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Geometric study of the beta-integers for a Perron number and mathematical

quasicrystals

par Jean-Louis VERGER-GAUGRY et Jean-Pierre GAZEAU

November 27, 2003

R́́. Nous étudions géométriquement les ensembles de points de R obtenus par la beta-

numération que sont les β-entiers Zβ ⊂ Z[β] où β est un nombre de Perron. Nous montrons

qu’il existe deux schémas de coupe-et-projection canoniques associés à la β-numération, où

les β-entiers se relèvent en certains points du réseau Zm (m = degré de β) , situés autour du

sous-espace propre dominant de la matrice compagnon de β . Lorsque β est en particulier un

nombre de Pisot, nous redonnons une preuve du fait que Zβ est un ensemble de Meyer. Dans les

espaces internes les fenêtres d’acceptation canoniques sont des fractals dont l’une est le fractal

de Rauzy (à quasi-homothétie près). Nous le montrons sur un exemple. Nous montrons que

Zβ ∩ R+ est de type fini sur N, faisons le lien avec la classification de Lagarias des ensembles

de Delaunay et donnons une borne supérieure effective de l’entier q dans la relation : x, y ∈
Zβ =⇒ x + y (respectivement x − y ) ∈ β−qZβ lorsque x + y (respectivement x − y ) a un β-

développement de Rényi fini.

A. We investigate in a geometrical way the point sets of R obtained by the β-numeration

that are the β-integers Zβ ⊂ Z[β] where β is a Perron number. We show that there exist two

canonical cut-and-project schemes associated with the β-numeration, allowing to lift up the β-

integers to some points of the lattice Zm (m = degree of β) lying about the dominant eigenspace

of the companion matrix of β . When β is in particular a Pisot number, this framework gives

another proof of the fact that Zβ is a Meyer set. In the internal spaces, the canonical acceptance

windows are fractals and one of them is the Rauzy fractal (up to quasi-dilation). We show it on an

example. We show that Zβ∩R+ is finitely generated over N and make a link with the classification

of Delone sets proposed by Lagarias. Finally we give an effective upper bound for the integer

q taking place in the relation: x, y ∈ Zβ =⇒ x + y (respectively x − y ) ∈ β−qZβ if x +

y (respectively x − y ) has a finite Rényi β- expansion.

1. Introduction

Gazeau [Gaz], Burdik et al [Bu] have shown how to construct a discrete set Zβ ⊂ Z[β] ⊂ R
which is a Delone set [Mo], called set of β-integers (or beta-integers), when β > 1 is a Pisot

number of degree greater than 2. A beta-integer has by definition no fractional part in its Rényi

β-expansion [Re] [Pa]. As basic feature, this Delone set is self-similar, namely βZβ ⊂ Zβ.

2000 Mathematics Subject classification : 11A63, 11R06, 52C23.
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Since the general notion of β-expansion of real numbers (see section 2 for definitions) was

created by Rényi for any real number β > 1, the set of beta-integers Zβ, defined as the set of real

numbers equal to the integer part of their β-development, is defined without ambiguity in full

generality and is self-similar by construction: βZβ ⊂ Zβ. The main questions we may address

are the following: (Q1) For which β > 1 is Zβ a Delone set ? or equivalently (Q1’) for which

β > 1 is Zβ a uniformly discrete set ? since the sets Zβ of beta-integers are always relatively

dense by construction. Now Delone sets are classified into several types (see the definitions

in the Appendix) so that the following question is also fundamental: (Q2) For which class of

β > 1 is Zβ a Delone set of a given type ?

The uniform discretness property of Zβ is a crucial property which is not obtained for all

real number β, but very few general results are known nowadays. Thurston has shown that it

is the case when β is a Pisot number [Th]. It is conjectured that it is also the case when β is

a Perron number. Apart from the Pisot case, many open questions remain (Bertrand-Matthis

[Be4], Blanchard [Bl]) and are expressed in terms of the β - shift. Schmeling [Sc] has proved

that the class C3 of real numbers β > 1 such that the Renyi-expansion dβ(1) of 1 in base

β contains bounded strings of zeros, but is not eventually periodic, has Hausdorff dimension

1. For all β in this class C3, the β-shift is specified [Bl]. It is obvious that the specification of the

β-shift is equivalent to the fact that Zβ is uniformly discrete. So that the class C3 would contain

all Perron numbers. The idea of exploring relationships between the β-shift and the algebraic

properties of β in number theory is due to A. Bertrand-Matthis [Be3]. In this direction, some

results are known (Akiyama [Ak] [Ak1]). Parry [Pa] has proved that the β-shift is sofic when β is

a Pisot number. Lind [Li] conversely has shown that β is a Perron number if the β-shift is sofic.

In section 2 we will recall some basic facts about the β-numeration and the beta-integers.

In section 3, we will establish the geometrical framework which is attached to the algebraic

construction of the set of the beta-integers when β is a Perron number in general (of degree

m > 2). Namely, by geometric framework, we mean that we will show the existence of two

cut-and-project schemes (see the definitions in the Appendix) embedded in a canonical way

in the Jordan real decomposition of Rm where this decomposition is obtained by the action

of the companion matrix of β, respectively of its adjoint, the second cut-and-project scheme

being the dual of the first one. This will be done without invoking any substitution system on

a finite alphabet [AI] or the theory of Perron-Frobenius [Mi]. These cut-and-project schemes

will consist of an internal space which will be an hyperplane of Rm complementary to a one-

dimensional line on which the set of β-integers will be set up in a natural way, together with

the usual lattice Zm in Rm. The constituting irreducible subspaces of the internal spaces will

appear by construction as asymptotic linear invariants. This will allow us to deduce several

results when β is a Pisot number: a minimal acceptance window in the internal space closely

related to the Rauzy fractal, a geometrical proof that Zβ is a Meyer set, the fact that Zβ is

finitely generated over N. We will make a link on an example with the Rauzy fractal when the

beta-integers arise from substitution systems of Pisot type (for instance Rauzy [Ra], Arnoux and

Ito [AI], Messaoudi [Me] [Me1], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). At this point,

we should outline that the main difference with the substitutive approach is that the matrices

involved may have negative coefficients (compare with the general approach of Akiyama [Ak]
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[Ak1]).

The additive properties of Zβ will be studied in section 4 by means of the canonical cut-

and-project schemes when β is a Pisot number: in A), we shall show that the elements of

Zβ ∩ R+ can be generated over N by elements of Zβ of small norm, in finite number, us-

ing truncated cones whose axis of revolution is the dominant eigenspace of the companion

matrix of β and a Lemma of Lind [Li] on semigroups; in B), we will provide a geometri-

cal interpretation of the maximal preperiod of the β-expansion of some real numbers com-

ing from the addition of two beta-integers, of the finite sets T and T ′ in the relations [Bu]

Z+
β + Z+

β ⊂ Z+
β + T , Z+

β − Z+
β ⊂ Zβ + T ′ and an upper bound of the integer q taking place in

the relation x, y ∈ Z+
β =⇒ x ± y ∈ β−qZβ when x + y and x − y have finite β-expansions.

2. Beta-numeration and beta-integers

Let β ∈ (1, +∞) \ N. We will refer in the following to Rényi [Re], Parry [Pa] and Frougny

[Fro] [Fro1] [Bu]. For all x ∈ R we will denote by bxc, resp. {x} = x − bxc, the usual integer

part of x, resp. its fractional part. Let us denote by T (x) = {βx} the ergodic transformation

sending [0, 1] into itself. For all x ∈ [0, 1] , the iterates T n(x) := T (T n−1(x)), n > 1, with

T 0 := I d by convention, provide the sequence (x−i)i>1 of digits, with x−i := bβT i−1(x)c, in

the finite alphabet A = {0, 1, · · · , bβc}. The element x is then equal to its Rényi β-expansion∑+∞
j=1 x− jβ

− j also denoted by 0.x−1x−2x−3 . . .. The Rényi β-expansion of 1 will be denoted

by dβ(1). The operator T on [0, 1] induces the shift σ : (x−1, x−2, . . .) → (x−2, x−3, . . .) on

the compact set AN (with the usual product topology). The closure of the subset of AN invari-

ant under σ takes the name of β-shift. The knowledge of dβ(1) suffices to exhaust all the

elements in the β-shift (Parry [Pa]). For this let us define the following sequence (ci)i>1 in

AN:

c1c2c3 · · · =







t1t2t3 · · · if the Rényi β-expansion dβ(1) = 0.t1t2 · · · is infinite,
(

t1t2 · · · tr−1(tr − 1)
)ω if dβ(1) is finite and equal to 0.t1t2 · · · tr ,

where ( )ω means that the word within ( ) is indefinitely repeated. Then the sequence (y−i)i>1

in AN is exactly the sequence of digits provided by the iterates of y =
∑+∞

i=1 y−iβ
−i by T n if

and only if the following inequalities are satisfied: (y−n , y−(n+1) , . . .) < (c1, c2, c3, . . .) for all

n > 1 where ” < ” means lexicographical smaller. These inequalities will be called conditions

of Parry. We will now use finite subsets of the β-shift.

