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We introduce two operads which own the set of planar forests as a basis. With its usual product and two other products defined by different types of graftings, the algebra of planar rooted trees H becomes an algebra over these operads. The compatibility with the infinitesimal coproduct of H and these structures is studied. As an application, an inductive way of computing the dual basis of H for its infinitesimal pairing is given. Moreover, three Cartier-Quillen-Milnor-Moore theorems are given for the operads of planar forests and a rigidity theorem for one of them.

Introduction

The Connes-Kreimer Hopf algebra of rooted trees, introduced in [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF][START_REF] Kreimer | On the Hopf algebra structure of pertubative quantum field theories[END_REF][START_REF]On Overlapping Divergences[END_REF][START_REF]Combinatorics of (pertubative) Quantum Field Theory[END_REF], is a commutative, non cocommutative Hopf algebra, its coproduct being given by admissible cuts of trees. A non commutative version, the Hopf algebra of planar rooted trees, is introduced in [START_REF]Les algèbres de Hopf des arbres enracinés, I[END_REF][START_REF] Holtkamp | Comparison of Hopf Algebras on Trees[END_REF]. We furthemore introduce in [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF] an infinitesimal version of this object, replacing admissible cuts by left admissible cuts: this last object is here denoted by H. Similarly with the Hopf case, H is a self-dual object and it owns a non-degenerate, symmetric Hopf pairing, denoted by -, -. This pairing is related to a partial order on the set of planar rooted forests, making it isomorphic to the Tamari poset. As a consequence, H is given a dual basis denoted by (f F ) F ∈F , indexed by the set F of planar forest. In particular, the sub-family (f t ) t∈T indexed by the set of planar rooted trees T is a basis of the space of primitive elements of H.

The aim of this text is to introduce two structures of operad on the space of planar forests. We introduce two (non-symmetric) operads P ց and P ր defined in the following way: We then introduce two products on H or on its augmentation ideal M, denoted by ր and ց.

The product F ր G consists of grafting F on the left leave of G and the product F ց G consists of grafting F on the left root of G. Together with its usual product m, M becomes both a P ց -and a P ր -algebra. More precisely, M is the free P ց -and P ր -algebra generated by a single element q . As a consequence, P ց and P ր inherits a combinatorial representation using planar forests, with composition iteratively described using the products ց and ր.

We then give several applications of these operadic structures. For example, the antipode of H is described in term of the operad P ց . We show how to compute elements f t 's, with t ∈ T, using the action of P ց , and the elements f F 's, F ∈ F from the preceding ones using the action of P ր . Combining all these results, it is possible to compute by induction the basis (f F ) F ∈F .

We finally study the compatibilities of products m, ր, ց, the coproduct ∆ and the coproduct ∆ր dual of ր. This leads to the definition of two types of P ր -bialgebras, and one type of P ցbialgebras. Each type then define a suboperad of P ր or P ց corresponding to primitive elements of M, which are explicitively described:

1. The first one is a free operad, generated by the element q qq q ∈ P ր [START_REF] Foissy | Koszularity of the operads of forests[END_REF]. As a consequence, the space of primitive elements of H admits a basis (p t ) t∈T b indexed by the set of planar binary trees. The link with the basis (f t ) t∈T is given with the help of the Tamari order. , c k ).

3. The third one admits a combinatorial representation in terms of planar rooted trees, and is freely generated by q q ∈ P ց [START_REF] Foissy | Koszularity of the operads of forests[END_REF].

We also give the definition of a double P ր -bialgebra, combining the two types of P րbialgebras already introduced. We then prove a rigidity theorem: any double P ր -bialgebra connected as a coalgebra is isomorphic to a decorated version of M. This text is organised as follows: the first section gives several recalls on the infinitesimal Hopf algebra of planar rooted trees and its pairing. The two products ց and ր are introduced in section 2, as well as the combinatorial representation of the two associated operads. The applications to the computation of (f F ) F ∈F is given in section 3. Section 4 is devoted to the study of the suboperads of primitive elements and the last section deals with the rigidity theorem for double P ր -bialgebras.

Notations.

1. We shall denote by K a commutative field, of any characteristic. Every vector space, algebra, coalgebra, etc, will be taken over K.

2. Let (A, ∆, ε) be a counitary coalgebra. Let 1 ∈ A, non zero, such that ∆(1) = 1 ⊗ 1. We then define the non counitary coproduct:

∆ : Ker(ε) -→ Ker(ε) ⊗ Ker(ε) a -→ ∆(a) = ∆(a) -a ⊗ 1 -1 ⊗ a.
We shall use the Sweedler notations ∆(a) = a (1) ⊗ a (2) and ∆(a) = a ′ ⊗ a ′′ .

Planar rooted forests and their infinitesimal Hopf algebra

We here recall some results and notations of [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF].

Planar trees and forests

1. The set of planar trees is denoted by T, and the set of planar forests is denoted by F. The weight of a planar forest is the number of its vertices. For all n ∈ N, we denote by F(n) the set of planar forests of weight n.

Examples. Planar rooted trees of weight ≤ 5:

q , q q , q ∨ q q , q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q , q ∨ q q r q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q ∨ q q , q ∨ q q∨ q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q q q ∨ q q , q q q q q . Planar rooted forests of weight ≤ 4:

1, q , q q , q q , q q q , q q q , q q q , q ∨ q q , q q q , q q q q , q q q q , q q q q , q q q q , q ∨ q q q , q q ∨ q q , q q q q , q q q q , q q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q .

2. The algebra H is the free associative, unitary algebra generated by T. As a consequence, a linear basis of H is given by F, and its product is given by the concatenation of planar forests.

3. We shall also need two partial orders and a total order on the set V ert(F ) of vertices of F ∈ F, defined in [START_REF]Les algèbres de Hopf des arbres enracinés, I[END_REF][START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF]. We put F = t 1 . . . t n , and let s, s ′ be two vertices of F .

(a) We shall say that s ≥ high s ′ if there exists a path from s ′ to s in F , the edges of F being oriented from the roots to the leaves. Note that ≥ high is a partial order, whose Hasse graph is the forest F .

(b) If s and s ′ are not comparable for ≥ high , we shall say that s ≥ lef t s ′ if one of these assertions is satisfied:

i. s is a vertex of t i and s ′ is a vertex of t j , with i < j.

ii. s and s ′ are vertices of the same t i , and s ≥ lef t s ′ in the forest obtained from t i by deleting its root.

This defines the partial order ≥ lef t for all forests F , by induction on the the weight.

(c) We shall say that s ≥ h,l s ′ if s ≥ high s ′ or s ≥ lef t s ′ . This defines a total order on the vertices of F .

1.2 Infinitesimal Hopf algebra of planar forests

1. Let F ∈ F.
An admissible cut is a non empty cut of certain edges and trees of F , such that each path in a non-cut tree of F meets at most one cut edge. The set of admissible cuts of F will be denoted by Adm(F ). If c is an admissible cut of F , the forest of the vertices which are over the cuts of c will be denoted by P c (t) (branch of the cut c), and the remaining forest will be denoted by R c (t) (trunk of the cut). An admissible cut of F will be said to be left-admissible if, for all vertices x and y of F , x ∈ P c (F ) and x ≤ lef t y imply that y ∈ P c (F ). The set of left-admissible cuts of F will be denoted by Adm l (F ).

2.

H is given a coproduct by the following formula: for all F ∈ F,

∆(F ) = c∈Adm l (F ) P c (F ) ⊗ R c (F ) + F ⊗ 1 + 1 ⊗ F.
Then (H, ∆) is an infinitesimal bialgebra, that is to say: for all x, y ∈ H,

∆(xy) = (x ⊗ 1)∆(y) + ∆(x)(1 ⊗ y) -x ⊗ y.
Examples.

∆( q ) = q ⊗ 1 + 1 ⊗ q , ∆( q q ) = q q ⊗ 1 + 1 ⊗ q q + q ⊗ q , ∆( q q ) = q q ⊗ 1 + 1 ⊗ q q + q ⊗ q, ∆( q q q ) = q q q ⊗ 1 + 1 ⊗ q q q + q ⊗ q q + q q ⊗ q , ∆( q ∨ q q ) = q ∨ q q ⊗ 1 + 1 ⊗ q ∨ q q + q q ⊗ q + q ⊗ q q , ∆( q q q ) = q q q ⊗ 1 + 1 ⊗ q q q + q q ⊗ q + q ⊗ q q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q q ∨ q q ) = q q ∨ q q ⊗ 1 + 1 ⊗ q q ∨ q q + q ⊗ q ∨ q q + q q ⊗ q q + q q q ⊗ q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q + q ⊗ q q q + q q ⊗ q q + q ∨ q q ⊗ q, ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q, ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q q q ⊗ q , ∆( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q q q ⊗ q , ∆( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q q ⊗ q q q + q q ⊗ q q + q ∨ q q ⊗ q , ∆( q q q q ) = q q q q ⊗ 1 + 1 ⊗ q q q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q.

We proved in [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF] that H is an infinitesimal Hopf algebra, that is to say has an antipode S. This antipode satisfies S(1) = 1, S(t) ∈ P rim(H) for all t ∈ T, and S(F ) = 0 for all F ∈ F -(T ∪ {1}).

