \supseteq. Obvious.
\subseteq. Let $x \in \operatorname{Ker}(\tilde{\Delta}) \cap \operatorname{Ker}\left(\tilde{\Delta} /\right.$). Then $\tilde{\Delta}_{\nearrow}(x)=0$, so x is a linear span of trees. We can write:

$$
x=\sum_{t \in \mathbf{T}} a_{t} t
$$

Consider the terms in $\mathcal{M} \otimes \cdot$ of $\tilde{\Delta}(x)$. We get $\sum_{t \in \mathbf{T}-\{\cdot\}} a_{t} B^{-}(t) \otimes \boldsymbol{\bullet}=0$, where $B^{-}(t)$ is the forest obtained by deleting the root of t. So, if $t \neq \boldsymbol{\bullet}$, then $a_{t}=0$. So $x \in \operatorname{vect}(\cdot)$.

Remark. This lemma can be extended to any free \mathbb{P}_{\nearrow}-algebra: if V is a vector space, then the free \mathbb{P}_{\nearrow}-algebra $F_{\mathbb{P}}(V)$ generated by V is given a structure of double \mathbb{P}_{\nearrow}-infinitesimal bialgebra by $\tilde{\Delta}(v)=\tilde{\Delta}_{\nearrow}(v)=0$ for all $v \in V$. In this case, $\operatorname{Ker}(\tilde{\Delta}) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)=V$ for $F_{\mathbb{P}_{\boldsymbol{\prime}}}(V)$.

5．2 Connected double \mathbb{P}_{\nearrow}－infinitesimal bialgebras

Notations．Let A be a double \mathbb{P}_{\nearrow}－infinitesimal bialgebra．The iterated coproducts will be denoted in the following way：for all $n \in \mathbb{N}$ ，

$$
\begin{aligned}
& \tilde{\Delta}^{n}:\left\{\begin{array}{rll}
A & \longrightarrow & A^{\otimes(n+1)} \\
a & \longrightarrow & a^{(1)} \otimes \ldots \otimes a^{(n+1)},
\end{array}\right. \\
& \tilde{\Delta}_{\nearrow}^{n}:\left\{\begin{array}{rll}
A & \longrightarrow & A^{\otimes(n+1)} \\
a & \longrightarrow & a_{\nearrow}^{(1)} \otimes \ldots \otimes a_{\nearrow}^{(n+1)} .
\end{array}\right.
\end{aligned}
$$

Definition 44 Let A be a double \mathbb{P}_{\nearrow}－infinitesimal bialgebra．It will be said connected if， for any $a \in A$ ，every iterated coproduct $A \longrightarrow A^{\otimes(n+1)}$ vanishes on a for a great enough n ．

Theorem 45 Let A be a connected double \mathbb{P}－infinitesimal bialgebra．Then A is isomorphic to the free \mathbb{P}_{\nearrow}－algebra generated by $\left.\operatorname{Prim}(A)=\operatorname{Ker}(\tilde{\Delta}) \cap \operatorname{Ker}(\tilde{\Delta})^{\prime}\right)$ as a double \mathbb{P}_{\nearrow}－infinitesimal bialgebra．

Proof．First step．We shall use the results on infinitesimal Hopf algebras of［⿴囗十⺝刂．We show that $A=\operatorname{Prim}(A)+A . A+A \nearrow A$ ．As $(A, \nearrow, \tilde{\Delta})$ is a connected non unitary infinitesimal bialgebra，it（or more precisely its unitarisation）has an antipode S_{\nearrow} ，defined by：

$$
S_{\nearrow}:\left\{\begin{aligned}
A & \longrightarrow \\
a & \longrightarrow \sum_{i=0}^{\infty}(-1)^{i+1} a^{(1)} \nearrow \ldots \nearrow a^{(i+1)} .
\end{aligned}\right.
$$