D 2.1. — Let Z+
β = {xkβ

k +xk−1β
k−1+· · ·+x1β+x0 | xi ∈ A, k > 0, and (x j , x j−1,

. . . , x1, x0, 0, 0, · · · ) < (c1, c2, · · · ) for all j, 0 6 j 6 k } be the discrete subset of R+ of the real

numbers equal to the integer part of their Rényi β-expansion. The set Zβ = Z+
β∪

(

−Z+
β

)

is called

the set of β- integers.

For all x ∈ R+ , if x =
∑p

i=−∞ xiβ
i with p > 0, is obtained by the greedy algorithm, then

(xi)i6p will satisfy the conditions of Parry. We will denote by int(x) =
∑p

i=0 xiβ
i the integer

part of its Rényi β-expansion, respectively by frac(x) =
∑−1

i=−∞ xiβ
i its fractional part. The

element 1 = β0 belongs to Z+
β.
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Let us now turn to the case where β is a positive real algebraic integer. Then there ex-

ists an irreducible polynomial P(X ) = X m −∑m−1
i=0 ai X i , ai ∈ Z with m = degree(β) such

that P(β) = 0. Then β =
∑m−1

i=0 am−1−iβ
−i . If a j > 0 for all j and (an, an+1, . . .) <

(am−1, am−2, . . . , a0, 0, 0, . . .) for all n 6 m − 2, then the Rényi β-expansion of β would be∑m−1
i=0 am−1−iβ

−i from which we would deduce dβ(1) =
∑m−1

i=0 am−1−iβ
−i−1 as well. But

the coefficients ai do not obey the conditions of Parry in general. More considerations on

the relations between β-expansions and algebraicity can be found in [Be] [Be1] [Be2] [Be3]

[Fro1] [Ak] [Ak1] [Sch]. Bertrand-Matthis [Be] and Schmidt [Sch] have proved that, when β is

a Pisot number, x ∈ Q(β) if and only if the Rényi β-expansion of x is eventually periodic; in

particular the Rényi β-expansion of any Pisot number is eventually periodic.

Let us recall that a Perron number β, resp. a Lind number, resp. a Salem number, will be a

real algebraic integer β > 1 whose conjugates β(i) are of modulus strictly less than β, resp. of

modulus less than β with at least one conjugate of modulus β [La], resp. of modulus less than

1 with at least one conjugate of modulus one. A Pisot number β will be a real algebraic integer

β > 1 for which all the conjugates are in the open unit disc in the complex plane.

3. Canonical cut-and-project schemes over Zβ

Assume that β > 1 is a Perron number of degree m > 2, dominant root of the irreducible

polynomial P(X ) = X m − am−1X m−1 − am−2X m−2 − · · · − a1X − a0, ai ∈ Z, a0 ≠ 0.

All the elements rβk with k > 1, r ∈ {1, 2, . . . , bβc} are obviously in Zβ. We are look-

ing for asymptotic linear invariants associated with them, hence, by linearity, associated with

the powers βk , k > 1, of β, when k tends to infinity. By linearity, they will be also asso-

ciated to the beta-integers. Let us set up the general situation. For all k > 0 , write βk =

zm−1,kβ
m−1 + zm−2,kβ

m−2 + · · · + z1,kβ + z0,k , where all the integers z0,k , z1,k , · · · , zm−1,k be-

long to Z. Denote Zk = t (z0,k z1,k z2,k . . . zm−1,k

)

, B = B(0) = t
(

1 β β2 . . . βm−1
)

,

B( j) = t
(

1 β( j) β( j)2
. . . β( j)m−1

)

, where t means transposition and the elements β( j), j ∈
{1, 2, · · · , m − 1}, are the conjugate roots of β = β(0) in the minimal polynomial of β . Set

Bk =

























βk

β(1)
k

β(2)
k

...

β(m−1)k

























and Q =























0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

a0 a1 · · · am−1























the m×m matrix with coefficients in Z. The transposed matrix of Q is denoted by t Q. It is the

companion matrix of P(X ) (and of β). For all p, k ∈ {0, 1, · · · , m − 1}, we have: z p,k = δp,k

the Kronecker symbol. It is obvious that, for all k > 0, we have Zk+1 = t Q Zk . Denote

C =

















1 β β2 · · · βm−1

1 β(1) β(1)
2 · · · β(1)

m−1

...
...

...
...

1 β(m−1) β(m−1)2 · · · β(m−1)m−1
















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the Vandermonde matrix of order m. We obtain C Zk = Bk by the real and complex embed-

dings of Q[β] since all the coefficients z j,k , j ∈ {0, 1, · · · , m − 1}, are integers and remain

invariant under the conjugation operation.

T 3.1. — If V1 denotes the vector defined by the first column of C−1, then the limit

limk→+∞ ‖Zk‖−1Zk exists and is equal to the unit vector u := ‖V1‖−1V1. Moreover, all the

components of V1 are real and belong to the Z - module
Z[β]

βm−1P ′(β)
.

Proof. — Since P(X ) is minimal, all the roots of P(X ) are distinct. Hence, the determinant

of C is
∏

i< j (β
(i) − β( j)) and is not zero. Let C−1 = (ξi j). Then C · C−1 = I , that is

ξ1i +ξ2iβ
( j)+ξ3iβ

( j)2
+· · ·+ξmiβ

( j)m−1
= δi, j+1, i = 1, 2, . . . , m, j = 0, 1, . . . , m−1 (1)

On the other hand, the Lagrange interpolating polynomials associated with {β, β(1), β(2), . . . ,

β(m−1)} are given by

Ls(X ) =

m−1∏

j=0

j≠s

X − β( j)

β(s) − β( j)
s = 0, 1, . . . , m − 1.

For m arbitrary complex numbers y1, y2, · · · , ym , let us denote by σr = σr(y1, y2, · · · , ym) =∑
16i16i26···6ir6m

∏r
j=1 yi j

the r-th elementary symmetric function of the m numbers y1, y2,

· · · , ym . The degree of Ls(X ) is m − 1 and Ls(X ) can be expressed as

Ls(X ) =

m−1∑

r=0

(−1)r
σ
(s)
r X m−r−1

/

m−1∏

r=0
r≠s

(β
(s) − β(r))

where σ (s)r = σr(β, β(1), · · · , β(s−1), β(s+1), · · · , β(m−1)) denotes the r-th elementary symmet-

ric function of the m − 1 numbers β, β(1), · · · , β(s−1), β(s+1), · · · , β(m−1) where β(s) is missing.

Since these polynomials satisfy Ls(β
(k)) = δs,k for all s, k = 0, 1, · · · , m − 1, comparing with

(1), we obtain, by identification of the coefficients

ξ j i =
(−1)m− jσ

(i−1)
m− j

m−1∏

r=0
r≠i−1

(β
(i−1) − β(r))

=
(−1)m− jσ

(i−1)
m− j

P ′(β(i−1))

for all i, j = 1, 2, · · · , m. We have: Ls(X ) =
∑m

j=1 ξ j,s+1X j−1 , s = 0, 1, · · · , m − 1. Now

C · Zk = Bk for all k > 0, hence Zk = C−1 · Bk . Each component zi,k , 0 6 i 6

m − 1, k > 0 of Zk can be expressed as zi,k =
∑m

j=1 ξi+1, jβ
( j−1)k

. Since β is a Perron

number, we have |β( j)| < β for all j, 1 6 j 6 m − 1. Hence, for all j, 1 6 j 6 m − 1,

limk→+∞
(

β( j)

β

)k

= 0, and therefore limk→+∞
zi,k

βk = ξi+1,1 , i = 0, 1, · · · , m − 1. Moreover,

lim
k→+∞







m−1∑

i=0

|zi,k |2






1/2

βk
= lim

k→+∞
‖Zk‖
βk

=

√

√

√

√

√

√

m−1∑

i=0

|ξi+1,1|2 = ‖V1‖
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hence the result. The fact that all the components of V1 are real and belong to the Z - module

Z[β]/(βm−1P ′(β)) comes from the following more precise Proposition.

P 3.2. — The components (ξ j,1) j=1,...,m of V1 are given by the following explicit

functions of the coefficients ai of P(X ): ξ j,1 =
a j−1β

j−1+a j−2β
j−2+···+a1β+a0

β j P′(β)
. In particular,

ξm,1 = 1
P′(β)

.

Proof. — We have L0(X ) =
∑m

j=1 ξ j,1X j−1 and P(X ) =
∏m−1

j=0 (X −β( j)) = L0(X )(X −
β)P ′(β). All the coefficients of L0(X ) satisfy the following relations: −βP ′(β)ξ1,1 = −a0,

−βP ′(β)ξ2,1+ξ1,1P ′(β) = −a1, −βP ′(β)ξ3,1+ξ2,1P ′(β) = −a2, · · · , −βP ′(β)ξm,1+ξm−1,1P ′(β) =

−am−1, ξm,1P ′(β) = 1. Hence the result recursively from ξ1,1 noting that P ′(β) ∈ R− {0}.

