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Geometric study of the beta-integers for a Perron number and mathematical
quasicrystals

par Jean-Louis VERGER-GAUGRY et Jean-Pierre GAZEAU

November 27, 2003

RésuMmE. Nous étudions géométriquement les ensembles de points de R obtenus par la beta-
numération que sont les S-entiers Zg C Z[B] ou B estun nombre de Perron. Nous montrons
qu’il existe deux schémas de coupe-et-projection canoniques associés a la S-numeération, ot
les B-entiers se relevent en certains points du réseau 7™ (m = degré de B) , situés autour du
sous-espace propre dominant de la matrice compagnon de . Lorsque  est en particulier un
nombre de Pisot, nous redonnons une preuve du fait que Zg estun ensemble de Meyer. Dans les
espaces internes les fenétres d’acceptation canoniques sont des fractals dont I'une est le fractal
de Rauzy (a quasi-homothétie pres). Nous le montrons sur un exemple. Nous montrons que
Zg N R™ est de type fini sur N, faisons le lien avec la classification de Lagarias des ensembles
de Delaunay et donnons une borne supérieure effective de I'entier g dans la relation: x,y €
Zg = x+y (respectivement x —y ) € B~ 9Zglorsque x +y (respectivement x —y ) aun B-
développement de Rényi fini.

ABSTRACT. We investigate in a geometrical way the point sets of R obtained by the f-numeration
that are the p-integers Zg C Z[B] where B is a Perron number. We show that there exist two
canonical cut-and-project schemes associated with the S-numeration, allowing to lift up the -
integers to some points of the lattice Z™ (m = degree of B) lying about the dominant eigenspace
of the companion matrix of . When S is in particular a Pisot number, this framework gives
another proof of the fact that Zg is a Meyer set. In the internal spaces, the canonical acceptance
windows are fractals and one of them is the Rauzy fractal (up to quasi-dilation). We show it on an
example. We show that ZgNR" is finitely generated over N and make a link with the classification
of Delone sets proposed by Lagarias. Finally we give an effective upper bound for the integer
g taking place in the relation: x,y € Zg = x + y (respectively x —y ) € B 9Zgif x +
y (respectively x — y ) has a finite Rényi S- expansion.

1. Introduction

Gazeau [Gaz], Burdik et al [Bu] have shown how to construct a discrete set Zg C Z[B] C R
which is a Delone set [Mo], called set of B-integers (or beta-integers), when 8 > 1 is a Pisot
number of degree greater than 2. A beta-integer has by definition no fractional partin its Rényi
B-expansion [Re] [Pa]. As basic feature, this Delone set is self-similar, namely BZg C Zg.
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Since the general notion of B-expansion of real numbers (see section 2 for definitions) was
created by Rényi for any real number g > 1, the set of beta-integers Zg, defined as the set of real
numbers equal to the integer part of their f-development, is defined without ambiguity in full
generality and is self-similar by construction: BZg C Zg. The main questions we may address
are the following: (Q1) For which g > 1 is Zg aDeloneset? or equivalently (Q1’) for which
B > 1 is Zg auniformly discrete set ? since the sets Zg of beta-integers are always relatively
dense by construction. Now Delone sets are classified into several types (see the definitions
in the Appendix) so that the following question is also fundamental: (Q2) For which class of
B > 1 is Zg aDelone set of a given type ?

The uniform discretness property of Zg is a crucial property which is not obtained for all
real number B, but very few general results are known nowadays. Thurston has shown that it
is the case when B is a Pisot number [Th]. It is conjectured that it is also the case when g is
a Perron number. Apart from the Pisot case, many open questions remain (Bertrand-Matthis
[Be4], Blanchard [Bl]) and are expressed in terms of the 8 - shift. Schmeling [Sc] has proved
that the class C3 of real numbers B > 1 such that the Renyi-expansion dg(1) of 1 in base
B contains bounded strings of zeros, but is not eventually periodic, has Hausdorff dimension
1. For all B in this class Cs, the B-shiftis specified [Bl]. Itis obvious that the specification of the
B-shiftis equivalent to the fact that Zg is uniformly discrete. So that the class C3 would contain
all Perron numbers. The idea of exploring relationships between the pB-shift and the algebraic
properties of $ in number theory is due to A. Bertrand-Matthis [Be3]. In this direction, some
results are known (Akiyama [Ak] [Ak1]). Parry [Pa] has proved that the B-shiftis soficwhen S is
a Pisot number. Lind [Li] conversely has shown that B is a Perron number if the S-shift is sofic.