Pairing on H

1. We define the operator B + : H -→ H, which associates, to a forest F ∈ F, the tree obtained by grafting the roots of the trees of F on a common root. For example, B + ( q ∨ q q q ) = q ∨ q q ∨ q q , and B + ( q q ∨ q q ) = q ∨ q q∨ q q . 2. The application γ is defined by:

γ : H -→ H t 1 . . . t n ∈ F -→ δ t 1 , q t 2 . . . t n .
3. There exists a unique pairing -, -: H × H -→ K, satisfying: i. 1, x = ε(x) for all x ∈ H.

ii. xy, z = y ⊗ x, ∆(z) for all x, y, z ∈ H.

iii. B + (x), y = x, γ(y) for all x, y ∈ H.

Moreover:

iv. -,is symmetric and non-degenerate.

v. If x and y are homogeneous of different weights, x, y = 0. vi. S(x), y = x, S(y) for all x, y ∈ H. This pairing admits a combinatorial interpretation using the partial orders ≥ lef t and ≥ high and is related to the Tamari order on planar binary trees, see [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF]. [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF]. We denote by (f F ) F ∈F the dual basis of the basis of forests for the pairing -, -. In other terms, for all F ∈ F, f F is defined by f F , G = δ F,G , for all forest G ∈ F. The family (f t ) t∈T is a basis of the space P rim(H) of primitive elements of H.

2 The operads of forests and graftings 2.1 A few recalls on non-Σ-operads 1. We shall work here with non-Σ-operads [START_REF] Markl | Operads in algebra, topology and physics[END_REF]. Recall that such an object is a family P = (P(n)) n∈N of vector spaces, together with a composition for all n, k 1 , . . . , k n ∈ N:

P(n) ⊗ P(k 1 ) ⊗ . . . ⊗ P(k n ) -→ P(k 1 + . . . + k n ) p ⊗ p 1 ⊗ . . . ⊗ p n -→ p • (p 1 , . . . , p n ).
The following associativity condition is satisfied: for all p ∈ P(n), p 1 ∈ P(k Moreover, there exists a unit element I ∈ P(1), satisfying: for all p ∈ P(n),

p • (I, . . . , I) = p, I • p = p.
An operad is a non-Σ-operad P with a right action of the symmetric group S n on P(n) for all n, satisfying a certain compatibility with the composition.

2. Let P be a non-Σ-operad. A P-algebra is a vector space A, together with an action of P: Moreover, I.a = a for all a ∈ A.

P(n) ⊗ A ⊗n -→ A p ⊗ a 1 ⊗ . . . ⊗ a n -→ p.(
In particular, if V is a vector space, the free P-algebra generated by V is:

F P (V ) = n∈N P(n) ⊗ V ⊗n ,
with the action of P given by:

p. ((p 1 ⊗ a 1,1 ⊗ . . . ⊗ a 1,k 1 ), . . . , (p n ⊗ a n,1 ⊗ . . . ⊗ a n,kn )) = (p • (p 1 , . . . , p n )) ⊗ a 1,1 ⊗ . . . ⊗ a 1,k 1 ⊗ . . . ⊗ a n,1 ⊗ . . . ⊗ a n,kn .
3. Let T b be the set of planar binary trees:

T b =      , ∨ , ∨ ∨ , ∨ ∨ , ∨ ∨ ∨ , ∨ ∨ ∨ , ∨ ∨ ∨ , ∨ ∨ ∨ , r . . .      .
For all n ∈ N, T b (n) is the vector space generated by the elements of T b with n leaves:

T b (0) = (0), T b (1) = V ect ( ) , T b (2) = V ect ∨ , T b (3) = V ect ∨ ∨ , ∨ ∨ , T b (4) = V ect    ∨ ∨ ∨ , ∨ ∨ ∨ , ∨ ∨ ∨ , ∨ ∨ ∨ , r    .
The family of vector spaces T b is given a structure of non-Σ-operad by graftings on the leaves. More precisely, if t, t 1 , . . . , t n ∈ T b , t with n leaves, then t • (t 1 , . . . , t n ) is the binary tree obtained by grafting t 1 on the first leave of t, t 2 on the second leave of t, and so on (note that the leaves of t are ordered from left to right). The unit is .

It is known that T b is the free non-Σ-operad generated by ∨ ∈ T b (2). Similarly, given elements m 1 , . . . , m k in P(2), it is possible to describe the free non-Σ-operad P generated by these elements in terms of planar binary trees whose internal vertices are decorated by m 1 , . . . , m k .

Presentations of the operads of forests

Definition 1

1. P ց is the non-Σ-operad generated by m and ց∈ P ց (2), with relations:

   m • (ց, I) = ց •(I, m), m • (m, I) = m • (I, m), ց •(m, I) = ց •(I, ց).
2. P ր is the non-Σ-operad generated by m and ր∈ P ր (2), with relations:

   m • (ր, I) = ր •(I, m), m • (m, I) = m • (I, m), ր •(ր, I) = ր •(I, ր).
Remark. We shall prove in [START_REF] Foissy | Koszularity of the operads of forests[END_REF] that these quadratic operads are Koszul.

Grafting on the root

Let F, G ∈ F -{1}. We put G = t 1 . . . t n and t 1 = B + (G 1
). We define:

F ց G = B + (F G 1 )t 2 . . . t n .
In other terms, F is grafted on the root of the first tree of G, on the left. In particular, F ց q = B + (F ).

Examples.

q q q ց q q = q ∨ q q r q q q q ց q q q = q q q q q q q ց q q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q q ց q q q = q q q q q q q ց q q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q q ց q q q = q ∨ q q q q q q ց q q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q ∨ q q ց q q = q ∨ q q ∨ q q q q ց q ∨ q q = q ∨ q q q q q q ց q ∨ q q = q ∨ q q r q q q ∨ q q ց q q = q ∨ q q q q q q q ց q q = q ∨ q q q q q q ց q q q = q ∨ q q q q q q ց q q q = q ∨ q q q q q q q ց q q = q q q q q .

Obviously, ց can be inductively defined in the following way: for

F, G, H ∈ F -{1},    F ց q = B + (F ), F ց (GH) = (F ց G)H F ց B + (G) = B + (F G).
We denote by M the augmentation ideal of H, that is to say the vector space generated by the elements of F -{1}. We extend ց: M ⊗ M -→ M by linearity.

Proposition 2 For all x, y, z ∈ M:

x ց (yz) = (x ց y)z, (1) 
x ց (y ց z) = (xy) ց z.

(2)

Proof. We can restrict ourselves to x, y, z ∈ F -{1}. Then (1) is immediate. In order to prove (2), we put z = B + (z 1 )z 2 , z 1 , z 2 ∈ F. Then:

x ց (y ց z) = x ց (B + (yz 1 )z 2 ) = B + (xyz 1 )z 2 = (xy) ց (B + (z 1 )z 2 ) = (xy) ց z, which proves (2).
Corollary 3 M is given a graded P ց -algebra structure by its products m and by ց.

Proof. Immediate, by proposition 2.

Grafting on the left leave

Let F, G ∈ F. Suppose that G = 1. Then F ր G is the planar forest obtained by grafting F on the leave of G which is at most on the left. For G = 1, we put F ր 1 = F . In particular, F ր q = B + (F ).

Examples.

q q q ր q q = q ∨ q q q q q q ր q q q = q q q q q q q ր q q q = q ∨ q q q q q q q ր q q = q ∨ q q q q q q q ր q q = q ∨ q q q q q q ր q q q = q q q q q q q ր q q q = q ∨ q q q q q q q ր q q = q ∨ q q q q q q q ր q q = q ∨ q q q q q q ր q q q = q q q q q q q ր q q q = q ∨ q q q q q q q ր q q = q ∨ q q q q q ∨ q q ր q q = q q q ∨ q q q q ր q ∨ q q = q ∨ q q q q q q ր q ∨ q q = q ∨ q q ∨ q q q ∨ q q ր q q = q ∨ q q q q q q q ր q q = q q q q q q q ր q q q = q q q q q q q ր q q q = q q q ∨ q q q q q ր q q = q q q q q.

In an obvious way, ր can be inductively defined in the following way: for F, G, H ∈ F,

   F ր 1 = F, F ր (GH) = (F ր G)H if G = 1, F ր B + (G) = B + (F ր G).
We extend ր: H ⊗ H -→ H by linearity.

Proposition 4

1. For all x, z ∈ H, y ∈ M:

x ր (yz) = (x ր y)z.

(3)

2. For all x, y, z ∈ H:

x ր (y ր z) = (x ր y) ր z.
So (H, ր) is an associative algebra, with unitary element 1.

Proof. Note that (3) is immediate for x, y, z ∈ F, with y = 1. This implies the first point. In order to prove the second point, we consider:

Z = {z ∈ H / ∀x, y ∈ H, x ր (y ր z) = (x ր y) ր z}.
Let us first prove that 1 ∈ Z: for all x, y ∈ H,

x ր (y ր 1) = x ր y = (x ր y) ր 1.
Let z 1 , z 2 ∈ Z. Let us show that z 1 z 2 ∈ Z. By linearity, we can separate the proof into two cases:

1. z 1 = 1. Then it is obvious.