T 3.3. — Let uB := B/‖B‖. Then: (i) u · uB = ‖B‖−1‖V1‖−1 > 0, (ii) the limit

limk→+∞
‖Zk+1‖
‖Zk‖ exists and is equal to β , (iii) u is an eigenvector of t Q of eigenvalue β and

the eigenspace of Rm associated with the eigenvalue β of t Q is Ru, (iv) uB is an eigenvector

of the adjoint matrix (t Q)∗ = Q associated with the eigenvalue β and for all x ∈ Cm:

limk→+∞ β−k (t Q)k(x) = (x · B)V1.

Proof. — (i) and (ii): From the relation C · C−1 = I d we deduce the equality V1 · B = 1.

Hence u · B = ‖V1‖−1 > 0 . Then, for all k > 0, t Zk · B = βk = ‖Zk‖t (
Zk

‖Zk‖ − u + u) · B >

0 which tends to infinity when k tends to + ∞. Since u − Zk/‖Zk‖ tends to zero when

k goes to infinity, ‖Zk‖ behaves at infinity like βk/ (u · B), hence the limit; (iii): for all

k > 0, t Q(u) = t Q(u − Zk
‖Zk‖ +

Zk
‖Zk‖) = t Q(u − Zk

‖Zk‖) +
‖Zk+1‖
‖Zk‖

Zk+1
‖Zk+1‖ . The first term is

converging to zero and the second one to βu when k goes to infinity, from Theorem 3.1. Hence,

the result since all the roots of P(X ) are distinct and the (real) eigenspace associated with

β is 1 - dimensional; (iv): it is clear that B is an eigenvector of the adjoint matrix Q . If

h0, h1, · · · , hm−1 ∈ C , x =
∑m−1

j=0 h j Z j , where Z0, Z1, · · · , Zm−1 is the canonical basis of

Cm , we have: β−k (t Q)k(x) =
∑m−1

j=0 h jβ
−k Zk+ j =

∑m−1
j=0 h jβ

j
(

Zk+ j

βk+ j

)

, but, from the proof

of Theorem 3.1, limk→+∞
Zk+ j

βk+ j = V1 and
∑m−1

j=0 h jβ
j = x · B . We deduce the claim.

Let us denote by t QC the automorphism of Cm which is the complexification operator of
t Q . Its adjoint QC obviously admits {B, B(1), B(2), · · · , B(m−1)} as a basis of eigenvectors of

respective eigenvalues β, β(1), β(2), · · · , β(m−1) . Let us specify their respective actions on Rm.

Let s > 1 , resp. t , be the number of real, resp. complex (up to conjugation), embeddings

of the number field Q(β) . We have m = s + 2t . Assume that the conjugates of β are

β, β(1), · · · , β(s−1), β(s), β(s+1), · · · , β(m−2) = β(s+2t−2), β(m−1) = β(s+2t−1) where β(q) is real if

q 6 s − 1 and β(s+2 j) = β(s+2 j+1) = |β(s+2 j)|e iθ j , j = 0, 1, · · · , t − 1, is complex with non-

zero imaginary part. Let us recall that V1 denotes the vector defined by the first column of

C−1 (Theorem 3.1).

C 3.4. — (i) A basis of eigenvectors of t QC is given by the m column vectors

{Wk}k=1,2,··· ,m of respective components ξ j,k =
a j−1β

(k−1) j−1
+a j−2β

(k−1) j−2
+···+a1β

(k−1)+a0

β(k−1) j
P′(β(k−1))

with

j = 1, 2, · · · , m; in particular, ξm,k = 1
P′(β(k−1))

; (ii) a real Jordan form for t Q is given

5



by the diagonal matrix Diag(β, β(1), · · · , β(s−1), D0, D1, · · · , Dt−1) in the basis of eigenvectors

{V j} j=1,··· ,m with V2 = W2, · · · , Vs = Ws , Vs+2 j+1 = Im(Ws+2 j+1), Vs+2 j+2 = Re(Ws+2 j+1), j =

0, 1, · · · , t − 1 and where the 2× 2 real Jordan blocks D j are





|β(s+2 j)| cos θ j −|β(s+2 j)| sin θ j

|β(s+2 j)| sin θ j |β(s+2 j)| cos θ j



 ;

(iii) a real Jordan form of the adjoint operator (t Q)∗ = Q is given by the same diagonal matrix

Diag(β, β(1), · · · , β(s−1), D0, D1, · · · , Dt−1) in the basis of eigenvectors {X j} j=1,··· ,m with X1 =

B, X2 = B(1), X3 = B(2), · · · , Xs = B(s−1), Xs+2 j+1 = Im(B(s+2 j)), Xs+2 j+2 = Re(B(s+2 j)), j =

0, 1, · · · , t − 1. The t planes RXs+2 j+1 + RXs+2 j +2, j = 0, 1, . . . , t − 1 are all orthogonal to V1,

and thus also to u.

Proof. — (i): We apply, componentwise in the equation (t Q)V1 = βV1, the Q - automor-

phisms of C which are the real and complex embeddings of the number field Q(β). Since
t Q has rational entries and V1 has its components in the Z-module β1−m(P ′(β))−1Z[β], we

deduce the claim: (t Q)W j = β( j−1)W j with j = 1, 2, · · · , m and where W1 = V1; (ii): the restric-

tions of t QC to the (real) t Q - invariant subspaces of Rm have no nilpotent parts since all the

roots of P(X ) are distinct. Hence, a real Jordan form of t Q is the one proposed with Jordan

blocks which are 2×2 on the diagonal [HS]. (iii): in a similar way the equation QB = βB implies

QB( j) = β( j)B( j) with j = 0, 1, · · · , m − 1. Obviously QC and t QC have the same eigenvalues

and Q and t Q the same real 2 × 2 Jordan blocks on the diagonal. The corresponding basis

of eigenvectors is given by the vectors Xi [HS]. The orthogonality between V1 and the vector

Xs+2 j+1, resp. Xs+2 j+2, j = 0, 1, . . . , t − 1, arises from the relation C · C−1 = I d . We deduce the

claim for the planes.

The linear invariants associated with the powers of β are the invariant subspaces given

by Corollary 3.4. Let us turn to the beta-integers. Beta-integers are particular Z-linear com-

binations of powers of β. We will show how to construct the set Zβ using the above linear

invariants, namely, the set Zβ will appear in a natural way on the line RuB as image of a point

set close to the expanding line Ru.

R . — The conditions of Parry, used here in the context of matrices t Q without any

condition on the signs of the entries, give the same results as those obtained with the Perron-

Frobenius theory (Minc [Mi]), when this one is applicable, that is when t Q has non-negative

entries: first, the dimensionality one for the dominant eigenspace of t Q ; second, the equality

limk→+∞ β−k (t Q)k(x) = (x · B)V1, for x ∈ Cm, in Theorem 3.3 (compare with Ruelle [Ru]

p136 when t Q has non-negative entries), and its consequences.

T 3.5. — Let πB be the orthogonal projection mapping of Rm onto RB and define

L = {xk Zk + xk−1Zk−1 + · · · + x1Z1 + x0Z0 | xi ∈ A, k > 0 , and (x j , x j−1, · · · , x1, x0, 0, 0, · · · )
< (c1, c2, · · · ) for all j, 0 6 j 6 k } the t Q-invariant subset of Zm. Then: (i) the mapping∑k

j=0 x jβ
j → ∑k

j=0 x j Z j : Z+
β → L (with the same coefficients x j ) is a bijection, (ii) the

mapping πB|
Zm

is one-to-one onto its image Z[β]‖B‖−1uB : for any k > 0, a0, a1, · · · , ak ∈ Z,

we have πB

(∑k
i=0 ai Zi

)

=
(∑k

i=0 aiβ
i
)

‖B‖−1uB and conversely, any polynomial in β on the
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line generated by ‖B‖−1uB can be uniquely lifted up to a Z -linear combination of the vectors

Zi with the same coefficients; in particular, πB(L ) = Z+
β‖B‖−1uB .

Proof. — (i): this mapping Z+
β → L is obviously surjective. Let us show that it is injective.

Assume there exists a non-zero element
∑k

j=0 x jβ
j in Z+

β such that
∑k

j=0 x j Z j = 0 . Since

t
(∑k

j=0 x j Z j

)

B = 0 =
∑k

j=0 x jβ
j , this would mean that zero could be represented by a

non-zero element. This is impossible by construction; (ii): for all k > 0 , we have πB(Zk) =

βk‖B‖−1uB , hence the result by linearity. The injectivity of πB|
Zm

comes from the assertion (i).

P 3.6. — Let uB,i = ‖Xi‖−1Xi if i = 1, 2, · · · , s, uB,i = (‖Xi‖2 + ‖Xi+1‖2)1/2(

Re(‖B(i−1)‖−2)Xi + I m(‖B(i−1)‖−2)Xi+1) if i = s + 1, · · · , m with i − (s + 1) even, and uB,i =

(‖Xi−1‖2 +‖Xi‖2)1/2(−I m(‖B(i−1)‖−2)Xi +Re(‖B(i−1)‖−2)Xi+1) if i = s+1, · · · , m with i−(s+1)

odd. Denote by πB,i : Rm → RuB,i , i = 1, 2, · · · , s the orthogonal projection mappings to the

1-dimensional eigenspaces of Q , resp. πB,i : Rm → RuB,i +RuB,i+1, i = s +1, · · · , m with i−(s +

1) even, the orthogonal projection mappings to the irreducible 2-dimensional eigenspaces of Q .