In section 2 we will recall some basic facts about the S-numeration and the beta-integers.
In section 3, we will establish the geometrical framework which is attached to the algebraic
construction of the set of the beta-integers when f is a Perron number in general (of degree
m > 2). Namely, by geometric framework, we mean that we will show the existence of two
cut-and-project schemes (see the definitions in the Appendix) embedded in a canonical way
in the Jordan real decomposition of R where this decomposition is obtained by the action
of the companion matrix of 8, respectively of its adjoint, the second cut-and-project scheme
being the dual of the first one. This will be done without invoking any substitution system on
a finite alphabet [AI] or the theory of Perron-Frobenius [Mi]. These cut-and-project schemes
will consist of an internal space which will be an hyperplane of R complementary to a one-
dimensional line on which the set of S-integers will be set up in a natural way, together with
the usual lattice Z™ in R™. The constituting irreducible subspaces of the internal spaces will
appear by construction as asymptotic linear invariants. This will allow us to deduce several
results when B is a Pisot number: a minimal acceptance window in the internal space closely
related to the Rauzy fractal, a geometrical proof that Zg is a Meyer set, the fact that Zg is
finitely generated over N. We will make a link on an example with the Rauzy fractal when the
beta-integers arise from substitution systems of Pisot type (for instance Rauzy [Ra], Arnoux and
Ito [AI], Messaoudi [Me] [Mel], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). At this point,
we should outline that the main difference with the substitutive approach is that the matrices
involved may have negative coefficients (compare with the general approach of Akiyama [Ak]



[Ak1]).

The additive properties of Zg will be studied in section 4 by means of the canonical cut-
and-project schemes when B is a Pisot number: in A), we shall show that the elements of
Zg N R" can be generated over N by elements of Zg of small norm, in finite number, us-
ing truncated cones whose axis of revolution is the dominant eigenspace of the companion
matrix of B and a Lemma of Lind [Li] on semigroups; in B), we will provide a geometri-
cal interpretation of the maximal preperiod of the B-expansion of some real numbers com-
ing from the addition of two beta-integers, of the finite sets T and T’ in the relations [Bu]
ZE + ZE C ZE +T, ZE - ZE C Zg + T’ and an upper bound of the integer ¢ taking place in
therelation x,y € Z; = x+y € p~925 when x+y and x — y have finite f-expansions.

2. Beta-numeration and beta-integers

Let B € (1,+00) \ N. We will refer in the following to Rényi [Re], Parry [Pa] and Frougny
[Fro] [Frol] [Bu]. For all x € R we will denote by | x|, resp. {x} = x — | x|, the usual integer
part of x, resp. its fractional part. Let us denote by T (x) = {Bx} the ergodic transformation
sending [0, 1] into itself. For all x € [0, 1], the iterates T"(x) := T(T" 1(x)),n > 1, with
T .= Id by convention, provide the sequence (x_;);>1 of digits, with x_; := LBTi*I(x)J, in
the finite alphabet A = {0,1,---,|B]}. The element x is then equal to its Rényi B-expansion
z;cﬁ x_jB*j also denoted by 0.x_;x_»x_3.... The Rényi B-expansion of 1 will be denoted
by dg(1). The operator T on [0,1] induces the shift o : (x_1,x_»,...) — (x_2,x_3,...) on
the compact set AN (with the usual product topology). The closure of the subset of AN invari-
ant under o takes the name of B-shift. The knowledge of dg(1) suffices to exhaust all the
elements in the B-shift (Parry [Pa]). For this let us define the following sequence (c;);>1 in
AN:

hibts:-- if the Rényi B-expansion dg(1) = 0.51% - - - is infinite,
C C C DTS =
1725 (ity - tr—1(ty — 1))“ if dg(1) is finite and equal to 0.t; 8 - - - £,

where ( )“ means that the word within ( ) is indefinitely repeated. Then the sequence (y_;);>1
in AN is exactly the sequence of digits provided by the iterates of y = > iy y—iB ~l by T" if
and only if the following inequalities are satisfied: (y_;, y—(n+1),.--) < (c1,¢2,¢3,...) forall
n > 1 where ” < ” means lexicographical smaller. These inequalities will be called conditions
of Parry. We will now use finite subsets of the g-shift.

DEFINITION 2.1. — Let ZE = {xkﬁk+xk_1[3k_1+- c+x1B+xo | X €A k=0, and (xj,xj1,
.., X1,%,0,0,--+) < (c,¢,-+) forall j0< j< k} be the discrete subset of R* of the real
numbers equal to the integer part of their Rényi B-expansion. ThesetZg = ZE U (—ZE) is called
the set of B- integers.

Forall x € R*,if x = Zf; oo XiB i with p > 0, is obtained by the greedy algorithm, then
(xi) igp will satisfy the conditions of Parry. We will denote by int(x) = Zfi o0 XiB I the integer
part of its Rényi B-expansion, respectively by frac(x) = 21—217 . x;B" its fractional part. The
element 1 = B° belongs to Z;.



Let us now turn to the case where f is a positive real algebraic integer. Then there ex-
ists an irreducible polynomial P(X) = X™ — Z:Zo_l a,-Xi, a; € Z with m = degree() such
that P(B) = 0. Then B = Z;ZO_I am-1-iB~" If aj > 0 forall j and (ap ana,...) <
(am—1,am—2,...,00,0,0,...) forall n < m — 2, then the Rényi B-expansion of 8 would be
S a1 i~ from which we would deduce dg(1) = 3.7 a1 87171 as well. But
the coefficients a; do not obey the conditions of Parry in general. More considerations on
the relations between p-expansions and algebraicity can be found in [Be] [Bel] [Be2] [Be3]
[Frol] [Ak] [Ak1] [Sch]. Bertrand-Matthis [Be] and Schmidt [Sch] have proved that, when S is
a Pisot number, x € Q(p) if and only if the Rényi B-expansion of x is eventually periodic; in
particular the Rényi S-expansion of any Pisot number is eventually periodic.

Let us recall that a Perron number B, resp. a Lind number, resp. a Salem number, will be a
real algebraic integer B > 1 whose conjugates 8'? are of modulus strictly less than B, resp. of
modulus less than B with at least one conjugate of modulus  [La], resp. of modulus less than
1 with at least one conjugate of modulus one. A Pisot number B will be a real algebraic integer
B > 1 for which all the conjugates are in the open unit disc in the complex plane.

3. Canonical cut-and-project schemes over Zg

Assume that > 1is a Perron number of degree m > 2, dominant root of the irreducible
polynomial P(X) = X — @, 1 X"\ — @ 2X™ 2 — .. — 41X —ay, a; € Z,ay * O.
All the elements rg* with k > 1,r € {L,2,...,|B]} are obviously in Zg. We are look-
ing for asymptotic linear invariants associated with them, hence, by linearity, associated with
the powers B, k > 1, of B, when k tends to infinity. By linearity, they will be also asso-
ciated to the beta-integers. Let us set up the general situation. For all k > 0, write B* =

Zm 1 kB Z 0 kB2 4 -+ + 21k B + 20,1, where all the integers zg x, Z1k, * * » Zm_1,k be-
long to Z. Denote Z; = '(zox z1x 22k ---Zm-1k), B = B® =1 (1 B B> ...Bm*1>,
B = ’(1 ﬁ(j) ﬁ(f)z ...Bmmﬂ),where ! means transposition and the elements ﬁ(j),j S
{1,2,---, m — 1}, are the conjugate roots of = B(‘)) in the minimal polynomial of 8. Set