As $(A, \tilde{\Delta})$ is connected，this makes sense．Moreover，$-S_{\nearrow}$ is the projector on $\operatorname{Ker}(\tilde{\Delta})$ in the direct sum $A=\operatorname{Ker}(\tilde{\Delta}) \oplus A \nearrow A$ ．

In the same order of idea，as $\left(A, m, \tilde{\Delta}_{\nearrow}\right)$ is a connected infinitesimal bialgebra，we can define its antipode S^{\nearrow} by：

$$
S^{\nearrow}:\left\{\begin{aligned}
& A \longrightarrow \\
& A \\
& a \longrightarrow \sum_{i=0}^{\infty}(-1)^{i+1} a_{\nearrow}^{(1)} \ldots a_{\nearrow}^{(i+1)},
\end{aligned}\right.
$$

and $-S^{\nearrow}$ is the projector on $\operatorname{Ker}\left(\tilde{\Delta}_{\Gamma}\right)$ in the direct sum $A=\operatorname{Ker}\left(\tilde{\Delta} \tilde{\Delta}^{\prime}\right) \oplus A . A$ ．
Let $a \in A, b \in \operatorname{Ker}(\tilde{\Delta}$,$) ．Then \tilde{\Delta}(a \nearrow b)=(a \otimes 1) \tilde{\Delta} \not(b)=0$ ．So $A \nearrow \operatorname{Ker}(\tilde{\Delta} /)$ is a subset of $\operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)$ ．Moreover，if $\tilde{\Delta}_{\nearrow}(a)=0$ ，then $\left(I d \otimes \tilde{\Delta}_{\nearrow}\right) \circ \tilde{\Delta}(a)=(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}_{\nearrow}(a)=0$ ． So $\tilde{\Delta}(a) \in A \otimes \operatorname{Ker}\left(\tilde{\Delta}_{/}\right)$．As a consequence，if $n \geq 1$ ：

$$
\tilde{\Delta}^{n}(a)=\left(\tilde{\Delta}^{n-1} \otimes I d\right) \circ \tilde{\Delta}(a) \in A^{\otimes n} \otimes \operatorname{Ker}\left(\tilde{\Delta}^{\prime}\right) .
$$

Hence，for all $n \in \mathbb{N}, \tilde{\Delta}^{n}\left(\operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)\right) \in A^{\otimes n} \otimes \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)$ ．Finally，we deduce that $S_{\nearrow}\left(\operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)\right) \subseteq$ $\operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)$ ．

Let $a \in A$ ．Then $S^{\nearrow}(a) \in \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)$ and $S_{\nearrow} \circ S^{\nearrow}(a) \in \operatorname{Ker}(\tilde{\Delta}) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right)=\operatorname{Prim}(A)$ by the preceding point．Moreover：

$$
\begin{aligned}
S^{\nearrow}(a) & =-a+A \cdot A, \\
S_{\nearrow} \circ S^{\nearrow}(a) & =-S^{\nearrow}(a)+A \nearrow A, \\
S_{\nearrow} \circ S^{\nearrow}(a) & =a+A \cdot A+A \nearrow A .
\end{aligned}
$$

This proves the first step．
Second step．As A is connected，it classically inherits a filtration of \mathbb{P}_{\nearrow}－algebra given by the kernels of the iterated coproducts．We denote by deg_{p} the associated degree．In particular，for
all $x \in A$, $\operatorname{deg}_{p}(x) \leq 1$ if, and only if, $x \in \operatorname{Prim}(A)$. Let B be the \mathbb{P}_{\nearrow}-subalgebra of A generated by $\operatorname{Prim}(A)$. Let $a \in A$, let us show that $a \in B$ by induction on $n=\operatorname{deg}_{p}(a)$. If $n \leq 1$, then $a \in \operatorname{Prim}(A) \subseteq B$. Suppose the result true at all ranks $\leq n-1$. Then, by the first step, we can write:

$$
a=b+\sum_{i} a_{i} b_{i}+\sum_{j} c_{j} d_{j}
$$

with $b \in \operatorname{Prim}(A), a_{i}, b_{i}, c_{j}, d_{j} \in A$. Because of the filtration, we can suppose that $\operatorname{deg}_{p}\left(a_{i}\right)$, $\operatorname{deg}_{p}\left(b_{i}\right), \operatorname{deg} g_{p}\left(c_{j}\right), d e g_{p}\left(d_{j}\right)<n$. By the induction hypothesis, they belong to B, so $a \in B$.