Then, for all k > 0, a0, · · · , ak ∈ Z, we have πB,i(
∑k

j=0 a j Z j ) =
(∑k

j=0 a jβ
(i−1) j

)

‖Xi‖−1uB,i ,

i = 1, 2, · · · , s and, for all i = s + 1, · · · , m with i − (s + 1) even,πB,i(
∑k

j=0 a j Z j ) =

1
(∑m−1

k=0 |β(i−1)|2k
)1/2





Re(
∑k

j=0 a jβ
(i−1) j

) I m(
∑k

j=0 a jβ
(i−1) j

)

−I m(
∑k

j=0 a jβ
(i−1) j

) Re(
∑k

j=0 a jβ
(i−1) j

)









uB,i

uB,i+1



 .

Proof. — It suffices to apply the real and complex embeddings of Q(β) to the relation

πB(
∑k

j=0 a j Z j ) = ((
∑k

j=0 a j Z j) · B)‖B‖−2B =
(∑k

j=0 a jβ
j
)

‖B‖−2B: for complex embed-

dings, ‖Xi‖2 + ‖Xi+1‖2 =
∑m−1

k=0 |β(i−1)|2k and ‖B(i−1)‖−2B(i−1) means:




Re(‖B(i−1)‖−2) I m(‖B(i−1)‖−2)

−I m(‖B(i−1)‖−2) Re(‖B(i−1)‖−2)









Xi

Xi+1



 =
1

(‖Xi‖2 + ‖Xi+1‖2)1/2





uB,i

uB,i+1



 .

The explicit expressions given above will allow us below to compare the ”geometric” Rauzy

fractals deduced from the present study and the ”algebraic” Rauzy fractal. Before stating the

main theorem about the existence of canonical cut-and-projection schemes associated with

the beta-integers when β is a general (non-integer) Perron number, let us first consider the

case of equality u = uB and show that it is rarely occuring.

P 3.7. — The equality u = uB holds if and only if β is a Pisot number, root > 1

of the polynomial X 2 − aX − 1 , with a > 1 .

Proof. — The condition u = uB is equivalent to V1 colinear to B , that is ξ j,1β
− j+1 =

a non-zero constant, for all j = 1, 2, · · · , m. The condition is sufficient: if β is such a Pisot

number, such equalities hold. Conversely, if such equalities hold, this implies in particular that

ξ1,1β
−1+1 = ξm,1β

−m+1. Thus we obtain a0β
m−2 = 1 , that is necessarily m = 2 and a0 = 1 .

The Perron number β is then a Pisot number of negative conjugate −β−1 which satisfies

β2 − a1β− 1 = 0 , where a1 = β− β−1 is an integer greater than or equal to 1. This is the only

possibility of quadratic Pisot number of norm −1 ([Fro1], Lemma 3).
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T 3.8. — Denote by E the line RuB in Rm. There exist two canonical cut-and-

project schemes E
p1←− (E × D ' Rm, Zm)

p2−→ D associated with Zβ ⊂ E (see the definitions

in the Appendix). They are given by, in case (i): the orthogonal projection mapping πB as p1,

⊕F F as internal space D, p2 = ⊕F πF , where the sums are over all irreducible t Q-invariant

subspaces F of Rm except Ru and where πF is the projection mapping to F along its t Q-

invariant complementary space, in case (ii): as p1 the orthogonal projection mapping πB ,

⊕F F as internal space D where the sum is over all irreducible Q-invariant subspaces F of

Rm except E , as p2 the sum ⊕i≠1 πB,i of all the orthogonal projection mappings except πB,1 =

πB ; in the case (ii), the internal space D is orthogonal to the line Ru.

Proof. — In both cases, the fact that p2(Z
m) is dense in D arises from Kronecker’s the-

orem (Appendix B in [Mey]): since β is an algebraic integer of degree m, the m real num-

bers 1 = β0, β1, · · · , βm−1 are linearly independent over Q . Hence, for all ε > 0 and all

m-tuple of real numbers x0, x1, · · · , xm−1 such that the vector (say) x = t (x0 x1 . . . xm−1)

belongs to D , there exist a real number w and m rational integers u0, u1, · · · , um−1 such

that | x j − β j w − u j | 6 ε/
√

m for all j = 0, 1, . . . , m − 1. In other terms, there exists a

point u = t (u0, u1, · · · , um−1) ∈ Zm such that its image p1(u) is wB ∈ RuB and its image

p2(u) is close to x up to ε. Hence the result. As for the restriction of the projection mapping

p1 = πB = πB,1 : Rm → E to the lattice Zm, it is injective after Theorem 3.5. The orthogonality

between D and u comes directly from Corollary 3.4.

The mapping p1(Z
m) → D : x → x∗ = p2 ◦ (p1|

Zm
)−1(x) will be denoted by the same

symbol (.)∗ in the cases (i) and (ii), the context making the difference.

P 3.9. — Let β be a Pisot number, root > 1 of the polynomial X 2 − aX − 1 ,

with a > 1. Put ca =
(1+aβ)bβc√
2+aβ(β−1)

. Then the two canonical cut-and-project schemes given by

(i) and (ii) in Theorem 3.8 are identical and the inclusion of Zβ‖B‖−1uB in the following model

set holds: Zβ‖B‖−1uB = πB(L ∪ (−L )) ⊂ {v ∈ πB(Z
2) | v∗ ∈ [−ca uB,2, +ca uB,2]} where

uB,2 = t (−β 1)‖B‖−1.

Proof. — The two cut-and-project schemes are identical: by Proposition 3.7 the equality

u = uB holds and the line RuB,2, which is obviously orthogonal to the line RuB , is t Q-

invariant. Now, if g denotes an arbitrary element of L , it can be written g = xk(
t Q)k Z0 +

xk−1(
t Q)k−1Z0 + · · · + x1(

t Q)Z0 + x0Z0 for a certain integer k > 0 with xi ∈ A and

(x j , x j−1, · · · , x1, x0, 0, 0, · · · ) < (c1, c2, · · · ) for all j, 0 6 j 6 k . We have Z0 = su +

s⊥uB,2 with s = ‖B‖−1 and s⊥ = −β‖B‖−1 . Then g =
∑k

j=0 x j (
t Q) j Z0 =

∑k
j=0 x j

(

sβ j u + s⊥(−1) jβ− j uB,2

)

. Thus p2(g) = s⊥
∑k

j=0 x j (−1) jβ− j uB,2 and ‖p1(g)
∗‖ =

‖p2(g)‖ 6 |s⊥|bβc∑+∞
j=0 β

− j = |s⊥|bβc 1
1−β−1 which is equal to ca since ‖B‖ =

√
2 + aβ .

This constant is independent of k . Hence we have

p1(g) ⊂ {v ∈ πB(Z
2) | v∗ ∈ [−ca uB,2, +ca uB,2]} and the claim.

Let C = { ∑m−1
j=0 α j Z j | α j ∈ [0; 1] for all j = 0, 1, · · · , m − 1 } be the m-cube at the

origin. For all irreducible t Q- invariant subspace F ofRm, put δF = maxx∈C ‖πF (x)‖, λF the

absolute value of the eigenvalue of t Q on F and cF = bβc δF
1−λm

F
. Denote by ΩF the closed
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interval centred at 0 in F of length 2cF if dim F = 1, resp. the closed disc centred at 0 in F of

radius cF if dim F = 2.

T 3.10. — Let β be a Pisot number of degree m > 2 and Ω = ⊕FΩF where the

sum is over all irreducible t Q- invariant subspace F of Rm except Ru. Then the inclusion of

Zβ‖B‖−1uB in the following model set defined by Ω holds: Zβ‖B‖−1uB = p1(L ∪ (−L )) ⊂
{v ∈ p1(Z

m) | v∗ ∈ Ω } in the cut-and-project scheme given by the case (i) in Theorem 3.8.

Proof. — If g =
∑k

j=0 x j Z j ∈ L with k = dm − 1 , and d > 1 an integer, then

g =

d−1∑

q=0

m−1∑

l =0

xqm+l (
t Q)qmZl =

d−1∑

q=0

(
t Q)qm







m−1∑

l =0

xqm+l Zl





 .

Hence p1(g)
∗ = p2(g) = ⊕FπF (g) =

∑

F

d−1∑

q=0





(
t Q|F )

qm
πF







m−1∑

l =0

xqm+l Zl











 , with:

‖πF (g)‖ 6

d−1∑

q=0

bβcλqm
F ‖πF







m−1∑

l =0

Zl





 ‖ 6 bβc δF

+∞∑

q=0

λ
qm
F = bβc δF

1 − λm
F

= cF .

This constant is independent of d , hence of k = dm − 1. It is easy to check that it is an upper

bound for ‖p2(g)‖ if k 6≡ −1(mod m) and also for all g ∈ −L . We deduce the claim.