2. ε(z 1 ) = 0. Let x, y ∈ H. By the first point:

x ր (y ր (z 1 z 2 )) = x ր ((y ր z 1 )z 2 )) = (x ր (y ր z 1 ))z 2 = ((x ր y) ր z 1 )z 2 = (x ր y) ր (z 1 z 2 ).
So Z is a subalgebra of H. Let us show that it is stable by B + . Let z ∈ Z, x, y ∈ H. Then:

x ր (y ր B + (z)) = x ր B + (y ր z) = B + (x ր (y ր z)) = B + ((x ր y) ր z) = (x ր y) ր B + (z).
So Z is a subalgebra of H, stable by B + . Hence, Z = H.

Remarks.

1. ( 3) is equivalent to: for any x, y, z ∈ H, x ր (yz)ε(y)x ր z = (x ր y)zε(y)xz.

Let F ∈ F -{1}.

There exists a unique family ( q F 1 , . . . , q F n ) of elements of F such that:

F = ( q F 1 ) ր . . . ր ( q F n ).
For example, q ∨ q q ∨ q q q q q = ( q q ) ր ( q q ) ր ( q q q q ). As a consequence, (H, ր) is freely generated by qF as an associative algebra.

Corollary 5 M is given a graded P ր -algebra structure by its product m and by ր.

Proof. Immediate, by proposition 4.

Dimensions of P ց and P ր

We now compute the dimensions of P ց (n) and P ր (n) for all n and deduce that M is the free P ց -and P ր -algebra generated by q .

Notation. We denote by r n the number of planar rooted forests and we put R(X) = +∞ n=1 r n X n . It is well-known (see [START_REF]Les algèbres de Hopf des arbres enracinés, I[END_REF][START_REF]Enumerative combinatorics[END_REF]

) that R(X) = 1 -2X - √ 1 -4X 2X .
Proposition 6 For ? → ∈ {ց, ր} and all n ∈ N * , in the P ?

→

-algebra M:

P ? → (n).( q , . . . , q ) = V ect(planar forests of weight n).
As a consequence, M is generated as a P ?

→

-algebra by q .

Proof. ⊆. Immediate, as M is a graded P ? → -algebra.

⊇. Induction on n. For n = 1, I.( q ) = q . For n ≥ 2, two cases are possible.

1. F = F 1 F 2 , weight(F i ) = n i < n.
By the induction hypothesis, there exists p 1 , p 2 ∈ P ?

→

, such that F 1 = p 1 .( q, . . . , q ) and F 2 = p 2 .( q , . . . , q). Then (m

• (p 1 , p 2 )).( q , . . . , q ) = m.(F 1 , F 2 ) = F 1 F 2 .
2. F ∈ T. Let us put F = B + (G). Then there exists p ∈ P ? → , such that p.( q , . . . , q ) = G. Then:

(ց

•(p, I)).( q , . . . , q ) = G ց q = F, (ր •(p, I)).( q , . . . , q ) = G ր q = F.
Hence, in both cases, F ∈ P ? → (n).( q , . . . , q ).

Corollary 7 For all

? → ∈ {ց, ր}, n ∈ N * , dim(P ? → (n)) ≥ r n .
Proof. Because we proved the surjectivity of the following application:

ev ? → : P ? → (n) -→ V ect(planar forests of weight n) p -→ p.( q , . . . , q ).
Lemma 8 For all

? → ∈ {ց, ր}, n ∈ N * , dim(P ? → (n)) ≤ r n .
Proof. We prove it for ? → =ր. Let us fix n ∈ N * . Then P ր (n) is linearly generated by planar binary trees whose internal vertices are decorated by m and ր. The following relations hold:

d d ր ր = d d ր ր , d d m ր = d d ր m , d d m m = d d m m .
In the sequel of the proof, we shall say that such a tree is admissible if it satisfies the following conditions:

1. For each internal vertex s decorated by m, the left child of s is a leave.

2. For each internal vertex s decorated by ր, the left child of s is a leave or is decorated by m.

For example, here are the admissible trees with 1, 2 or 3 leaves:

, d m , d ր , d d ր m , d d m m , d d ր m , d d m ր , d d ր ր .
The preceding relations imply that P ր (n) is linearly generated by admissible trees with n leaves. So dim(P ր (n)) is smaller than a n , the number of admissible trees with n leaves. For n ≥ 2, we denote by b n the number of admissible trees with n leaves whose root is decorated by m, and by c n the number of admissible trees with n leaves whose root is decorated by ր. We also put b 1 = 1 and c 1 = 0. Finally, we define:

A(X) = n≥1 a n X n , B(X) = n≥1 b n X n , C(X) = n≥1 c n X n .
Immediately, A(X) = B(X) + C(X). Every admissible tree with n ≥ 2 leaves whose root is decorated by m is of the form m • (I, t), where t is an admissible tree with n -1 leaves. Hence, B(X) = XA(X)+ X. Moreover, every admissible tree with n ≥ 2 leaves whose root is decorated by ր is of the form ր •(t 1 , t 2 ), where t 1 is an admissible tree with k leaves whose eventual root is decorated by m and t 2 an admissible tree with nk leaves (1 ≤ k ≤ n -1). Hence, for all 2 + XA(X), and:

n ≥ 2, c n = n-1 k=1 b k a n-k , so C(X) = B(X)A(X). As a conclusion:    A(X) = B(X) + C(X), B(X) = XA(X) + X, C(X) = B(X)A(X). So A(X) = XA(X) + X + B(X)A(X) = XA(X) + X + XA(X)
XA(X) 2 + (2X -1)A(X) + X = 0.
As a 1 = 1:

A(X) = 1 -2X - √ 1 -4X 2X = R(X).
So, for all n ≥ 1, dim(P ր (n)) ≤ a n = r n . The proof is similar for P ց .

As immediate consequences: (n) -→ V ect(planar forests of weight n) ⊆ M p -→ p.( q , . . . , q ).

Corollary 10

1. (M, m, ց) is the free P ց -algebra generated by q .

2. (M, m, ր) is the free P ր -algebra generated by q .

A combinatorial description of the composition

Let ? → ∈ {ց, ր}. We identify P ?

→

and the vector space of non-empty planar forests via theorem 9. In other terms, we identify F ∈ F(n) and ev -1

? → (F ) ∈ P ? → (n).
Notations.

1. In order to distinguish the compositions in P ց and P ր , we now denote:

(a) F ց • (F 1 , . . . , F n ) the composition of P ց , (b) F ր • (F 1 , . . . , F n ) the composition of P ր .
2. In order to distinguish the action of the operads P ց and P ր on M, we now denote:

(a) F ց • (x 1 , . . . , x n ) the action of P ց on M, (b) F ր • (x 1 , . . . , x n ) the action of P ր on M.

Our aim in this paragraph is to describe the compositions of P ց and P ր in term of forests. We shall prove the following result:

Theorem 11
1. The composition of P ց in the basis of planar forests can be inductively defined in this way:

   q ց • (H) = H, B + (F )ց • (H 1 , . . . , H n+1 ) = (F ց • (H 1 , . . . , H n )) ց H n+1 , F Gց • (H 1 , . . . , H n 1 +n 2 ) = F ց • (H 1 , . . . , H n 1 )Gց • (H n 1 +1 , . . . , H n 1 +n 2 ).
2. The composition of P ր in the basis of planar forests can be inductively defined in this way:

   q ր • (H) = H, B + (F )ր • (H 1 , . . . , H n+1 ) = (F ր • (H 1 , . . . , H n )) ր H n+1 , F Gր • (H 1 , . . . , H n 1 +n 2 ) = F ր • (H 1 , . . . , H n 1 )Gր • (H n 1 +1 , . . . , H n 1 +n 2 ). Examples. Let F 1 , F 2 , F 3 ∈ F -{1}. q q ր • (F 1 , F 2 ) = F 1 F 2 , q q ց • (F 1 , F 2 ) = F 1 F 2 , q q ր • (F 1 , F 2 ) = F 1 ր F 2 , q q ց • (F 1 , F 2 ) = F 1 ց F 2 , q q q ր • (F 1 , F 2 , F 3 ) = F 1 F 2 F 3 , q q q ց • (F 1 , F 2 , F 3 ) = F 1 F 2 F 3 , q q q ր • (F 1 , F 2 , F 3 ) = F 1 (F 2 ր F 3 ), q q q ց • (F 1 , F 2 , F 3 ) = F 1 (F 2 ց F 3 ), q q q ր • (F 1 , F 2 , F 3 ) = (F 1 ր F 2 )F 3 , q q q ց • (F 1 , F 2 , F 3 ) = (F 1 ց F 2 )F 3 , q ∨ q q ր • (F 1 , F 2 , F 3 ) = (F 1 F 2 ) ր F 3 , q ∨ q q ց • (F 1 , F 2 , F 3 ) = (F 1 F 2 ) ց F 3 , q q q ր • (F 1 , F 2 , F 3 ) = (F 1 ր F 2 ) ր F 3 , q q q ց • (F 1 , F 2 , F 3 ) = (F 1 ց F 2 ) ց F 3 .