Last step. So, there is an epimorphism of \mathbb{P}_{\nearrow}-algebras:

$$
\phi:\left\{\begin{array}{rll}
F_{\mathbb{P}}(\operatorname{Prim}(A)) & \longrightarrow & A \\
a \in \operatorname{Prim}(A) & \longrightarrow & a,
\end{array}\right.
$$

where $F_{\mathbb{P}}(\operatorname{Prim}(A))$ is the free \mathbb{P}_{\nearrow}-algebra generated by $\operatorname{Prim}(A)$. As the elements of $\operatorname{Prim}(A)$ are primitive both in A and $F_{\mathbb{P}_{\nearrow}}(\operatorname{Prim}(A))$, this is a morphism of double \mathbb{P}_{\nearrow}-infinitesimal bialgebras. Suppose that it is not monic. Take then $x \in \operatorname{Ker}(\phi)$, non-zero, of minimal degree. Then it is primitive, so belongs to $\operatorname{Prim}(A)$ (lemma 43). Hence, $\phi(a)=a=0$: this is a contradiction. So ϕ is a bijection.

In other terms:
Corollary 46 The triple of operads $\left(\left(\mathbb{P}_{\nearrow}^{\Sigma}\right)^{o p}, \mathbb{P}_{\nearrow}^{\Sigma}, \mathbb{V E} \mathbb{C T}\right)$ is a good triple. Here, $\mathbb{V E} \mathbb{C} \mathbb{T}$ denotes the operad of vector spaces:

$$
\mathbb{V E C T}(k)=\left\{\begin{aligned}
K I & \text { if } k=1 \\
0 & \text { if } k \neq 1
\end{aligned}\right.
$$

where I is the unit of $\mathbb{V} \mathbb{E} \mathbb{C}$.
We also showed that $S \not \subset S^{\nearrow}$ is the projection on $\operatorname{Prim}(A)$ in the direct sum $A=\operatorname{Prim}(A) \oplus$ $(A . A+A \nearrow A)$. So $S_{\nearrow} \circ S^{\nearrow}$ is the eulerian idempotent.

References

[1] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/98 08042.
[2] Loïc Foissy, Koszularity of the operads of forests, in preparation.
[3] __ Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), 193-239.
[4] _, The infinitesimal Hopf algebra and the poset of planar rooted forests, J. Algebraic Combin. (2009), arXiv: 08 02.0442.
[5] Ralf Holtkamp, Comparison of Hopf Algebras on Trees, Arch. Math. (Basel) 80 (2003), no. 4, 368-383.
[6] Dirk Kreimer, On the Hopf algebra structure of pertubative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303-334, arXiv:q-alg/97 07029.
[7] _ On Overlapping Divergences, Comm. Math. Phys. 204 (1999), no. 3, 669-689, arXiv:hep-th/98 10022.
[8] _, Combinatorics of (pertubative) Quantum Field Theory, Phys. Rep. 4-6 (2002), 387-424, arXiv:hep-th/00 10059.
[9] Jean-Louis Loday, Generalized bialgebras and triples of operads, arXiv: math/061 1885, 2006.
[10] Jean-Louis Loday and Maria O. Ronco, On the structure of cofree hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155, available at http://www-irma.u-strasbg.fr/Moday/.
[11] Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, 2002.
[12] Richard P. Stanley, Enumerative combinatorics. Vol. 1., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge University Press, Cambridge, 1997.
[13] _ Enumerative combinatorics. Vol. 2., Cambridge Studies in Advanced Mathematics, no. 62, Cambridge University Press, Cambridge, 1999.