C 3.11. — If β is a Pisot number of degree m > 2 , then Zβ is a Meyer set.

Proof. — If β is a Pisot number, the set Zβ, viewed as the set of vertices of an aperiodic

tiling, is obtained by concatenation of prototiles on the line, which are in finite number by

Thurston [Th]. And it is relatively dense by construction. Now, by Theorem 3.10 it is included

in a model set. This proves the claim (see the Appendix).

In both cases of cut-and-project scheme, as given by Theorem 3.8 where the duality be-

tween the matrices Q and t Q clearly appears, the internal space represents the contracting

hyperplane, whereas the line Ru is the expanding direction, when β is a Pisot number. The

duality between both cut-and-project schemes is connected to the substitutive approach by

the following (Arnoux and Ito [AI], Chap. 7 in Pytheas Fogg [PF]): the abelianized Z ′
k of the

iterates of the substitution satisfy Z ′
k+1 = QZ ′

k , and gather now about the line RB. If one takes

the projection on RB of the new set L
′ (defined similarly as L ) along the other eigenspaces,

one recovers Zβ (up to a scalar factor). A striking feature of the internal spaces is that the nu-

meration in base β( j) (conjugates of β) appears as canonical ingredient to control the distance

between a point of L and its orthogonal projection to the expanding line Ru, in particular at

infinity.

D 3.12. — Let β be a Pisot number of degree m > 2 . The closure
(

Z+
β
‖B‖−1uB

)∗
of

the set p2(L ) is called the canonical acceptance window associated with the set of beta-integers

Z+
β in both cases (case (i) or (ii) in Theorem 3.8) of cut-and-project scheme: in the case (i) it will

be denoted by Ri and in the case (ii) by R .
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The notations R and Ri (Ri ⊂ Ω by Theorem 3.10) with an ” R ” like Rauzy are used

to recall the close similarity between these sets and the Rauzy fractal (Rauzy [Ra], Arnoux and

Ito [AI], Messaoudi [Me], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). The fact is that the

set R is exactly the Rauzy fractal up to the multiplication by a non-zero scalar factor on each

irreducible Q-invariant subspace (by definition we will speak of quasi-dilation). Let us show it

on an example.

”Tribonacci” case [Me]: let us consider the irreducible polynomial P(X ) = X 3−X 2−X −1.

Its dominant root is denoted by β, and α and α are the two other complex conjugates roots

of P(X ). In this case, the Rauzy fractal is ”algebraically” defined by E := {∑∞
i=3 εiα

i | εi ∈
{0, 1} and εiεi+1εi+2 = 0 for all integer i > 3}. The condition imposed on the sequence (εi)i>3 is

exactly that given by the conditions of Parry. Indeed ([Fro1] and section 2), dβ(1) = 0.111 and

the lexicographical maximal sequence is c1c2c3 · · · = (110)ω. Now (Proposition 3.6) B(1) =
t (1αα2) and ‖X2‖2 + ‖X3‖2 = 1 +αα+α2α2 = β. We deduce that R = β−1/2

E = πB,2(L ) with

the following (metric) identification of C : φ(C) = RuB,2 + RuB,3 where φ is the isometry

which sends the vector





1

0



, resp.





0

1



, to





uB,2

uB,3



, resp. to





uB,3

−uB,2



.

P 3.13. — The canonical acceptance window R (relative to the case (ii) of cut-

and-project scheme in Theorem 3.8) is compact and connected. Its interior int (R ) is simply

connected, contains the origin. The set R is such that: (i) int (R ) = R ; (ii) it induces a

tiling of the internal space D modulo the lattice φ(Z + Zα): D =
⋃

z∈φ(Z+Zα)(R + z); (iii)

(R + z) ∩ int (R + z′) = ∅ for all z, z′ ∈ φ(Z + Zα), z ≠ z′.

Proof. — Since R = β−1/2
E , we deduce the properties of R from those of E already

established in Rauzy [Ra], Messaoudi [Me] and [Me1].

P 3.14. — The boundary of R is a fractal Jordan curve. A point z belongs to the

boundary of R if and only if it admits at least 2 distinct Rényi α-expansions. A point belonging

to the boundary of R admits 2 or 3 distinct Rényi α-expansions, never more.

Proof. — The properties of the boundary of E are given in Ito and Kimura [IK] and Mes-

saoudi [Me1]). Hence the claim.

The properties of Ri follow from the equality: p2(R ) = Ri , where p2 refers to the case

(i) of cut-and-project scheme in Theorem 3.8, and from Proposition 3.13 and 3.14: in partic-

ular, it has also a fractal boundary. We will speak of ”geometrical” Rauzy fractals for R and

Ri and of ”algebraic” Rauzy fractal for E . They are similar objects as far as they concentrate

all the information about the beta-integers and the completions of their real and complex em-

beddings (Rauzy [Ra]). The respective canonical acceptance windows associated with Zβ are

R ∪ (−R ) and Ri ∪ (−Ri) in the two cut-and-project schemes.

4. Additive properties of Zβ

In this section, β will be a Pisot number of degree m > 2.
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A) Cones, generators and semi-groups.– We will show that any element of L is generated

by a finite number of elements of L of small norm, over N. By projection to E by πB ,

the ambiant 1-dimensional space of the beta-integers (Theorem 3.8), this will imply the same

property for Zβ. This finiteness property, stated in Corollary 4.6, constitutes a refinement of

Theorem 4.16 (i) (Lagarias) for the Meyer sets Zβ.

First let us fix the notations and simplify them somehow. Let π : Rm → Ru be the

projection mapping along its t Q-invariant complementary space (instead of denoting it by

πRu), and p2 the projection mapping of the cut-and-project scheme (i) in Theorem 3.8. Let

π‖ : Rm → Ru be the orthogonal projection mapping and π⊥ = I d − π‖ (π⊥ is the

mapping ⊕i≠1πb,i in the case (ii) of cut-and-project scheme in Theorem 3.8). The basic in-

gredient will be the construction of semi-groups of finite type associated with cones whose

axis of revolution is the expanding line Ru, following an idea of Lind [Li] in another context.

Truncating them in a suitable way at a certain distance of the origin will be the key for finding

generators of L over N. In the first Lemma we will consider the possible angular openings

of these cones around the expanding line Ru for catching the points of L . For θ > 0 , de-

fine the cone Kθ := {x ∈ Rm | θ‖p2(x)‖ 6 ‖π(x)‖, 0 6 π(x) · u }. For r, w > 0 , define

Kθ(r) := {x ∈ Kθ | ‖π(x)‖ 6 r }, Kθ(r, w) := {x ∈ Kθ | r 6 ‖π(x)‖ 6 w }. If A is an

arbitrary subset of Rm , denote by sg(A ) := {∑finite mi xi | mi ∈ N, xi ∈ A } the semigroup

generated by A . Let ρ be the covering radius of the subset L ∪ (−L ) with respect to the

band Ri × Ru: ρ is the smallest positive real number such that for any z ∈ Rm such that

p2(z) ∈ Ri the closed ball B(z, ρ) contains at least one element of L ∪ (−L ). A lower

bound of ρ is given by the covering radius
√

m/2 of the lattice Zm. Referring Rm to the basis

{B, V2, V3, · · · , Vs+2t } and using Corollary 3.4 and Theorem 3.10 we easily deduce the following

upper bound of ρ: 1
2
‖B‖−1 +

∑
F cF , where the sum

∑
F means there and in the following ev-

erywhere it will be used ”the sum over all irreducible t Q-invariant subspaces F of Rm except

Ru”. The notation diam(·) will be put for the diameter of the set (·) in the following.

P 4.1. — (i) For all θ > 0 , there exists an integer j0 = j0(θ) > 0 such that

Z j ∈ Kθ for all j > j0; (ii) if t Q is nonnegative, and min{ξ j,1 | j = 1, 2, · · · , m } >
2‖V1‖(diam(Ri)) , then the following equality j0(θ) = 0 holds for all 0 < θ < θmin, where

θmin := −2 + (diam(Ri))
−1‖V1‖−1min{ξ j,1 | j = 1, 2, · · · , m }.