Proposition 12 Let

? → ∈ {ց, ր}.

1. q is the unit element of P ? → .

2. q q = m in P ?

→

(2). Consequently, in P ?

→

, q q • (F, G) = F G for all F, G ∈ F -{1}.

3. Let F, G ∈ F. In P ?

→

, q q = ? →. Consequently, q q ? → • (F, G) = F ? →G for all F, G ∈ F -{1}.

Proof.

1. Indeed, ev ? → ( q ) = q = ev ? → (I). Hence, q = I.

By definition, ev ?

→ ( q q ) = q q = ev ? → (m). So q q = m in P ?

→

(2). Moreover, for all F, G ∈ F -{1}:

ev ? → (F G) = F G = m ? → • (F, G) = m ? → • (F ? → • ( q , . . . , q), G ? → • ( q , . . . , q )) = m ? → • (F, G) ? → • ( q , . . . , q ) = ev ? → (m ? → • (F, G)). So F G = m ? → • (F, G) = q q ? → • (F, G).
3. Indeed, ev ? → ( q q ) = q ? → q = ev ? → ( ? →). So q q = ? → in P ? →

(2). Moreover:

ev ? → (F ? →G) = F ? →G = ? → ? → • (F, G) = ? → ? → • (F ? → • ( q , . . . , q ), G ? → • ( q , . . . , q )) = ( ? → ? → • (F, G)).( q , . . . , q ) = ev ? → ( ? → ? → • (F, G)).
So, 

F ? →G = ? → ? → • (F, G) = q q ? → • (F, G). Proposition 13 1. Let F, G ∈ F, different
(F G) ? → • (H 1,1 , . . . , H 1,n 1 , H 2,1 , . . . , H 2,n 2 ) = F ? → • (H 1,1 , . . . , H 1,n 1 )G ? → • (H 2,1 , . . . , H 2,n 2 ). 2. Let F ∈ F, of weight n ≥ 1. Let H 1 , . . . , H n+1 ∈ F. In P ? → : B + (F ) ? → • (H 1 , . . . , H n+1 ) = (F ? → • (H 1 , . . . , H n )) ? →H n+1 .
Proof.

Indeed, in P

? → : (F G) ? → • (H 1,1 , . . . , H 1,n 1 , H 2,1 , . . . , H 2,n 2 ) = (m ? → • (F, G)) ? → • (H 1,1 , . . . , H 1,n 1 , H 2,1 , . . . , H 2,n 2 ) = m ? → • (F ? → • (H 1,1 , . . . , H 1,n 1 ), G ? → • (H 2,1 , . . . , H 2,n 2 )) = F ? → • (H 1,1 , . . . , H 1,n 1 )G ? → • (H 2,1 , . . . , H 2,n 2 )).

In P

? → : B + (F ) ? → • (H 1 , . . . , H n+1 ) = (F ? → q ) ? → • (H 1 , . . . , H n+1 ) = ( q q ? → • (F, q )) ? → • (H 1 , . . . , H n+1 ) = q q ? → • (F ? → • (H 1 , . . . , H n ), q ? → • (H n+1 )) = q q ? → • (F ? → • (H 1 , . . . , H n ), H n+1 ) = (F ? → • (H 1 , . . . , H n )) ? →H n+1 .
Combining propositions 12 and 13, we obtain theorem 11.

3 Applications to the infinitesimal Hopf algebra H

Antipode of H

We here give a description of the antipode of H in terms of the action ց • of the operad P ց .

Notations. For all n ∈ N * , we denote l n = (B + ) n (1) ∈ F(n). For example: l 1 = q , l 2 = q q , l 3 = q q q , l 4 = q q q q , l 5 = q q q q q . . .

Lemma 14 Let t ∈ T.

There exists a unique k ∈ N * , and a unique family (t 2 . . . , t k ) ∈ T k-1 such that: t = l k ց • ( q , t 2 , . . . , t k ).

Proof. Induction on the weight n of t. If n = 1, then t = q, so k = 1 and the family is empty. We suppose the result at all rank < n. We put t = B + (s 1 . . . s m ). Necessarily, t k = B + (s 2 . . . s m ) and l n-1 ց • ( q , t 2 , . . . , t k-1 ) = s 1 . We conclude with the induction hypothesis on s 1 .

Example.

q ∨ q q q ∨ q q ∨ q q q = l 4 ց • ( q , q q q , q q , q ∨ q q

).

Definition 15 For all n ∈ N * , we put

p n = n k=1 a 1 +...+a k =n ∀i, a i >0 (-1) k l a 1 . . . l a k .
Examples.

p 1 = q , p 2 =q q + q q , p 3 =q q q + q q q + q q qq q q , p 4 =q q q q + q q q q + q q q q + q q q q q q q qq q q qq q q q + q q q q .

Remark that p n is in fact the antipode of l n in H. It is also the antipode of l n in the non commutative Connes-Kreimer Hopf algebra of planar trees [START_REF]Les algèbres de Hopf des arbres enracinés, I[END_REF].

Corollary 16 Let t ∈ T, written under the form t = l k ց • (t 1 , . . . , t k ), with t 1 = q . Then:

S(t) = p k ց • (t 1 , . . . , t k ).
Proof. Corollary of proposition 15 of [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF], observing that left cuts are cuts on edges from the root of t i to the root of t i+1 in t, for i = 1, . . . , n -1.

Inverse of the application γ

Proposition 17 The restriction γ : P rim(H) -→ H is bijective.

Proof. By proposition 21 of [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF]:

γ |P rim(H) : P rim(H) -→ H f B + (F ) (F ∈ F) -→ f F .

So this restriction is clearly bijective.

We shall denote γ -1

|P rim(H) : H -→ P rim(H) the inverse of this restriction. Then, for all

F ∈ F, γ -1 |P rim(H) (f F ) = f B + (F ) .
Our aim is to express γ -1 |P rim(H) in the basis of forests.

We define inductively a sequence (q n ) n∈N * of elements of P ց :    q 1 = q ∈ P ց (1), q 2 = q qq q ∈ P ց (2), q n+1 = ( q qq q )ց • (q n , q ) ∈ P ց (n + 1) for n ≥ 1.

For all F ∈ F, q q ց • (F, q ) = F q and q q ց • (F, q ) = B + (F ). So, q n can also be defined in the following way: q 1 = q ∈ P ց (1), q n+1 = q n q -B + (q n ) ∈ P ց (n + 1) for n ≥ 1.

Examples.

q 3 = q q qq q qq ∨ q q + q q q , q 4 = q q q qq q q qq ∨ q q q + q q q qq ∨ q qq + q ∨ q q q + q ∨ q q qq q q q , q 5 = q q q q qq q q q qq ∨ q q q q + q q q q qq ∨ q qq q + q ∨ q q q q + q ∨ q q q qq q q q q q ∨ q q r q q + q ∨ q q q q + q ∨ q q ∨ q q q ∨ q q q q + q ∨ q q q q q ∨ q q q q q q q ∨ q q + q q q q q .

Lemma 18 Let F ∈ F -{1}, and t ∈ T. Then, in H:

∆(F ց t) = (F ց t) ⊗ 1 + 1 ⊗ (F ց t) + F ′ ⊗ F ′′ ց t + F t ′ ⊗ t ′′ + F ⊗ t.
Proof. The non-empty and non-total left-admissible cuts of the tree F ց t are:

-The cut on the edges relating F to t. For this cut c, P c (F ց t) = F and R c (F ց t) = t.

-Cuts acting only on edges of F or on edges relating F to t, at the exception of the preceding case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c ′ of F , such that P c (F ց t)

= P c ′ (F ) and R c (F ց t) = R c ′ (F ) ց t.
-Cuts acting on edges of t. Then necessarily F ⊆ P c (F ց t). For such a cut, there exists a unique non-empty, non-total left-admissible cut c ′ of t, such that P c (F ց t)

= F P c ′ (t) and R c (F ց t) = R c ′ (t).
Summing these cuts, we obtain the announced compatibility.

Proposition 19 Let F = t 1 . . . t n ∈ F. Then:

γ -1 |P rim(H) (F ) = q n+1 ց • ( q , t 1 , . . . , t n ).
Proof. First step. Let us show the following property: for all x ∈ P rim(H), t ∈ T, q 2 ց • (x, t) is primitive. By lemma 18, using the linearity in F :

∆(x ց t) = (x ց t) ⊗ 1 + 1 ⊗ (x ց t) + x ⊗ t + xt ′ ⊗ t ′′ , ∆(xt) = xt ⊗ 1 + 1 ⊗ xt + x ⊗ t + xt ′ ⊗ t ′′ , ∆(q 2 ց • (x, t)) = ∆(xt -x ց t) = (xt -x ց t) ⊗ 1 + 1 ⊗ (xt -x ց t).
Second step. Let us show that for all x ∈ P rim(H), t 1 , . . . , t n ∈ T, q n+1 ց • (x, t 1 , . . . , t n ) ∈ P rim(H) by induction on n. This is obvious for n = 0, as q 1 ց • (x) = x. Suppose the result at rank n -1. Then:

q n+1 ց • (x, t 1 , . . . , t n ) = (q 2 ց • (q n , I))ց • (x, t 1 , . . . , t n ) = q 2 ց • (q n ց • (x, t 1 , . . . , t n-1 ) ∈P rim(H) , t n ) ∈ P rim(H),
by the first step. As the tree q is primitive, we deduce that, for all forest F = t 1 . . . t n ∈ F, q n+1 ց • ( q , t 1 , . . . , t n ) ∈ P rim(H).