B* 0 1 0 0

p* 00 1 --- 0

t%k = B(Z)k and Q = : : 0

: 0 0 1

ﬁ(m—l)k ag @ R

the m x m matrix with coefficients in Z. The transposed matrix of Q is denoted by ’ Q. It is the
companion matrix of P(X) (and of B). Forall p, k € {0, 1,--- ,m— 1}, we have: zp,r = Opk
the Kronecker symbol. It is obvious that, for all k > 0, we have Zi,; = 'Q Z. Denote

1 B B? g1
2 -1
. 1 W g g™
1 gm=1  gm=D? ___ gm-1)"



the Vandermonde matrix of order m. We obtain C Z;, = % by the real and complex embed-
dings of Q[p] since all the coefficients z, j € {0,1,---, m — 1}, are integers and remain
invariant under the conjugation operation.

THEOREM 3.1. — IfV; denotes the vector defined by the first column of C~1, then the limit
limg o0 || Zk|| 712k exists and is equal to the unit vector u := ||V1||~'V;. Moreover, all the

components of V, are real and belong to the Z - module

BmLP/(B)

Proof. — Since P(X) is minimal, all the roots of P(X) are distinct. Hence, the determinant
of Cis Hi<j(B(i> — B(j>) and is not zero. Let C~! = (§ij). Then C - Cc~! = I, thatis

>m—1

. .RD RN, .glJ = &: i=12 i=01 ~1
Ell+§21ﬁ +§3ZB + +Emlﬁ l,]+11 1 ’ l-";m; ] ’ 7---1m ()

On the other hand, the Lagrange interpolating polynomials associated with {, gL, g, .,
Bm=1Y are given by

m—1 i
X — B(])
LS(X) = Hm SZO,I,...,m—l.
j":O
JjES
For m arbitrary complex numbers y;, 2, - - - , ¥, letusdenote by o = or(y1,¥2,- - , Ym) =

21<i1 iy <o <ir<m H;Zl Yi; the r-th elementary symmetric function of the m numbers y1, y»,
-, Ym- The degree of Ls(X) is m — 1 and Ls(X) can be expressed as

m—1 m—1
L§(x) — Z(_l)ro_ﬁs)Xm—r—l/ H(B(S) _B(r))
r=0 r=0
r+S§
where ¢ = o, (8, BV, -, g~V gD ... g(m=D) denotes the r-th elementary symmet-
ric function of the m — 1 numbers g, B, - -, g~V g+ ... gm=1) ywhere B(9) g missing.

Since these polynomials satisfy Ls([i(k)) = 05 forall s,k =0,1,---, m — 1, comparing with
(1), we obtain, by identification of the coeflicients

—j - (i—=1) —j . (i—=1)
o (_1)m ]O-m—j B (_l)m ]O-m—j
N ”ﬁl i gmy  PETY)
B =B")
r=0
r+i—1
forall i, j =1,2,---,m. Wehave: Lg(X) = Z’JZIEJ-,SHX]'“ ,$s=0,1,---,m— 1. Now
C-Zr = SRBrforallk > 0 hence Zx = C~!- P Each component Zit, 0 < i <
0k .
m— 1,k > 0 of Z; can be expressed as z;; = Z']n:l Ei+1,jﬁ(]71) . Since B is a Perron
number, we have \B(”] < B forall j,1 < j< m-—1 Henceforall j,1 < j<m—1,
1) .
limg_ o0 (%) = 0, and therefore limj_, % =&, ,i=0,1,---, m— 1. Moreover,
1/2

m—1

>zl
lim AR S = lim —HZkH =
k—+00 ﬁk k—+o0 Bk




hence the result. The fact that all the components of V; are real and belong to the Z - module