Proof. — (i) Let θ > 0 . We have just to prove that π(Z j) · u tends to +∞ and not to

−∞ when j goes to +∞ . Let j > 0. Write Z j = π(Z j ) + p2(Z j) = π‖(Z j ) + π⊥(Z j); hence

‖π(Z j)−π‖(Z j ) ‖ = ‖π⊥(Z j )− p2(Z j ) ‖ 6 ‖π⊥(Z j ) ‖+‖ p2(Z j ) ‖ = ‖π⊥(Z j −π(Z j )) ‖+

‖ p2(Z j ) ‖ 6 2‖ p2(Z j ) ‖ 6 2diam(Ri). On the other hand ‖πB(π
‖(Z j ))−πB(Z j ) ‖ = ‖ (Z j ·

u)(uB ·u)uB−‖B‖−1β j uB ‖ = | (Z j ·u)(uB ·u)−‖B‖−1β j | = ‖πB(π
⊥(Z j )) ‖ 6 ‖π⊥(Z j ) ‖ 6

diam(R ). Hence, since uB · u > 0 (Theorem 3.3), | Z j · u − (uB · u)−1‖B‖−1β j | 6 (uB ·
u)−1diam(R ). Consequently ‖π(Z j)−(uB ·u)−1‖B‖−1β j u ‖ = ‖π(Z j )−π‖(Z j)+π‖(Z j)−
(uB ·u)−1‖B‖−1β j u ‖6 ‖π(Z j )−π‖(Z j ) ‖+‖π‖(Z j )−(uB ·u)−1‖B‖−1β j u ‖6 2diam(Ri)+

(uB · u)−1)diam(R ). The quantity π(Z j ) · u tends to +∞ as (uB · u)−1 ‖B‖−1β j when

j → +∞ . Then there exists j0 such that Z j ·u > 2diam(Ri)+((uB ·u)−1 +θ)diam(Ri), for all

j > j0. As a consequenceπ(Z j) ·u > Z j ·u−2diam(Ri) > ((uB ·u)−1 +θ)diam(Ri) > 0 for
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all j > j0. We claim that Z j ∈ Kθ for all j > j0 . Indeed, since ‖p2(Z j)‖ 6 diam(Ri) ,

the inequalities hold: θ‖p2(Z j )‖ 6 (θ + (uB · u)−1)‖p2(Z j)‖ 6 (θ + (uB · u)−1)diam(Ri) 6

π(Z j ) · u = ‖π(Z j )‖ for all j > j0.

(ii) If t Q is nonnegative the coefficients ai in P(X ) are nonnegative with a0 ≠ 0 and at

least one of the coefficients ak , k > 1, is non-zero since β is assumed to be a Pisot number

and not a Salem number. Hence (Proposition 3.2), since P ′(β) > 0, we have ‖V1‖−1ξ1,1 =

‖π‖(Z0)‖ = Z0 · u =
a0

βP′(β)
> 0 and ‖V1‖−1ξ j+1,1 = ‖π‖(Z j )‖ = Z j · u, for all j = 1, 2, · · ·m −

1 with ‖V1‖−1min{ξ j,1 | j = 1, 2, · · ·m−1} >
a0

βmP′(β)
> 0. Because {Z0, Z1, · · · , Zm−1} is the

canonical basis of Rm , any Z j , j > m , can be written as a combination of the elements of this

basis with positive coefficients. Hence, Z j · u > ‖V1‖−1min{ ξl ,1 | l = 1, 2, · · · , m − 1 } for all

j > 0. But the relation Z j = π(Z j )+ p2(Z j ) = π‖(Z j )+π⊥(Z j ) implies that π(Z j )−π‖(Z j ) =

π⊥(Z j ) − p2(Z j). Hence, |π(Z j ) · u − Z j · u| 6 ‖π⊥(Z j )‖ + ‖p2(Z j)‖ 6 2‖p2(Z j)‖ 6

2(diam(Ri)) for all j > 0. Therefore π(Z j) · u > ‖V1‖−1min{ ξl ,1 | l = 1, 2, · · · , m − 1 } −
2diam(Ri) which is > 0 by assumption for all j > 0. Hence, by definition of θmin ,π(Z j)·u =

‖π(Z j )‖ > θmin(diam(Ri)) > θmin‖p2(Z j)‖ > θ‖p2(Z j )‖ for all j > 0 and 0 < θ 6 θmin.

We deduce that Z j ∈ Kθ for all j > 0 and 0 < θ 6 θmin. Let us observe that the conditions

of the present assertion are generally not fulfilled.

We now turn to the question of generating the elements of L by a finite number of them

over N. The idea we will follow is simple: let us consider the set of the semi-groups generated

by a finite number of (arbitrary) elements of L ∩ Kθ for all θ > 0; in this set, we will show

the existence of semi-groups (θ > 0 fixed) containing K2θ ∩ L , that is containing L except a

finite number of elements of L close to the origin. Then we will minimize this finite number

of excluded elements. For this we will consider the maximal possible values of θ. In final this

will provide a suitable value of θ and a control of the norms of the generating elements of the

semi-group which will contain L .

L 4.2. — (Lind [Li]) Let θ > 0 . If δ = (2θ + 2)−1 and x ∈ K2θ with ‖π(x)‖ =

π(x) · u > 4, then [x − Kθ(1, 3)] ∩ K2θ contains a ball of radius δ.

Proof. — [Li] Take y = 2u + 3(π(x) · u)−1 p2(x) . We will show that the ball centred at

x − y and of radius δ satisfies our claim. Suppose ‖z‖ < δ . Then x − y + z ∈ K2θ . Indeed,

2θ ‖p2(x − y + z)‖ 6 2θ
[(

1− 3(π(x) · u)−1
)

‖p2(x)‖ + δ
]

6
[

1− 3(π(x) · u)−1
]

(π(x) · u) + 2θ(2θ + 2)−1 = (π(x) · u)− 2− 2(2θ + 2)−1

but p2(y) = 2 . We deduce 2θ ‖p2(x − y + z)‖ 6 π(x − y + z) · u. Let us show that y − z ∈ Kθ.

We have 2θ‖p2(y)‖ = 6θ(π(x) · u)−1‖p2(x)‖ 6 3(π(x) · u)−1(π(x) · u) = 3. Therefore

θ‖p2(y − z)‖ 6 θ(‖p2(y)‖ + δ) 6 3
2

+ θ(2θ + 2)−1 = 2− (2θ + 2)−1 6 π(y − z) · u. Now, since

δ < 1 , we have the inequalities 1 6 π(y − z) · u 6 3, establishing the result.

T 4.3. — Let θ > 0 . If r is such that r > ρ(2θ + 2), then K2θ∩L ⊂ sg(Kθ(r)∩L ).

Proof. — Lemma 4.2 implies the following assertion: if x ∈ K2θ is such that π(x) · u >

4r with r > ρ(2θ + 2) , then [x − Kθ(r, 3r)] ∩ K2θ contains a ball of radius rδ > ρ . But
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ρ is by definition the covering radius of L ∪ (−L ), hence this ball intersects L . Now, let

A = Kθ(4r) ∩ L be the finite point set of L and let us show that K2θ ∩ L ⊂ sg(A ). First the

inclusion K2θ(4r) ∩ L ⊂ sg(A ) holds. We now proceed inductively. Suppose K2θ(r
′) ∩ L ⊂

sg(A ) for some r ′ > 4r . We will show that this implies K2θ(r
′ + r) ∩ L ⊂ sg(A ) , which will

suffice by induction. For this, let us take g ∈ L ∩ [K2θ(r
′ + r) K2θ(r)]. From Lemma 4.2 and

the above, there exists an element, say y , in L , contained in [g − Kθ(r, 3r)] ∩ K2θ(r
′). By

assumption, y ∈ sg(A ) and y = g − x for some x ∈ Kθ(r, 3r) ∩ LL ⊂ sg(A ). Therefore

g = x + y ∈ sg(A ) + sg(A ) ⊂ sg(A ). This concludes the induction.

L 4.4. — For all θ > 0 , the following set: L (θ) := { x ∈ L | p2(x) ∈ Ri , x 6∈
Kθ(ρ(2θ + 2)), x 6∈ K2θ } is finite.

Proof. — The proof is clear since all g ∈ L such that π(g) · u > 2ρ(2θ + 2) belongs to

K2θ.

Define θ f := max{θ > 0 | #(L (θ)) is minimal } (where #(·) denotes the number of

elements of the set (·)). If t Q is nonnegative and the condition (ii) in Proposition 4.1 satisfied,

then the equality #(L (θ)) = 0 holds for θ < θmin and therefore θ f > θmin/2 .

T 4.5. — (Minimal decomposition). — Any element g ∈ L \ L (θ f ) can be ex-

pressed as a finite combination over N of elements of the finite point set Kθ f
(ρ(2θ f + 2)) ∩ L .

Proof. — It is a consequence of Theorem 4.3 with θ = θ f and r = ρ(2θ f + 2).

C 4.6. — There exist two disjoint finite subsets F =
{

‖B‖πB(g) · uB | g ∈ L (θ f ))
}

and F
′ = {g1, g2, · · · , gη} ⊂

{

‖B‖πB(g) · uB | g ∈ Kθ f
(ρ(2θ f + 2)) ∩ L

}

of Z+
β such that

Z
+
β ⊂ F ∪ N[g1, g2, · · · , gη]. (1)

The generating elements gi ∈ F
′ satisfy: ‖gi‖ 6 ρ(2θ f + 2)‖B‖−1‖V1‖−1 + diam(Ri). If the

couple (F , F
′) is such that η = #F

′ is minimal for the inclusion relation (1) and F is empty,

then the degree m of β divides η.

Proof. — To obtain the inclusion (1) it suffices to project L by πB and to apply Theorem

4.3 and 4.5 and Lemma 4.4. Let us show the upper bound on the norms of the elements of F
′.

If g ∈ Kθ f
(ρ(2θ f + 2)) ∩ L is decomposed as g = π(g) + t , where t ∈ Ri , then, by Theorem

3.3 (i), we have: ‖πB(g)‖ 6 ‖π(g)‖‖B‖−1‖V1‖−1 + diam(Ri). But ‖π(g)‖ 6 ρ(2θ f + 2).

