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ABSTRACT

This paper presents a method to verify (the internal consistency)
and to validate (with respect to the purpose of the builders)
Sequential Function Charts [8] (grafcets in French). The method
is based upon the translation of any grafcet into its equivalent finite
automaton. The proofs of consistency of the models are then
established on this automaton. The main difficulty of this approach
is the control of the combinatorial explosion implied by the parallel
and the synchronous nature of Grafcet. A specific grammar has
been developed in order to express the expected properties to
prove. An example is given to illustrate the presented approach.

Key-Words: Sequential Function Chart (S.F.C.), Grafcet,
validation, verification, reachable situations graph, finite state
machine.

1. INTRODUCTION

During the development of a control system design project, the
Sequential Function Charts (SFC: Grafcet in French) are often used
in two essential steps: the specification of the expected behavior of
the control system and the Programmable Logical Controllers
(PLC) programming. It must be emphasized that although we are
talking about Grafcet in these two cases, the underlying formalisms
are different ; the specification of the behavior of control systems is
written according to the IEC 848 standard («Preparation of
function charts for control systems» [9]) while the PLC programs
are written according to the IEC 1131-3 standard («Programmable
controllers - Part 3: Programming languages» [10]). This paper
only concerns the specification of the dynamic behavior of logical
sequential systems using the Grafcet IEC 848 standard and take
into account the theoretical hypothesis of this model [5].
The increasing complexity of automated systems and the
consequent requirements in the field of timeliness and safety
require the use of formal methods to validate the control system
models from the specification step. In this paper we will adopt, for
the grafcet models, the definition given in [14] concerning the
verification and the validation of models (Fig. 1).
The verification is the proof that the internal semantics of a model
is correct, independently from the modeled system. The searched
properties of the models are stability, deadlock existence, ... The
validation determines if the model agrees with the designer’s
purpose. The searched properties of the models are then safety

properties, temporal properties and liveness properties. Our
approach takes into account these two aspects and aims at proving
the global consistency of a grafcet: its consistency with respect to
the hypothesis and the syntax of IEC standard, as well as with
respect to the expected properties of the modeled system.
In order to illustrate the objectives of our approach, we are going to
present an example of the expectations of the Grafcet builder in the
field of verification and validation.

2. EXAMPLE

This example concerns the control of a transfer module for a
convoy system (Fig. 2). 
To reduce waiting delay, the functions «pallet in» and «pallet out»
are cut into two elementary parts. The control of the transfer
module must enable to simultaneously handle the maximum of
pallets without collision. The running rules are the following:

- R1: In the transfer module, there is not more than one pallet in
or out.

- R2: A pallet cannot be cleared if another one is coming in or
out.

- R3: priority to out.

A corresponding specification by Grafcet is given (Fig. 3).
The designer has built 4 connex grafcets:

- the grafcet (steps 1 to 10) concerns the control of actuators of
the main line,

IEC 848
Standard

Fig.1 : Verification and validation of grafcets

Users’
requirements 

grafcet
Validation

Verification

Specification

Validation and Verification of grafcets using finite state machine

Jean-Marc ROUSSEL & Jean-Jacques LESAGE
Laboratoire Universitaire de Recherche en Production Automatisée

LURPA - ENS Cachan
61 Avenue du Président Wilson

94235 CACHAN Cedex

Email: roussel@lurpa.ens-cachan.fr
URL: http://www.lurpa.ens-cachan.fr/~Roussel.html



X3316

/X1015

>pal_p414

/X6./X7./X23./X24./X2513

<pal_p217

25

24

START
stop_p4

 

S23STOP
stop_p2

 

S22

pal_p212

21

START
stop_p2

 

S20

read_code

 

STOP
stop_p1

 

S

/X9

X43

>pal_p3./X10

/X6./X7./X8./X23./X24./X25

<pal_p1

/X6./X7./X8./X21./X23./X24./X25

<read./enter<read.enter

<pal p3

/X10

pal_p1

11

10

9

8

7

6

5

4

10

9

8

7

6

5

4

3

32

1

2

START
stop_p1

 

S1

X722

40

=125

/pal_p424

>pal_p423

43

42

rot_in

 
stop_p4

 
stop_p3

 

41

X2518

30

=121

/pal_p320

>pal_p319

33

STOP
stop_p4

 

S32

rot_out

 
stop_p3

 

31

- the grafcet (steps 20 to 25) concerns the control of actuators
of the secondary line,

- the 2 grafcets (steps 30 to 33 and steps 40 to 43) concern the
control of actuators of transfer module.