Third step. Let us show that for all x, y ∈ M, γ(q 2 ց • (x, y)) = γ(x)y. We can limit ourselves to x, y ∈ F -{1}. Then q 2 ց • (x, y) = xyx ց y. Moreover, by definition of ց, x ց y is a forest whose first tree is not equal to q . Hence, γ(q 2 ց • (x, y)) = γ(xy) -0 = γ(x)y.

Last step.

Let us show by induction on n that γ(q n+1 ց • ( q , t 1 , . . . , t n )) = t 1 . . . t n . As q 1 ց • ( q ) = q , this is obvious if n = 0. Let us suppose the result at rank n -1. By the third step:

γ(q n+1 ց • ( q , t 1 , . . . , t n )) = γ(q 2 ց • (q n ց • ( q , t 1 , . . . , t n-1 ), t n )) = γ(q n ց • ( q , t 1 , . . . , t n-1 ))t n = t 1 . . . t n .
Consequently, x = q n+1 ց • ( q, t 1 , . . . , t n ) ∈ P rim(H), and satisfies γ(x) = t 1 . . . t n , which proves proposition 19.

Examples. Let t 1 , t 2 , t 3 ∈ T. γ -1 |P rim(H) (t 1 ) = q t 1 -q ց t 1 , γ -1 |P rim(H) (t 1 t 2 ) = q t 1 t 2 -( q ց t 1 )t 2 -( q t 1 ) ց t 2 + ( q ց t 1 ) ց t 2 , γ -1 |P rim(H) (t 1 t 2 t 3 ) = q t 1 t 2 t 3 -( q ց t 1 )t 2 t 3 -( q t 1 ) ց t 2 t 3 + ( q ց t 1 ) ց t 2 t 3 -( q t 1 t 2 ) ց t 3 +( q ց t 1 t 2 ) ց t 3 + (( q t 1 ) ց t 2 ) ց t 3 -(( q ց t 1 ) ց t 2 ) ց t 3 .

Elements of the dual basis

Lemma 20 For all x, y ∈ H, ∆(x ր y) = x ր y (1) ⊗ y (2) + x (1) ⊗ x (2) ր yx ⊗ y. In other terms, (H, ր, ∆) is an infinitesimal Hopf algebra.

Proof. We restrict to x = F ∈ F -{1}, y = G ∈ F -{1}. The non-empty and non-total left-admissible cuts of the tree F ր G are:

-The cut on the edges relating F to G. For this cut c, P c (F ր G) = F and R c (F ր G) = G.

-Cuts acting only on edges of F or on edges relating F to G, at the exception of the preceding case. For such a cut, there exists a unique non-empty, non-total left-admissible cut c ′ of F , such that

P c (F ր G) = P c ′ (F ) and R c (F ր G) = R c ′ (F ) ր G.
-Cuts acting on edges of G. Then necessarily F ⊆ P c (F ր G). For such a cut, there exists a unique non-empty, non-total left-admissible cut c ′ of t, such that

P c (F ր G) = F ր P c ′ (G) and R c (F ր G) = R c ′ (G).
Summing these cuts, we obtain, denoting

∆(F ) = F ⊗ 1 + 1 ⊗ F + F ′ ⊗ F ′′ and ∆(G) = G ⊗ 1 + 1 ⊗ G + G ′ ⊗ G ′′ : ∆(F ր G) = (F ր G) ⊗ 1 + 1 ⊗ (F ր G) + F ⊗ G + F ′ ⊗ F ′′ ր G + F ր G ′ ⊗ G ′′ = (F ⊗ 1) ր ∆(G) + ∆(F ) ր (1 ⊗ G) -F ⊗ G.
So (H, ր, ∆) is an infinitesimal bialgebra. As it is graded and connected, it has an antipode.

Proposition 21 Let F = t 1 . . . t n ∈ F. Then f F = f tn ր . . . ր f t 1 .
Proof. First step. We show the following result: for all F ∈ F, t ∈ T, f F ր f t = f tF . We proceed by induction on the weight n of F . If n = 0, then F = 1 and the result is obvious. We now suppose that the result is true at all rank < n. Let be G ∈ F, and let us prove that f F ր f t , G = δ tF,G . Three cases are possible.

1. G = 1. Then f F ր f t , G = f F ր f t , 1 = ε(f F ր f t ) = 0 = δ tF,G . 2. G = G 1 G 2 , G i = 1.
Then, by lemma 20:

f F ր f t , G = ∆(f F ր f t ), G 2 ⊗ G 1 = F 1 F 2 =F f F 2 ⊗ f F 1 ր f t , G 2 ⊗ G 1 + f F ր f t ⊗ 1 + f F ր 1 ⊗ f t , G 2 ⊗ G 1 -f F ⊗ f t , G 2 ⊗ G 1 = F 1 F 2 =F, weight(F 1 )<n f F 2 ⊗ f F 1 ր f t , G 2 ⊗ G 1 + 1 ⊗ f F ր f t , G 2 ⊗ G 1 + f F ր f t ⊗ 1, G 2 ⊗ G 1 + f F ⊗ f t , G 2 ⊗ G 1 -f F ⊗ f t , G 2 ⊗ G 1 = F 1 F 2 =F, weight(F 1 )<n f F 2 ⊗ f tF 1 , G 2 ⊗ G 1 = F 1 F 2 =F, weight(F 1 )<n δ F 2 ,G 2 δ tF 1 ,G 1 = δ tF,G . 3. G = B + (G 1 ). Note that f F ր f t is a linear span of forests H 1 ր H 2 , with H 1 , H 2 = 1.
By definition of ր, the first tree of such a forest is not q . Hence, γ(f F ր f t ) = 0 and:

f F ⊗ f t , G = γ(f F ⊗ f t ), G 1 = 0 = δ tF,G , as tF / ∈ T because F = 1.
Second step. We now prove proposition 21 by induction on n. It is obvious for n = 1. Suppose the result at rank n -1. By the first step:

f t 1 ...tn = f t 2 ...tn ր f t 1 = (f tn ր . . . ր f t 2 ) ր f t 1 = f tn ր . . . ր f t 2 ր f t 1 ,
using the induction hypothesis for the second equality.

Remarks.

1. As an immediate corollary, because ր is associative, for all forests F 1 , . . . ,

F k ∈ F, f F 1 ...F k = f F k ր . . . ր f F 1 .
2. In term of operads, proposition 21 can be rewritten in the following way:

Corollary 22 Let F 1 , . . . , F n ∈ F. Then f F 1 ...Fn = l n ր • (f Fn , . . . , f F 1 ).
Remark. Hence, the dual basis (f F ) F ∈F can be inductively computed, using proposition 21 of [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF], together with propositions 19 and 21 of the present text:

   f 1 = 1, f t 1 ...tn = f tn ր . . . ր f t 1 , f B + (t 1 ...tn) = γ -1 |P rim(H) (f t 1 ...tn ).
For example:

f 1 = 1 f q = q f q q = q q
f q q =q q + q q f q q q = q q q f q q q =q q q + q ∨ q q f q q q =q q q + q q q f q ∨ q q =q ∨ q q + q q q f q q q = q q q q q qq q q + q q q f q q q q = q q q q f q q q q =q q q q + q ∨ q q q f q q q q =q q q q + q ∨ q q q f q q ∨ q q = -q ∨ q q q + q ∨ q q q f q q q q = q q q q q ∨ q q q q ∨ q q q + q ∨ q q q f q q q q =q q q q + q q q q f q q q q = q q q q q ∨ q q qq q q q + q ∨ q q q f q ∨ q q q =q ∨ q q q + q q q q f q q q q = q q q q q q q qq q q q + q q q q f q ∨ q q q =q ∨ q q q + q q q q f q ∨ q q q = q ∨ q q q q ∨ q q qq q q q + q q ∨ q q f q ∨ q q q = q ∨ q q qq ∨ q q qq q q q + q q q q f q ∨ q q q = q ∨ q q q q q q qq q ∨ q q + q q q q f q q q q =q q q q + q q q q + q q q qq q q q + q q q q q q q qq q q q + q q q q .

4 Primitive suboperads

Compatibilities between products and coproducts

We define another coproduct ∆ ր on H in the following way: for all x, y, z ∈ H, ∆ ր (x), y ⊗ z = x, z ր y .