We deduce the claim. Now if Z+
β ⊂ N[g1, g2, · · · , gη] the group Z[g1, g2, · · · , gη] contains

Zβ and the equality Z[Zβ] = Z[g1, g2, · · · , gη] necessarily holds. By Theorem 4.16 we deduce

that m divides η since the rank of Z[Zβ] = Z[N[Zβ]] is ηwhen η is the smallest integer such

that the set inclusion (1) holds and that F is empty.

B) Preperiods in the addition of beta-integers.— The Delone set Zβ endowed with the usual

addition and multiplication cannot have a ring structure otherwise it would contain Z but it

is obvious that Zβ contains no subset of the type λZ, λ > 0. This absence of ring structure on

Zβ for the usual laws can be partially overcome by controlling the fractional parts of the Rényi
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β-expansions of x + y and x− y when x, y ∈ Zβ. This is the aim of this paragraph to focus on

the geometrical meaning of the sets T and T ′ as stated in Theorem 4.8 and of the exponent

q in its Corollary 4.9.

The projection mappings will be the ones redefined (in a simpler way) at the beginning of

the subsection A). Let R > 0 and I be an interval of R having compact closure. Let us

extend the m-cube C for reasons which will appear below. Let C
′ = { ∑m−1

j=0 α j Z j | α j ∈
[−1; 1] for all j = 0, 1, · · · , m − 1 }. For all irreducible t Q- invariant subspace F of Rm,

put δ′F = maxx∈C ′ ‖πF (x)‖, λF the absolute value of the eigenvalue of t Q on F and c ′F =

bβc δ′F
1−λm

F
. Denote by Ω′

F the closed interval centred at 0 in F of length 2c ′F if dim F = 1,

resp. the closed disc centred at 0 in F of radius c ′F if dim F = 2. Let Ω′ = ⊕FΩ
′
F . We will

denote by TI ,R := {x ∈ Rm | p2(x) ∈ bβc−1R Ω′,πB(x) · uB ∈ ‖B‖−1I} the slice of the

band defined by bβc−1R Ω′ in the internal space, extended by symmetrization with respect to

bβc−1R Ω (compare the definitions of Ω′ and Ω in Theorem 3.10), of axis the expanding line

Ru . Let FR := {frac(z) | z = akβ
k + ak−1β

k−1 + · · · + a1β + a0, ai ∈ Z, |ai | 6 R} ⊂ [0, 1).

L 4.7. — The set {‖B‖πB(g) · uB | g ∈ T[0,1),R+bβc ∩ Zm} is a finite subset of Z[β] ∩
[0, 1) and the following inclusion holds: FR ⊂ {‖B‖πB(g) · uB | g ∈ T[0,1),R+bβc ∩ Zm}.

Proof. — The finiteness of the set is obvious: it is a discrete set in a subset of Rm having

compact closure. The inclusion relation is a reformulation of Lemma 2.1 in [Bu]. Let us briefly

recall the proof. Let z =
∑k

j=0 a jβ
j with ai ∈ Z, |ai | 6 R . We have also z =

∑k
j=−∞ x jβ

j as

β - expansion of z . Therefore z−int(z) =
∑k

i=0 a jβ
k −∑k

j=0 x jβ
j . Since 0 6 x j 6 bβc and

|ai | 6 R , frac(z) ∈ [0, 1) is a polynomial in β , the coefficients of which have their absolute

values bounded by R + bβc. Here the coefficients may be negative or positive. This is why

we have introduced C
′ instead of C . We deduce the result in a similar way as in the proof of

Theorem 3.10 for the computation of the upper bound cF , except that now it is with Ω′, c ′F and

the fact that the absolute value of the digits is less than R + bβc; this obliges to multiply Ω′ by

the factor (R + bβc)/bβc. The set FR is finite (Lemma 6.6 in [So]), and (Proposition 3.5) is in

one-to-one correspondence with a subset of the finite point set T[0,1),R+bβc. We deduce the

claim.

Let LI ,R := bmin

{

[ln(β(i−1)−1
)]−1 ln

(

(∑m−1
k=0 (β

(i−1))2k
)1/2

ψI ,R+bβc
) }

c where the

minimum is taken over the real positive embeddings of Q(β) ( i = 1, 2, . . . , s and β(i−1) > 0)

and where ψI ,R := max{‖y‖ | y ∈ TI ,R}. Let us consider an element z ∈ FR . Its β

- expansion:
∑+∞

j=1 z− jβ
− j is eventually periodic [Be] [Sch] and therefore can be written

∑k0(z)
j=1 z− jβ

− j +
∑+∞

k=0

∑k0(z)+(k+1)r(z)
j=k0(z)+kr(z)+1 z− jβ

− j where the integers k0(z), r(z) > 1 are mini-

mal. We will denote by JR = max{k0(z) | z ∈ FR} the maximal preperiod of the β - expansions

of the elements of FR . An upper bound of JR will be computed below.

T 4.8. — (i) For all x, y ∈ Z+
β such that x + y has a finite β-expansion the following

relation holds: x + y ∈ β−L Z+
β where L := min{L[0,1),2bβc , J2bβc}; (ii) the following inclusions

hold: Z+
β + Z+

β ⊂ Z+
β + T, Z+

β − Z+
β ⊂ Zβ + T ′, where T = {‖B‖πB(g) · uB | g ∈ T[0,+1),3bβc ∩ Zm}

and T ′ = {‖B‖πB(g) · uB | g ∈ T(−1,+1),2bβc ∩ Zm}.
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Proof. — (i) Let x = xkβ
k + · · · + x0 and y = ylβ

l + · · · + y0 denote two elements of

Z+
β. Then z = x + y is of the form z = a jβ

j + · · · + a0 with 0 6 a j 6 2bβc . Write now

the β - expansion of z as z =
∑+∞

j=1 z− jβ
− j +

∑e
j=0 z jβ

j and assume it is finite. Then

it admits only a β-expansion up till the term indexed by its preperiod k0(z) and the period

has necessarily the form given above with r(z) = 1 and z− j = 0 as soon as j > k0(z).

Then
∑k0(z)

j=1 z− jβ
− j = (a jβ

j + · · · + a0) − (
∑e

i=0 ziβ
i). This means that the fractional part

∑k0(z)
j=1 z− jβ

− j is a polynomial of the type
∑ f

i=0 biβ
i with −bβc 6 bi 6 2bβc hence with

|bi| 6 2bβc . The set F2bβc is finite (Lemma 4.7) and the set of all possible fractional parts of

elements of Z+
β is exactly in one-to-one correspondence with a subset of the finite point set

T[0,1),3bβc ∩Zm of Zm . Therefore, there exists a unique gz =
∑ f

i=0 bi Zi ∈ T[0,1),3bβc ∩Zm such

that ‖B‖πB(gz) ·uB =
∑ f

i=0 biβ
i =

∑k0(z)
j=1 z− jβ

− j = frac(z) . Let us apply the real and complex

embeddings of the number field Q(β). It gives:
∑k0(z)

j=1 z− j (β
(i−1))− j =

∑ f
j=0 b j (β

(i−1)) j for

all i = 2, 3, . . . , m. For the real embeddings in particular this implies (Proposition 3.6):

πB,i(gz) = πB,i(

f∑

j=0

b j Z j) =

∑ f
j=0 b j (β

(i−1)) j

‖Xi‖
uB,i =

∑k0(z)
j=1 z− j(β

(i−1))− j

‖Xi‖
uB,i

for all i = 1, 2, · · · , s with all z− j > 0. The case of real embeddings will provide a direct

computation of the first upper bound L[0;1),2bβc of the preperiod and merits to be isolated.

Indeed, since in this case 0 < β(i−1) < 1 for all i ∈ {2, 3, · · · , s}, with s assumed > 2, and

that all the digits z− j are positive, we necessarily have: ‖Xi‖−1
(

β(i−1)
)− j

> ψ[0,1),3bβc as

soon as j is large enough. Recall that ‖Xi‖ =
(∑m−1

k=0 (β
(i−1))2k

)1/2
. With the definition of

L[0;1),2bβc , this implies that the sum of the positive terms
∑k0(z)

j=1 z− j(β
(i−1))− j cannot contain

any term indexed by − j with j > L[0;1),2bβc. Hence, k0(z) 6 L[0;1),2bβc. As for the negative

real embeddings and the complex embeddings they will provide the second upper bound of

the preperiod by the computation of J2bβc: indeed, its calculation gives an upper bound of the

number of terms k0(z) in the fractional part of z, hence, after reducing frac(z) to the same

denominator, which will be βk0(z), we immediately get the result; (ii) (This is reformulation of

Theorem 2.4 in [Bu]) First, we have Fbβc ⊂ F2bβc , second Z+
β + Z+

β ⊂ Z+
β + F2bβc , Z+

β − Z+
β ⊂

Zβ + (Fbβc ∪ −Fbβc). Since Ω′ is invariant by inversion and that Fbβc ∪ −Fbβc ⊂ {‖B‖πB(g) ·
uB | g ∈ T[0,+1),2bβc ∩ Zm} ∪ {‖B‖πB(g) · uB | g ∈ T(−1,0],2bβc ∩ Zm} = {‖B‖πB(g) · uB | g ∈
T(−1,+1),2bβc ∩ Zm} (Lemma 4.7), we deduce the claim.