Z[B1/(B™ 1P/ (B)) comes from the following more precise Proposition. |
PROPOSITION 3.2. — The components (1) j=1,.,m of V1 are given by the following explicit
aj,lﬁj*1+aj,2[€j*2+m+a1 B+ag

functions of the coefficients a; of P(X): &1 = . In particular,

| BIP(B)
Em1 = B

Proof. — Wehave Lo(X) = > 7 £j1X/"'and P(X) = H’]ZBI(X—B(f)) = Lo(X)(X —
B)P'(B). All the coefficients of Ly(X) satisfy the following relations: —BP’ By = —ap,
—BP (B)&21+E11 P/ (B) = —a1, —BP' (B)&31+821P' (B) = —ap, -+, —BP (B)Em1+Em—1,P (B) =
—am—1, Em1P'(B) = 1. Hence the result recursively from &; ; noting that P'(8) € R — {0}. O

THEOREM 3.3. — Let up := B/||B||. Then: (i) u-ug = ||B||7Y|||~! > 0, (ii) the limit

limg 00 ”” Zk;h” exists and is equal to B, (iii) u is an eigenvector of ' Q of eigenvalue B and

the eigenspace of R™ associated with the eigenvalue B of 'Q is Ru, (iv) ug is an eigenvector
of the adjoint matrix (*Q)* = Q associated with the eigenvalue B and for all x € C™:
limg—r00 B85 (FQ*(x) = (x-B) Wh.

Proof. — (i) and (ii): From the relation C - C~! = 1d we deduce the equality V7 - B = 1.
Hence u - B = |Vi]|™! > 0. Then, forall k >0, ‘Z;- B = ¥ = sz“t(ﬂgﬁ —u+u)-B >
0 which tends to infinity when k tends to + oo. Since u — Zi/||Zk|| tends to zero when
k goes to infinity, ||Zi|| behaves at infinity like BX/ (u - B), hence the limit; (iii): for all

> t _ ot % Zx _ ot _ [ Zknill Ziwr ;
k20 "Qw Qu = 1z * Tz Qu = 1Z) + Tzl Tzey- The first term is

converging to zero and the second one to fu when k goes to infinity, from Theorem 3.1. Hence,
the result since all the roots of P(X) are distinct and the (real) eigenspace associated with
B is 1 - dimensional; (iv): it is clear that B is an eigenvector of the adjoint matrix Q. If

ho,hy,- -+ ,hy1 € C, x = Z’;’:Bl h;Z;, where Zy, 7y, -+ ,Zp—1 is the canonical basis of
_ _ . T

Cc™, wehave: B~ F (*Q)k(x) = Z’fzol hjﬁ_ka+j = Z’]ﬁ:ol h;p/ (BI’:;)’ but, from the proof

of Theorem 3.1, limy_. o % = 14 and Z’}gl hjﬁf = x - B. We deduce the claim. |

Let us denote by Q¢ the automorphism of C™ which is the complexification operator of
Q. Its adjoint Q¢ obviously admits {B, BW,B@ ... B(mfl)} as a basis of eigenvectors of
respective eigenvalues 8, BV, 8, ..., BUm=D Let us specify their respective actions on R”.
Let s > 1, resp. t, be the number of real, resp. complex (up to conjugation), embeddings
of the number field Q(B) . We have m = s + 2t . Assume that the conjugates of B are
B, BV, ... =D gH) glstl) . glm=2) _ g(s+2t=2) g(m=1) _ g(s+2t—1) ywhere B4 is real if
g < s—1 and g+2) = plsw2j+) = |p(s+20) % i = 0,1,... ,¢ — 1, is complex with non-
zero imaginary part. Let us recall that V; denotes the vector defined by the first column of
C~! (Theorem 3.1).