Lemma 23 For all forest F ∈ F, ∆ ր (F ) =

F 1 ,F 2 ∈F F 1 F 2 =F F 1 ⊗ F 2 .
Proof. Let F, G, H ∈ F. Then:

∆ ր (F ), f G ⊗ f H = F, f H ր f G = F, f GH = δ F,GH = F 1 ,F 2 ∈F F 1 F 2 =F F 1 ⊗ F 2 , f G ⊗ f H .
As (f F ) F ∈F is a basis of H and -,is non degenerate, this proves the result.

Remark. As a consequence, the elements of T are primitive for this coproduct.

We now have defined three products, namely m, ր, and ց, and two coproducts, namely ∆ and ∆ր , on M, obtained from ∆ and ∆ ր by substracting their primitive parts. The following properties sum up the different compatibilities.

Proposition 24 For all x, y ∈ M:

∆(xy) = (x ⊗ 1) ∆(y) + ∆(x)(1 ⊗ y) + x ⊗ y, (4) 
∆(x ր y) = (x ⊗ 1) ր ∆(y) + ∆(x) ր (1 ⊗ y) + x ⊗ y, (5) 
∆ր (xy) = (x ⊗ 1) ∆ր (y) + ∆ր (x)(1 ⊗ y) + x ⊗ y, (6) ∆ր (x ր y) = (x ⊗ 1) ր ∆ր (y), ( 7) ∆ր (x ց y) = (x ⊗ 1) ց ∆ր (y). ( 8)

Proof. It remains to consider the compatibility between ր or ց and ∆ր . Let F, G ∈ F -{1}. We put G = t 1 . . . t n , where the t i 's are trees. Then F ր G = (F ր t 1 )t 2 . . . t n , and F ր t 1 is a tree. Hence:

∆ր (F ր G) = n-1 i=1 (F ր t 1 )t 2 . . . t i ⊗ t i+1 . . . t n = n-1 i=1 F ր (t 1 t 2 . . . t i ) ⊗ t i+1 . . . t n = (F ⊗ 1) ր ∆ր (G).
The proof is similar for F ց G. So all these compatibilities are satisfied.

Remark. There is no similar compatibility between ∆ and ց. In particular, lemma 19 is not available for t / ∈ T.

This justifies the following definitions:

Definition 25

1. A P ր -bialgebra of type 1 is a family (A, m, ր, ∆), such that:

(a) (A, m, ր) is a P ր -algebra.

(b) (A, ∆) is a coassociative, non counitary coalgebra.

(c) Compatibilities ( 4) and ( 5) are satisfied.

2. A P ր -bialgebra of type 2 is a family (A, m, ր, ∆ր ), such that:

(a) (A, m, ր) is a P ր -algebra.

(b) (A, ∆ր ) is a coassociative, non counitary coalgebra.

(c) Compatibilities ( 6) and ( 7) are satisfied.

3. A P ց -bialgebra is a family (A, m, ց, ∆ր ), such that:

(a) (A, m, ց) is a P ց -algebra.

(b) (A, ∆ր ) is a coassociative, non counitary coalgebra.

(c) Compatibilities ( 6) and ( 8) are satisfied.

Example. The augmentation ideal M of the infinitesimal Hopf algebra of trees H is both a P ր -infinitesimal bialgebra of type 1 and 2, and also a P ց -infinitesimal bialgebra.

If A is a bialgebra of such a type, we denote by P rim(A) the kernel of the coproduct. We deduce the definition of the following suboperads:

Definition 26 Let n ∈ N. We put:

                                     PRIM (1) ր (n) =    p ∈ P ր (n) /
For all A, P ր -infinitesimal bialgebra of type 1, and for a 1 , . . . , a n ∈ P rim(A), p.(a 1 , . . . , a n ) ∈ P rim(A).

   , PRIM (2) 
ր (n) =    p ∈ P ր (n) /
For all A, P ր -infinitesimal bialgebra of type 2, and for a 1 , . . . , a n ∈ P rim ր (A), p.(a 1 , . . . , a n ) ∈ P rim ր (A).

   , PRIM ց (n) =    p ∈ P ց (n) /
For all A, P ց -infinitesimal bialgebra, and for a 1 , . . . , a n ∈ P rim ր (A), p.(a 1 , . . . , a n ) ∈ P rim ր (A).

   .

We identify P ր (n) and P ց (n) with the homogeneous component of weight n of M. We put P rim(M) = Ker( ∆) and P rim ր (M) = Ker( ∆ր ). We obtain:

Proposition 27

1. For all n ∈ N: PRIM

ր (n) = {p ∈ P ր (n) / pր • ( q , . . . , q ) ∈ P rim(M)} = P ր (n) ∩ P rim(M).

2. For all n ∈ N: PRIM

ր (n) = {p ∈ P ր (n) / pր • ( q , . . . , q ) ∈ P rim ր (M)} = P ր (n) ∩ P rim ր (M). (2) 
3. For all n ∈ N:

PRIM ց (n) = {p ∈ P ց (n) / pց • ( q , . . . , q ) ∈ P rim ր (M)} = P ց (n) ∩ P rim ր (M).
Proof. As M is a P ր -infinitesimal bialgebra, by definition: PRIM

ր (n) ⊆ {p ∈ P ր (n) / pր • ( q , . . . , q ) ∈ P rim(M)} .

Moreover, {p ∈ P ր (n) / pր • ( q , . . . , q ) ∈ P rim(M)} = P ր (n)∩ P rim(M), as, for all p ∈ P ր (n), pր • ( q , . . . , q ) = p ∈ M. We now show that {p ∈ P ր (n) / pր • ( q, . . . , q ) ∈ P rim(M)} ⊆ PRIM

ր (n). We take p ∈ P ր (n), such that pր • ( q , . . . , q) ∈ P rim(M). Let D = {1, . . . , n} and let A be the free P րalgebra generated by D (with a unit). It can be described as the associative algebra H D generated by the set of planar rooted trees decorated by D, and can be given a structure of P ր -infinitesimal bialgebra. As M is freely generated by q as a P ր -algebra, there exists a unique morphism of P ր -algebras from M to M D , augmentation ideal of H D :

ξ : M -→ M D q -→ q 1 + . . . + q n.
As q ∈ P rim(M) and q 1 + . . . + q n ∈ P rim(A), ξ is a P ր -infinitesimal bialgebra morphism from M to M D . So, ξ(pր • ( q , . . . , q )) ∈ P rim(A).

Let F ∈ A be a forest, and s 1 ≥ h,l . . . ≥ h,l s k its vertices. For all i ∈ {1, . . . , k}, we put d i the decoration of s i . The decoration word associated to F is the word d 1 . . . d n . It belongs to M (D), the free monoid generated by the elements of D. For all w ∈ M (D), Let A w be the subspace of A generated by forests whose decoration word is w. This defines a M (D)-gradation of A, as a P ր -infinitesimal bialgebra of type 1.

By theorem 29, Θ is injective and its image is PRIM

ր . So, we obtain a basis of PRIM [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] ր indexed by T b , given by p t = Θ(t). It is also a basis of P rim(M), which can be inductively computed by: p = q , p t 1 ∨t 2 = ( q qq q )ր • (p t 1 , p t 2 ) = p t 1 p t 2p t 1 ր p t 2 .

From the basis (f t ) t∈T to the basis (p t ) t∈T b

We define inductively the application κ : T b -→ T in the following way:

κ :    T b -→ T -→ q, t 1 ∨ t 2 -→ κ(t 2 ) ց κ(t 1 ). Examples. ∨ -→ q q ∨ ∨ -→ q ∨ q q ∨ ∨ -→ q q q r -→ q ∨ q q q ∨ ∨ ∨ -→ q ∨ q q q ∨ ∨ ∨ -→ q ∨ q q q ∨ ∨ ∨ -→ q ∨ q q q ∨ ∨ ∨ -→ q q q q
It is easy to show that κ is bijective, with inverse given by:

κ -1 :    T -→ T b q -→ , B + (s 1 . . . s m ) -→ κ -1 (B + (s 2 . . . s m )) ∨ κ -1 (s 1 ).
Let us recall the partial order ≤, defined in [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF], on the set F of planar forests, making it isomorphic to the Tamari poset.

Definition 31 Let F ∈ F.

1. An admissible transformation on F is a local transformation of F of one of the following types (the part of F which is not in the frame remains unchanged):

First kind: 

= F . (c) F k = G.
The aim of this section is to prove the following result:

Theorem 32 Let t ∈ T b . Then p t = s∈T s≤κ(t) f s .
Proof. By induction on the number n of leaves of t. If n = 1, then t = and p = q = f q . Suppose the result at all ranks ≤ n -1. As p t is primitive, we can put:

p t = s∈T a s f s .
Write t = t 1 ∨ t 2 . By the induction hypothesis:

p t 1 = s 1 ∈T s 1 ≤κ(t 1 )
f s 1 and p t 2 = s 2 ∈T s 2 ≤κ(t 2 ) f s 2 .