C 4.9. — Let q = min{L(−1,+1),2bβc , J2bβc}. Then, for all x, y ∈ Zβ such that

x + y and x − y have finite β-expansions, the following relations hold: x + y (resp. x − y) ∈
β−q Zβ.

Proof. — Indeed, T ′ ⊂ T ∪ (−T ) . Hence Zβ + Zβ ⊂ Zβ + (T ∪ (−T )) . Since T ∪ (−T ) =

{‖B‖πB(g) · uB | g ∈ T(−1,+1),3bβc ∩ Zm} , we deduce the exponent q from the definition of

LI ,R and from Theorem 4.8.

Computation of an upper bound of the maximal preperiod JR .— We will use the case (ii)

of cut-and-project scheme in Theorem 3.8. Let {Z− j} j>0 be the sequence of vectors defined

by Z0 = (t Q) j Z− j . We denote as usual the algebraic norm of β by N (β) = NQ(β)/Q(β) =∏m−1
i=0 β(i) . Recall that a0 = (−1)m−1N (β) .
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L 4.10. — (i) The following limit holds: lim j→+∞ ‖Z− j‖ = +∞ ; (ii) for all j ∈
N, Z− j ∈ N (β)− jZm. In particular, if β is a unit of the number field Q(β) , then all the

elements Z− j belong to Zm .

Proof. — (i) Since |β(i)|−1 > 1 for all i = 1, 2, . . . , m− 1, the inverse operator (t Q)−1 acts

as a dilation by a factor of modulus strictly greater than one on each t Q-invariant subspace

F in Rm except Ru: all the non-zero components of the vector Z− j (which never belongs to

Ru) in the system {Vi}i=2,3,··· ,m diverge when j tends to infinity, hence the claim. (ii) Solving

the equation Z0 = (t Q)1Z−1 shows that Z−1 can be written Z−1 = −a−1
0 (a1Z0 + a2Z1 + · · · +

am−1Zm−2 − Zm−1) ∈ N (β)−1Zm. Since by construction we have Z j = (t Q)−1(Z j+1) for all

j ∈ Z , applying (t Q)−1 to the last equality clearly gives Z−2 ∈ N (β)−2Zm and, by induction

Z−h ∈ N (β)−hZm for all h > 0 . Now it is classical that β is a unit of Q(β) if and only if

N (β) = ±1 establishing the result.

T 4.11. — Denote by

BR =











x ∈ Rm | ‖πB,i(x)‖ 6
ψ[0;1),R+bβc

(

1− |β(i−1)|m
)

+ bβc
(∑m−1

k=0 |β(i−1)|2k
)1/2 (

1− |β(i−1)|
)

, i = 2, 3, · · · , m











the cylinder (band) of axis the expanding line Ru and VR = {x ∈ BR | ‖B‖πB(x) · uB ∈
[0, 1)} the slice of the band BR . Then this slice is such that JR 6 #(VR ∩ N (β)−mZm).

Proof. — Each element α ∈ FR can be written α =
∑m−1

i=0 piβ
i with pi ∈ Z and∑m−1

i=0 pi Zi ∈ T[0,1),R+bβc∩Zm (Lemma 4.7). Thus, |pi| 6 ψ[0,1),R+bβc for all i = 0, 1, · · · , m−1.

Now ([Sch] and section 2), the following equality holds for all n > 0:

T n
(α) = βn ·





α−
n∑

k=0

εk(α)β
−k





 =

m∑

k=1

r
(n)
k β

−k

where (εk(α))k>0 is the sequence of digits of the Rényi β-expansion of α and (r
(n)
1 , r

(n)
2 , · · ·

, r(n)m ) ∈ Zm . Recall that ε0(α) = bαc = 0 . The real and complex embeddings of the number

field Q(β) applied to T n(α) provide the m equalities, with j = 1, 2, · · · , m:

(

β
( j−1)

)n ·






m−1∑

i=0

pi

(

β
( j−1)

)i −
n∑

k=1

εk(α)
(

β
( j−1)

)−k





 =

m∑

k=1

r
(n)
k

(

β
( j−1)

)−k
.

We deduce that
(∑m−1

k=0 |β(i−1)|2k
)1/2 ‖πB,i(

∑m
k=1 r

(n)
k (β( j−1))−k)‖ =

∣

∣

∣

∑m
k=1 r

(n)
k (β( j−1))−k

∣

∣

∣

6

m−1∑

i=0

|pi ||β( j−1)|n+i +bβc
n∑

k=0

|β( j−1)|k 6
1

1− |β( j−1)|
[

ψ[0,1),R+bβc(1− |β( j−1)|m) + bβc
]

for

all n > 0, j = 2, 3, · · · , m with 0 6
∑m

k=1 r
(n)
k β−k < 1. From Proposition 3.6 and Lemma

4.10 the element
∑m

k=1 r
(n)
k β−k can be uniquely lifted up to the element

∑m
k=1 r

(n)
k Z−k ∈

N (β)−mZm. Its projections by the projection mappings πB,i , i = 2, 3, · · · , m to the Q-

invariant subspaces of Rm are bounded by constants which are independant of n . The

restriction of the lifting of the operator T to VR ∩ N (β)−mZm has self-avoiding orbits (to

have a preperiod) whose length is necessarily smaller than the number of available points in

the volume VR . We deduce the upper bound #(VR ∩ N (β)−mZm) of JR.
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Appendix.– Classification of Delone sets

We will say that a subset Λ of Rn is (i) uniformly discrete if there exists r > 0 such that

‖x − y‖ > r for all x, y ∈ Λ, x ≠ y , (ii) relatively dense if there exists R > 0 such that,

for all z ∈ Rn, there exists λ ∈ Λ such that the ball B(z, R) contains λ, (iii) a Delone set if

it is relatively dense and uniformly discrete. Delone sets are basic objects for mathematical

quasicrystals [La2] [MVG].

D 4.12. — A cut-and-project scheme consists of a direct product E × D, where

E and D are Euclidean spaces of finite dimension, and a lattice L in E × D so that, with

respect to the natural projections p1 : E ×D → E , p2 : E ×D → D : (i) p1 restricted to L is

one-to-one onto its image p1(L), (ii) p2(L) is dense in D. We will denote by ∗ the following

operation: ∗ := p2 ◦ (p1|L
)−1 : p1(L)→ D.

D 4.13. — A subset Λ of a finite dimensional Euclidean space E is a model set

(also called a cut-and-project set) if there exist a cut-and-project scheme (E ×D, L) and a subset

Ω of D with nonempty interior and compact closure such that Λ = Λ(Ω) = {p1(l) | l ∈
L, p2(l) ∈ Ω }, equivalently = { v ∈ p1(L) | v∗ ∈ Ω }. The set Ω is called acceptance window.

Meyer sets were introduced in [Mey]. By definition, we will say that Λ, assumed to be a rel-

atively dense subset of Rn, is a Meyer set of Rn if it is a subset of a model set. Other equivalent

definitions can be found in [Mo] or [Mey]. For instance, Λ is a Meyer set if and only if it is a

Delone set and there exists a finite set F such thatΛ−Λ ⊂ Λ + F ; or if and only if it is relatively

dense andΛ− Λ is uniformly discrete. The above definition shows that the class of Meyer sets

of Rn contains the class of model sets of Rn.

T 4.14. — ( Meyer [Mey]) Let Λ be a Delone set in Rn such that ηΛ ⊂ Λ for a real

number η > 1. If Λ is a Meyer set, then η is a Pisot or a Salem number.

D 4.15. — A Delone set Λ is said to be finitely generated if Z[Λ − Λ] is finitely

generated. A Delone setΛ is said to be of finite type if Λ−Λ is such that its intersection with any

closed ball of Rn is a finite set.

The class of finitely generated Delone sets of Rn is strictly larger than the class of Delone

set of finite type of Rn, which is itself larger than the class of Meyer sets of Rn [La] [La1].

T 4.16. — ( Lagarias [La]) Let Λ be a Delone set in Rn such that ηΛ ⊂ Λ for a real

number η > 1. The following assertions hold: (i) IfΛ is finitely generated, then η is an algebraic

integer. If the rank of Z[Λ] is s, then the degree of η divides s, (ii) If Λ is a Delone set of finite

type, then η is a Perron number or is a Lind number.

Although Zβ is associated with two canonical cut-and-project schemes when β is a non-

integer Perron number, the converse of the assertion (ii) of Theorem 4.16 seems to be an open

problem. It is at least already related to the question Q1’ of the introduction and to various

arithmetical and dynamical problems [ABEI].
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Paris, Série A, t. 285, (1977), 419-21.

[Be1] A. B - M, Comment écrire les nombres entiers dans une base qui n’est pas

entière, Acta Math. Hung., 54, (3-4), (1989), 237-241.
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