COROLLARY 3.4. — (i) A basis of eigenvectors of 'Qc is given by the m column vectors
aj_llgwc—l)Flmj_ﬂ;(k—nffz

Bk—1J pr(glk—1))
; (ii) a real Jordan form for 'Q is given

+otay B Dig

{Witk=1,2,-.,m of respective components € j i = with

j = L12,---,m; in particular, &, = m



by the diagonal matrix Diag(, BV, ---,B5~V Dy, Dy, -+, D;_1) in the basis of eigenvectors
{Vj}jzl,m,m with Vo = Wa, .-+, Vg = W, Vs+2j+1 = Im(Ws+2j+1), Vs+2j+2 = Re(vvs+2j+1), Jj =
0,1,---,¢ — 1 and where the 2 X 2 real Jordan blocks D are

|B(S+2j)|c039j —|B(s+2j)|sin9]- .
|B(S+2j)|sin9]- |[3(s+2j)|c039j ’

(iii) a real Jordan form of the adjoint operator (' Q)* = Q is given by the same diagonal matrix

Diag(B,B(l),--- BV Dy, Dy, ,D;_1) in the basis of eigenvectors {Xj}jzl_...,m with X, =
B,X, = BV, X3 = B?,-.- Xy = B, Xspju1 = Im(B®?7), Xz juo = Re(BU?1)), j =
0,1,---,t — 1. The t planes RXs,2 1 + RXs42j42, j =0,1,...,¢t — 1 areall orthogonal to Vi,

and thus also to u.

Proof. — (i): We apply, componentwise in the equation (fQ)wy = B, the Q - automor-
phisms of C which are the real and complex embeddings of the number field Q(j). Since
'Q has rational entries and V; has its components in the Z-module I=mp/())~1Zz[B], we
deduce the claim: (tQ)Wj = B(jfl)Wj with j=1,2,--- , mand where W, = V; (ii): the restric-
tions of Y Qc to the (real) ’Q - invariant subspaces of R™ have no nilpotent parts since all the
roots of P(X) are distinct. Hence, a real Jordan form of ’Q is the one proposed with Jordan
blocks which are 2 x 2 on the diagonal [HS]. (iii): in a similar way the equation QB = 8B implies
QB(f) = B(f)B(f) with j=0,1,---, m — 1. Obviously Q¢ and ’Qc have the same eigenvalues
and Q and ’Q the samereal 2 x 2 Jordan blocks on the diagonal. The corresponding basis
of eigenvectors is given by the vectors X; [HS]. The orthogonality between V; and the vector
Xsi2 j+1, 1€Sp. Xsi2j42, j=0,1,...,¢ — 1, arises from the relation C - C~! = Id. We deduce the
claim for the planes. O

The linear invariants associated with the powers of B are the invariant subspaces given
by Corollary 3.4. Let us turn to the beta-integers. Beta-integers are particular Z-linear com-
binations of powers of B. We will show how to construct the set Zg using the above linear
invariants, namely, the set Zg will appear in a natural way on the line Rup as image of a point
set close to the expandingline Ru.

REMARK . — The conditions of Parry, used here in the context of matrices ' Q without any
condition on the signs of the entries, give the same results as those obtained with the Perron-
Frobenius theory (Minc [Mi]), when this one is applicable, that is when ’Q has non-negative
entries: first, the dimensionality one for the dominant eigenspace of ’Q ; second, the equality
limg_, o0 ﬁ_k (tQ)k(x) = (x-B) Wy, for x € C", in Theorem 3.3 (compare with Ruelle [Ru]
p136 when ’Q has non-negative entries), and its consequences.

THEOREM 3.5. — Let 1 be the orthogonal projection mapping of R'™ onto RB and define

L7 ={kak+xk—1Zk—1 + -+ X171 + X0 | xi €A k>0,and (xj,xj-1,-+*,%1,%,0,0,--)

< (c1,¢,-++) forall j,0< j< k} the ' Q-invariant subset of Z™. Then: (i) the mapping

ijo ij] — ijo xXjZj : ZE — & (with the same coefficients x ;) is a bijection, (ii) the

mapping g is one-to-one onto its image Z1B1||B|| tup: forany k >0, ap, ay, - - , ar € Z,
YA

we have Ttg (Zi’c:o aiZi) = (Zf_o a,-Bi) || B|| =Y up and conversely, any polynomial in B on the



line generated by ||B||"'up can be uniquely lifted up to a 7 -linear combination of the vectors
Z; with the same coefficients; in particular, Tp(¥) = Zj||B|| " up.