As t = t 1 ∨ t 2 , p t = ( q qq q )ր 

f s 2 ⊗ f s 1 , ∆(s) .
So a s is the number of left-admissible cuts c of s, such that P c (s) ≤ κ(t 2 ) and R c (s) ≤ κ(t 1 ). Suppose that a s = 0. Then, there exists a left-admissible cut c of s, such that P c (s) ≤ κ(t 2 ) and R c (s) ≤ κ(t 1 ). As s is a tree, s ≤ κ(t 2 ) ց κ(t 1 ) = κ(t). Moreover, by considering the degree of P c (s), this cut c is unique, so a s = 1. Reciproquely, if s ≤ κ(t), if c is the unique left admissible cut such that weight(P c (s)) = weight(t 2 ), then P c (s) ≤ κ(t 2 ) and R c (s) ≤ κ(t 1 ). So a s = 0. Hence, (s ≤ κ(t)) =⇒ (a s = 0) =⇒ (a s = 1) =⇒ (s ≤ κ(t)). This proves theorem 32.

Let µ be the Möbius function of the poset F ( [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF]Enumerative combinatorics[END_REF]). By the Möbius inversion formula: Corollary 33 Let s ∈ T. Then f s = t∈T b , κ(t)≤s µ(κ(t), s)p t .

Suboperad PRIM (2) ր

For all n ∈ N, we put c n+1 = B + ( q n ). In other terms, c n+1 is the corolla tree with n + 1 vertices, or equivalently with n leaves.

Examples. c 1 = q , c 2 = q q , c 3 = q ∨ q q , c 4 = q ∨ q q q , c 5 = q ∨ q q r q q . . .

Lemma 34

The set T is a basis of the operad PRIM 

ր is generated by the c n 's, n ≥ 2. Moreover, for all k, l ≥ 2, c k ր • (c l , q , . . . , q k -1 times ) = c l ր • ( q , . . . , q l -1 times , c k ).

Connected double P ր -infinitesimal bialgebras

Notations. Let A be a double P ր -infinitesimal bialgebra. The iterated coproducts will be denoted in the following way: for all n ∈ N,

∆n :

A -→ A ⊗(n+1) a -→ a (1) ⊗ . . . ⊗ a (n+1) , ∆n ր : A -→ A ⊗(n+1) a -→ a .

Definition 44 Let A be a double P ր -infinitesimal bialgebra. It will be said connected if, for any a ∈ A, every iterated coproduct A -→ A ⊗(n+1) vanishes on a for a great enough n.

Theorem 45 Let A be a connected double P ր -infinitesimal bialgebra. Then A is isomorphic to the free P ր -algebra generated by P rim(A) = Ker( ∆)∩Ker( ∆ր ) as a double P ր -infinitesimal bialgebra.

Proof. First step. We shall use the results on infinitesimal Hopf algebras of [START_REF]The infinitesimal Hopf algebra and the poset of planar rooted forests[END_REF]. We show that A = P rim(A) + A.A + A ր A. As (A, ր, ∆) is a connected non unitary infinitesimal bialgebra, it (or more precisely its unitarisation) has an antipode S ր , defined by:

S ր :      A -→ A a -→ ∞ i=0
(-1) i+1 a (1) ր . . . ր a (i+1) .

As (A, ∆) is connected, this makes sense. Moreover, -S ր is the projector on Ker( ∆) in the direct sum A = Ker( ∆) ⊕ A ր A.

In the same order of idea, as (A, m, ∆ր ) is a connected infinitesimal bialgebra, we can define its antipode S ր by: This proves the first step.

Second step.

As A is connected, it classically inherits a filtration of P ր -algebra given by the kernels of the iterated coproducts. We denote by deg p the associated degree. In particular, for

1 .

 1 P ց is generated by m and ց∈ P ց (2), with relations:   m • (ց, I) = ց •(I, m), m • (m, I) = m • (I, m), ց •(m, I) = ց •(I, ց).

2 .

 2 P ր is generated by m and ր∈ P ր (2), with relations:   m • (ր, I) = ր •(I, m), m • (m, I) = m • (I, m), ր •(ր, I) = ր •(I, ր).

2 .

 2 The second one admits a combinatorial representation in terms of planar rooted trees. It is generated by the corollas c n ∈ P ր (n), n ≥ 2, with the following relations: for all k, l ≥ 2, c k • (c l , I, . . . , I k -1 times ) = c l • ( I, . . . , I l -1 times

Theorem 9

 9 For? → ∈ {ց, ր}, n ∈ N * , dim(P ? → (n)) = r n . Moreover, the following application is bijective:

( 2 )

 2 ր . As an operad, PRIM

  ր is the projector on Ker( ∆ր ) in the direct sum A = Ker( ∆ր) ⊕ A.A. Let a ∈ A, b ∈ Ker( ∆ր ). Then ∆ր (a ր b) = (a ⊗ 1) ∆ր (b) = 0. So A ր Ker( ∆ր ) is a subset of Ker( ∆ր ). Moreover, if ∆ր (a) = 0, then (Id ⊗ ∆ր ) • ∆(a) = ( ∆ ⊗ Id) • ∆ր (a) = 0. So ∆(a) ∈ A ⊗ Ker( ∆ր ). As a consequence, if n ≥ 1: ∆n (a) = ( ∆n-1 ⊗ Id) • ∆(a) ∈ A ⊗n ⊗ Ker( ∆ր ).Hence, for all n ∈ N, ∆n (Ker( ∆ր )) ∈ A ⊗n ⊗Ker( ∆ր ). Finally, we deduce that S ր (Ker( ∆ր )) ⊆ Ker( ∆ր ). Let a ∈ A. Then S ր (a) ∈ Ker( ∆ր ) and S ր • S ր (a) ∈ Ker( ∆) ∩ Ker( ∆ր ) = P rim(A) by the preceding point. Moreover: S ր (a) = -a + A.A, S ր • S ր (a) = -S ր (a) + A ր A, S ր • S ր (a) = a + A.A + A ր A.

  1 ), . . ., p n ∈ P(k n ), p 1,1 , . . . , p n,kn ∈ P, (p • (p 1 , . . . , p n )) • (p 1,1 , . . . , p 1,k 1 , . . . , p n,1 , . . . , p n,kn ) = p • (p 1 • (p 1,1 , . . . , p 1,k 1 ), . . . , p n • (p n,1 , . . . , p n,kn )).

  a 1 , . . . , a n ), satisfying the following compatibility: for all p ∈ P(n), p 1 ∈ P(k 1 ), . . ., p n ∈ P(k n ), for all a 1,1 , . . . , a n,kn ∈ A, (p • (p 1 , . . . , p n )).(a 1,1 , . . . , a 1,k 1 , . . . , a n,1 . . . , a n,kn ) = p.(p 1 .(a 1,1 , . . . , a 1,k 1 ), . . . , p n .(a n,1 , . . . , a n,kn )).

  from 1, of respective weights n 1 and n 2 . Let H 1,1 , . . . , H 1,n 1 and H 2,1 , . . . , H 2,n 2 ∈ F -{1}. Let

	? → ∈ {ց, ր}. Then, in P ?

→

:

  Let F and G ∈ F. We shall say that F ≤ G if there exists a finite sequence F 0 , . . . , F k of elements of F such that: (a) For all i ∈ {0, . . . , k -1}, F i+1 is obtained from F i by an admissible transformation.

		t t t ... d d s $ $ $ ... . . . $ $ $ . . .	-→	... t ¡ ¡ e $ $ $ . . . t t ... e s $ $ . . .
			...			...	
	Second kind:	s	t ¡ ¡ t t e e $ $ $ . . . $ $ . . .	-→	s	t	. . . $ $ t t ...
	2. (b) F 0						

  • (p t 1 , p t 2 ) = p t 1 p t 2p t 1 ր p t 2 .So, for all s ∈ T, as s is primitive for ∆ ր :a s = p t , s = p t 1 p t 2p t 1 ր p t 2 , s = p t 2 ⊗ p t 1 , ∆(s) -∆ ր (s) = p t 2 ⊗ p t 1 , ∆(s) = s 1 ∈T s 1 ≤κ(t 1 ) s 2 ∈T s 2 ≤κ(t 2 )

Consider the projection π 1,...,n onto A 1,...,n . We get: π 1,...,n • ξ(pր • ( q , . . . , q )) ∈ P rim(A), = π 1,...,n (pր • (ξ( q ), . . . , ξ( q ))) = π 1,...,n (pր • ( q 1 + . . . + q n, . . . , q 1 + . . . + q n))

= pր • ( q 1 , . . . , q n).

So pր • ( q 1 , . . . , q n) ∈ P rim(A).

Let B be a P ր -infinitesimal bialgebra and let a 1 , . . . , a n ∈ P rim(B). As M D is freely generated by the q i 's, there exists a unique morphism of P ր -algebras:

As the q i and the a i 's are primitive, χ is a P-infinitesimal bialgebra morphism. So: ξ(pր • ( q 1 , . . . , q n)) = p.(ξ( q 1 ), . . . , ξ( q n)) = p.(a 1 , . . . , a n ) ∈ χ(prim(M D )) ⊆ P rim(A).

Hence, p ∈ PRIM

ր (n). The proof is similar for PRIM

ր and PRIM ց .

Suboperad PRIM

(1) ր

Lemma 28 We define inductively the following elements of P ր : q 1 = q, q n+1 = ( q qq q )ր • (q n , q) = q n q -B + (q n ), for n ≥ 1.