The synchronizations between graphs are made by using step
activity variables in transition condition (transition 4, 6, 13 for
example) and the control of output variables is made by continuous
or stored actions.

To verify this specification, the designer must prove:
- the stability property of the model,
- the lack of dead-lock,
- the good use of stored actions,
- ...
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To validate this specification, he must also prove:
- the lack of collisions of pallets,
- the correct control of the actuators of the transfer (for example,

the motor is not controlled simultaneously in both directions)
- the respect of priority rules between pallets,
- ...

3. THE ISSUE 

One of the most interesting capacities of Grafcet is to allow the
designer to simply describe parallelisms [3] (by using multi-graph
descriptions, and convergence symbol, stored actions, ...). For this
reason, a state of the control system modelized is represented by a
situation of the grafcet (i.e. a set of active steps at a given moment).
For example, on the grafcet Fig. 3, the situation corresponding to
the initial state of the control system is S0 = {1, 20, 30, 40}.
Similarly, the change from a state of the modeled system to another
is represented by a set of transitions which have to be
simultaneously cleared. For instance, on the grafcet Fig. 3 the
evolution of the situation S0 to the situation S1 (S1 = {2, 21, 30,
40}) is achieved by the simultaneous clearing of the transitions t1
and t2 when . These concepts of situation
and evolution between situations then contribute to increase the
capacity of the Grafcet to represent significant parallelisms with
compact models.
In fact, the number of steps and transitions of a grafcet are to the
must equal to the number of states and changes between states of
the modeled system; in the general case the number of steps and
transitions is much lower. In our example, the grafcet has only 24
steps and describes a control system of 238 stable states.

Contrarily, this power of modeling makes the validation of the
models very hard to establish. In fact, once it has been constructed
in terms of steps and transitions, a model must be validated in
terms of situations and evolutions between situations.

Fig.3 : Specification by Grafcet of the control of the transfer module
(">" rising edge, "<" falling edge)
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4. OUR APPROACH 

The set of situations which can be reached and the set of the
possible evolutions between these situations are described in the
Reachable Situations Graph (R.S.G.) [4]. The R.S.G. is then the
bearer of all the semantics of a grafcet in relation to the modeled
system. That is why our validation method [15] is based upon the
automatic generation of the R.S.G., which is a finite automaton by
which we prove the expected properties of the control system
(Fig. 4), contrary to other approaches of validation which translate
grafcets into other languages (automata [1] [6] [12], temporal
algebra [11], synchronous languages [1] [12], (Max,+) algebra
[13]). 

This strategy brings numerous performances and more flexibility
during the proof of properties:

- When the R.S.G. is built, it is easier to prove a property
because it is simpler to verify if a situation exists than to know
if it can be obtained.

- A property of accessibility between specific situations is easier
to prove because it is only a search of paths in a graph.

- By separating the building of R.S.G. from the demonstration of
properties, it is possible to take Grafcet specificities such as
reachability of stable situation or immediate reactivity of input
variations into account.

- When a property is not proved, the knowledge of all faulty
situations or evolutions facilitates the correction of the initial
grafcet.

Building of the R.S.G.
To validate a grafcet by using its R.S.G., the equivalence between
the two models must be ensured. This equivalence is not only a
behavior equivalent (the same input variations give the same output
variations for the two models) but it means that the R.S.G. must be

composed of all and only all the reached situations of the grafcet
and of all and only all the evolutions between these situations. The
forgetting or the adding of situations may altered the results of
validation. 
It is the reason why we have developed a method to construct the
R.S.G. in two stages.
In the first stage, a primary R.S.G. is built. All situations and
evolutions of the grafcet are iteratively found. From each reachable
situation, all the sets of validated transitions which are
simultaneously cleared are built. The condition of each set of
clearing transitions is obtained by computer algebra from the
receptivities [7]. All the evolutions of inputs are considered in the
initial construction of the R.S.G. However, a fundamental
hypothesis of Grafcet specifies that two independent inputs cannot
change of value simultaneously.
In the second stage, the evolution of inputs which do not verify this
hypothesis are suppressed in the R.S.G. (evolution where two
inputs simultaneously change (Fig. 5a), and evolution where an
input changes twice in the same direction (Fig. 5b)).