Then, for all n ≥ 1, q n belongs to PRIM [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] ր . Moreover, for all x 1 , . . . , x n ∈ P rim(M):

Remark. These q n 's are the same as the q n 's defined in section 3.2.

Proof. Let us remark that f q q = q qq q ∈ P rim(M). By proposition 27, q qq q ∈ PRIM (1)

ր is a suboperad of P ր , it follows that all the q n 's belongs to PRIM

Suppose now the result true at rank n -1. Then:

Theorem 29 The non-Σ-operad PRIM [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] ր is freely generated by q qq q . Proof. Let us first show that the family (q n ) n≥1 generates PRIM [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] ր . Let P be the suboperad of PRIM [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] ր generated by the q n 's. Let us prove by induction on k that PRIM 

ր (1) = K q . Suppose the result at all ranks ≤ k-1. By the rigidity theorem for infinitesimal bialgebra of [START_REF] Loday | On the structure of cofree hopf algebras[END_REF], a basis of H is (f t 1 . . . f tn ) t 1 ...tn∈F , so a basis of P rim(M) is:

So, a basis of PRIM

(1)

. By lemma 28:

. By the induction hypothesis, the f t i 's belongs to P. So:

So PRIM

(1)

Moreover, if we denote by P ′ the suboperad of PRIM

ր generated by q 2 , then, immediately, P ′ ⊆ P. Finally, by induction on n, q n ∈ P ′ (n) for all n ≥ 1 and P ⊆ P ′ . So

ր is generated by q 2 . Let P q 2 be the non-Σ-operad freely generated by q 2 . There is a non-Σ-operad epimorphism:

The dimension of P q 2 (n) is the number of planar binary rooted trees with n leaves, that is to say the Catalan number c n = (2n -2)! (n -1)!n! . On the other side, the dimension of PRIM

ր (n) is the number of planar rooted trees with n vertices, that is to say c n . So Ψ is an isomorphism.

In other terms, in the language of [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF]:

Theorem 30 The triple of operads (Ass, P Σ ր , FREE 2 ), where P Σ ր is the symmetrisation of P ր and FREE 2 is the free operad generated by an element in FREE 2 (2), is a good triple of operads.

Remark. Note that if A is a P ր -bialgebra of type 1, then (A, m, ∆) is a non unitary infinitesimal bialgebra. Hence, if (K ⊕ A, m, ∆) has an antipode S, then -S is an eulerian idempotent for A.

Another basis of P rim(H)

Recall that T b is freely generated (as a non-Σ-operad) by ∨ . In particular, if t 1 , t 2 ∈ T b , we denote:

Every element t ∈ T b -{ } can be uniquely written as t = t l ∨ t r .

There exists a morphism of operads:

Proof. The operad PRIM

ր is identified with P rim ր (M) by proposition 27. So P rim ր (M) is equal to V ect(T). Let P be the suboperad of PRIM [START_REF] Foissy | Koszularity of the operads of forests[END_REF] ր generated by the corollas. Let t ∈ T, of weight n. Let us prove that t ∈ P by induction on n. If n = 1, then t = q ∈ P. If n ≥ 2, we can suppose that t = B + (t 1 . . . t k ), with t 1 , . . . , t k ∈ P. Then, by theorem 11:

Let k, l ≥ 2. Then, by theorem 11:

On the other hand: Proof. By lemma 34, there is an epimorphism of operads:

In order to prove this is an isomorphism, it is enough to prove that dim(T(n)) ≤ dim(PRIM 

Then the images of the elements of X(n) linearly generate T(n), so dim(T(n)) ≤ card(X(n)) for all n. We now put a n = card(X(n)) and prove that a n is the n-th Catalan number. We denote by A(h) their generating formal series. Then:

In terms of generating series:

.

So A(h) 2 -A(h) + h = 0. As A(h) = 1:

So a n is the n-th Catalan number for all n ≥ 1.

In other terms:

Theorem 37 The triple of operads (Ass, P Σ ր , T Σ ) is a good triple of operads.

Remark. Note that if A is a P ր -bialgebra of type 2, then (A, m, ∆ր ) is a non unitary infinitesimal bialgebra. Hence, if (K ⊕ A, m, ∆ ր ) has an antipode S ր , then -S ր is an eulerian idempotent for A.

Suboperad PRIM ց

Lemma 38 The set T is a basis of the operad PRIM ց . As an operad, PRIM ց is generated by q q .

Proof. Let P be the suboperad of PRIM ց generated by q q . Let t ∈ T, of weight n. Let us prove that t ∈ P by induction on n. If n = 1 or 2, this is obvious. If n ≥ 2, suppose that t = B + (t 1 . . . t k ). By the induction hypothesis, t 1 and B + (t 2 . . . t k ) belong to P. Then:

Theorem 39 The non-Σ-operad PRIM ց is freely generated by q q . Proof. Similar as the proof of theorem 29.

In other terms:

Theorem 40 The triple of operads (Ass, P Σ ց , F 2 ), where F 2 is the free operad generated by an element in F 2 (2), is a good triple of operads.

Remark. Note that if A is a P ց -bialgebra, then (A, m, ∆) is a non unitary infinitesimal bialgebra. Hence, if (K ⊕ A, m, ∆) has an antipode S, then -S is an eulerian idempotent for A.

5 A rigidity theorem for P ր -algebras 5.1 Double P ր -infinitesimal bialgebras Definition 41 A double P ր -infinitesimal bialgebra is a family (A, m, ր, ∆, ∆ր ) where m, ր: A ⊗ A -→ A, ∆, ∆ր : A -→ A ⊗ A, with the following compatibilities:

1. (A, m, ր) is a (non unitary) P ր -algebra.

For all

In other terms, (A, ∆cop , ∆cop ր ) is a P ր -coalgebra.

3. (A, m, ր, ∆) is a P ր -bialgebra of type 1.

4. (A, m, ր, ∆ր ) is a P ր -bialgebra of type 2.

Remark. If (A, m, ր, ∆, ∆ր ) is a graded double P ր -infinitesimal bialgebra, with finitedimensional homogeneous components, then its graded dual (A * , ∆ * ,op , ∆ * ,op ր , m * ,cop , ր * ,cop ) also is.

Theorem 42 (M, m, ր, ∆, ∆ր ) is a double P-infinitesimal bialgebra.

Proof. We already now that (M, m, ր) is a P ր -algebra. Moreover, (M, ∆cop , ∆cop ր ) is isomorphic to (M * , m * , ր * ) via the pairing -, -, so it is a P ր -coalgebra. It is already known that (M, m, ∆) and (M, ր, ∆) are infinitesimal bialgebras. As (M, ր, ∆) is isomorphic to (M op , m op , ∆cop ր ) via the pairing -, -, it is also an infinitesimal bialgebra. So all the needed compatibilities are satisfied.

Remarks.

1. Via the pairing -, -, M is isomorphic to its graded dual as an double P ր -infinitesimal bialgebra. As a consequence, as M is the free P ր -algebra generated by q , then M cop is also the cofree P ր -coalgebra cogenerated by q .

2. All these results can be easily extended to infinitesimal Hopf algebras of decorated planar rooted trees, in other terms to every free P ր -algebras.

Lemma 43 In the double infinitesimal P ր -algebra M, Ker( ∆) ∩ Ker( ∆ր ) = V ect( q ).

Proof. ⊇. Obvious. ⊆. Let x ∈ Ker( ∆) ∩ Ker( ∆ր ). Then ∆ր (x) = 0, so x is a linear span of trees. We can write:

x = t∈T a t t.

Consider the terms in M ⊗ q of ∆(x). We get t∈T-{ q } a t B -(t) ⊗ q = 0, where B -(t) is the forest obtained by deleting the root of t. So, if t = q, then a t = 0. So x ∈ vect( q ).

Remark. This lemma can be extended to any free P ր -algebra: if V is a vector space, then the free P ր -algebra F P ր (V ) generated by V is given a structure of double P ր -infinitesimal bialgebra by ∆(v) = ∆ր (v) = 0 for all v ∈ V . In this case, Ker( ∆) ∩ Ker( ∆ր ) = V for F P ր (V ). Last step. So, there is an epimorphism of P ր -algebras:

φ : F P ր (P rim(A)) -→ A a ∈ P rim(A) -→ a, where F P ր (P rim(A)) is the free P ր -algebra generated by P rim(A). As the elements of P rim(A) are primitive both in A and F P ր (P rim(A)), this is a morphism of double P ր -infinitesimal bialgebras. Suppose that it is not monic. Take then x ∈ Ker(φ), non-zero, of minimal degree. Then it is primitive, so belongs to P rim(A) (lemma 43). Hence, φ(a) = a = 0: this is a contradiction. So φ is a bijection.

In other terms:

Corollary 46 The triple of operads (P Σ ր ) op , P Σ ր , VECT is a good triple. Here, VECT denotes the operad of vector spaces:

where I is the unit of VECT.

We also showed that S ր •S ր is the projection on P rim(A) in the direct sum A = P rim(A)⊕ (A.A + A ր A). So S ր • S ր is the eulerian idempotent.