This method of construction of the R.S.G includes the following
Grafcet specificities:

- the possibilities of interpreted parallelism,
- the use of edges and step variables in the transition conditions

[7],
- the reachability of a stable situation [5],
- the immediate reactivity to input variations.

From a mathematical point of view, the generated R.S.G. is a
completely specified Mealy Machine with a uniform sequential
machine [18]. We describe this machine by a 6-uple [X, Y, Z, Y0,
T, A] where: 

- X is the set of grafcet inputs,
- Y is the set of states (each state represents a different reached

situation of the grafcet),
- Z is the set of grafcet outputs,
- Y0 is the initial state,
- T is the set of transitions (each transition represents an

evolution between two reached situations of the grafcet),
- A is the set of actions.

Each transition is defined by a 3-uple ( , Cond, ) where
« » and « » are two states (respectively upstream state and
downstream state) and «Cond» a boolean expression of inputs.

This definition allows us to combine the «state machine» aspect
(notion of inputs, outputs, states and actions) with the «graph»
aspect (notion of succession of states) into a set description which
is adapted to the proof of properties.
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Writing of properties
To validate a grafcet by using its R.S.G., it is necessary to express
the properties to verify by the mean of a mathematical expression,
so as to prove them. We have thus developed a specific grammar
with the following aspects:

- the properties concern the Grafcet: operators of this grammar
must refer to the Grafcet vocabulary (step, situation, inputs,
action, ...),

- some properties concern accessibility between situations:
operators of this grammar must refer to graph theory,

- to validate a grafcet, it is necessary to write the properties
concerning several criterions: this grammar must use the
notion of set in order to compose complex properties.

Presently, this grammar is composed of 13 operators:
- the 3 operators of the set theory:

Union ( ), Intersection ( ) and Subtraction (-) of sets,

- 6 operators1 to analyze graph aspects:
 are respectively the sets of transitions

where the upstream / downstream state is an element of ,
 are respectively the sets of states

which are the upstream / downstream state of a element of ,
 is the set of states which are reached from an

element of  by only following an element of ,
 is the set of states from which it is possible to

reach an element of  by only following an element of ,

- 4 operators related to Grafcet specificities:
 are respectively the sets of states which

represent a situation where all elements of E is / is not active,
 is the set of transitions which are cleared only

if the combinatorial expression of inputs «Exp_in» is true,
 is the set of states from which the

combinatorial expression of outputs «Exp_out» is sent.

Demonstrating of properties
The result of the 13 grammar operators are sets of transitions or of
states. To prove the properties given by this grammar, a specific
module for the manipulation of sets has been built. 
In this module, we have reproduced the algorithms used in MEC
[2] for operators related to graph aspects.
For the operators which work from combinatorial expression, we
use the computer algebra module developed for the building of
R.S.G.

5. VALIDATION POSSIBILITIES

Example of properties 
In this section, we present several properties that can be verified
with our approach. Each one is expressed in our grammar.

Lack of dead-lock
In Grafcet, the possibility to obtain a dead-lock is increased by the
use of step activity variables in condition transitions. There are two
types of dead-lock: the dead-lock is said global if the whole grafcet
is locked or said local if only a part of the grafcet is locked.

To know the global dead-locked situation, it is necessary to
evaluate the following set:

that contains the states without downstream transition.
The local dead-lock is more usual. To know all the steps which are
included in a local dead-lock, it is necessary to evaluate the
following set:

that contains the steps with the state cannot change since a given
situation.

Come back to the initial situation
The initial situation is often a strategic situation for the grafcet: it
corresponds to a falling-back state for the system. To know the
situations from which the initial situation cannot be reached, it is
necessary to evaluate the following set:

that contains the states from which no path exists to initial state.

Output sending
With the presented grammar, it is possible to express and verify
properties related to the simultaneous or sequential sending out of
outputs. 

For example, to validate the control without collision of two
pistons disposed as Fig. 6, it is necessary to verify if the two pistons
do not move simultaneously:

and verify if the going out of a piston always occurs after the going
in of the other:

Use of stored actions
The use of stored actions is often forbidden in industry as it
introduces an interpreted parallelism in the control model (a part of
the control system is not represented in the model). 
Let «o» be an output of the grafcet which is used in stored actions
and  ( ) be the set of states from which the start
(stop) stored action «o» is send. 
To verify the good use of stored actions, we must know if:

- the output variable «o» is not simultaneously start and stop
stored,

1. This operators are taken from the MEC tool developed for 
the validation of transitions systems [2]

∪ ∩

Int Yi( ) Ext Yi( )⁄
Yi

Amont Ti( ) Aval Ti( )⁄
Ti

Succ Yi Ti,( )
Yi Ti

Pred Yi Ti,( )
Yi Ti

Act E( ) Des E( )⁄

Nec Exp_in( )

Emis Exp_out( )

Y Amont T( )–

{e | Act e{ }( ) Pred Des e{ }( ) T,( )–( )
Des e{ }( ) Pred Act e{ }( ) T,( )–( )

∪
∅≠

(
)}

Y Pred Y0 T,( )–

Fig.6 :  Collision between pistons

O1I1 O2

12

Emis I1 O1+( ) I2 O2+( )⋅( ) ∅=

Emis O1( ) Pred Emis O2( ) T Ext Emis I1( )( )–,( )∩ ∅=

Emis O1( ) Pred Emis O2( ) T Ext Emis I1( )( )–,( )∩ ∅=⎝
⎛

Ystart_o Ystop_o

Ystart_o Ystop_o∩ ∅=



- for each state, the output variable «o» has always the same
value,

- the output variable «o» is not twice stored,

Application of our example
The validation of the specification by Grafcet for our example was
made with the software «AGGLAÉ» (Fig. 7) [17], developed in
our laboratory.  

Firstly, the R.S.G. was calculated (2 seconds for a PC compatible
computer equipped with Pentium75 processor). During this
operation, it was necessary to simplify 12 496 combinatorial
expressions formally. This R.S.G. contains 298 states and 822
transitions.
Secondly, we verified the good use of Grafcet Standard. We
proved:

- the stability property of the Grafcet model,
- the lack of dead-lock,
- the good use of stored actions,
- ...

Thirdly, we validated the specification related to the user’s
requirements. We proved:

- the control without conflict of the transfer motor,
- the possibility to simultaneously have 4 pallets in the transfer

module,
- ...

The collision risk of pallets in the transfer module is very important
in this case. We have built the grafcet (Fig. 3) such as:

- the sequence (23, 24, 25) controls the exit of pallets,
- the sequence (6, 7) controls the entry of pallets,
- the step 10 represents a pallet which is running on the main

line.
A collision thus occurs when the following combinatorial
expression is true: 

The grafcet (Fig. 3) includes an error1 that induces a collision
between pallets. The R.S.G. (an excerpt is given Fig. 8) contains
the faulty2 situation {1 10 20 25 31 40}.

To uncover this mistake, the evolutions that end in a faulty situation
have to be discovered, in order to suppress them. These evolutions
are obtained by calculating the following set of transitions:

In our example, to obtain a specification without collision, it is
enough to complete the condition associated to the transition «15»
by «/X9» (Fig. 9).
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For the final grafcet, its R.S.G. contains 238 states and 646
transitions.

In [16], a whole example is given. All properties to verify are fully
expressed.

During our experimentations of different applications, we observed
the frequent use of similar properties. In order to simplify
validation activity, we are currently developing the use of a library
of specific properties. Each of these properties is written in our
grammar. Analysts can use each property by precising parameters
and personalize this library by introducing their own properties
(Fig. 7).

6. CONCLUSION

This paper presents a method to verify and to validate Sequential
Function Charts. Our method is based upon the translation of any
grafcet into its equivalent finite automaton. We can thus prove
numerous safety and liveness properties of the modeled system.
The experimental results show that we control the combinatorial
explosion implied by the parallel and the synchronous nature of
Grafcet. Our present works aim at including temporal aspects of
the models into our approach (delayed or time limited action, time
dependent transition condition, ...) and at improving the
ergonomics of our software.
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