Proof. — (i): this mapping Z; — % is obviously surjective. Let us show that it is injective.
Assume there exists a non-zero element ZI;':() x ].5]' in ZE such that Zl;:o xjZ;j = 0. Since
t (ZI;‘:() x;jZ j) B=0-= ZI;‘:() x;jB’ , this would mean that zero could be represented by a
non-zero element. This is impossible by construction; (ii): for all k > 0, we have mg(Zy) =

B¥||B||~! up, hence the result by linearity. The injectivity of mp_ . comesfrom the assertion (i).
z
U

PROPOSITION 3.6. — Let ug; = || X;|7'X; if i = 1,2,---,s, up; = (|| X;]|? + || Xi1]|?) M2 (
Re(||BU= V(|72 X; + Im(| BV ||72)X;41) if i=s+1,--- ,m withi— (s+1) even, and up; =
(1X—1]]2+ ]| X122 (= Im(|| BV || 72) X;+ Re(|| B~V || 72) Xi41) ifi = s+1,- -+, mwithi— (s+1)
odd. Denote by mtg; : R™ — Rug;, i =1,2,---,s theorthogonal projection mappings to the
1-dimensional eigenspaces of Q , resp. 1g; : R™ — Rup ;+Rug;1,i=s+1,--- , m with i—(s+
1) even, the orthogonal projection mappings to the irreducible 2-dimensional eigenspaces of Q .
Then, forallk > 0, ap,- - ,ax € Z, we havenB,i(Z’;:() a;jZ;j) = (Z?:o ajﬁ("*l)j) 1 X: ||~ up,i,

i=12,---,sand forall i=s+1,--- ,m with i — (s+1) even,TrB,,-(z];-:Oaij) =

1 ( Re(Z];:O ajB(FD]) Im(z];:O aJ'B(FDj) ) ( UB,i )
_ . 1/2 k i—1)/ k j—1)4 ’
(st BV 2 —Im( a8 Re(T g aiB ) )\ upin

Proof. — 1t suffices to apply the real and complex embeddings of Q(B) to the relation
WB(Z];:() a;jZj) = ((Z];:() a;jZj) - B)||B|*B = (Z];:o aij) |B|| 72B: for complex embed-
dings, || Xi||? + | Xi1 |2 = 5" |8V ¥ and ||B~V(|72B"~V means:

Re(|B"V|7%)  Im(||BY~V]72) X\ 1 ug,i .
—Im(||BY=V||72)  Re(||BY=V||7?) X | (X2 + X |DY2 N\ ugin )

The explicit expressions given above will allow us below to compare the "geometric” Rauzy

fractals deduced from the present study and the "algebraic” Rauzy fractal. Before stating the
main theorem about the existence of canonical cut-and-projection schemes associated with
the beta-integers when S is a general (non-integer) Perron number, let us first consider the
case of equality u = ug and show that it is rarely occuring.

ProposITION 3.7. — The equality u = ug holds if and only if B is a Pisot number, root > 1
of the polynomial X?> —aX — 1, with a > 1.

Proof. — The condition u = up is equivalentto V; colinearto B, thatis & ]-,1/3_1'” =
a non-zero constant, forall j = 1,2,---, m. The condition is sufficient: if B is such a Pisot
number, such equalities hold. Conversely, if such equalities hold, this implies in particular that
E1187 M = E,,187 ™. Thus we obtain agf™ 2 = 1, that is necessarily m = 2 and ay = 1.
The Perron number g is then a Pisot number of negative conjugate —B~! which satisfies
B2 — a1 —1=0,where a; = 8 — B! is an integer greater than or equal to 1. This is the only
possibility of quadratic Pisot number of norm —1 ([Frol], Lemma 3). |



THEOREM 3.8. — Denote by E the line Rug in R™. There exist two canonical cut-and-
project schemes E LB x D~ R™ 2™ 22 D associated with Zg C E (seethe definitions
in the Appendix). They are given by, in case (i): the orthogonal projection mapping g as pi,
®FF as internal space D, p» = ® g, where the sums are over all irreducible ' Q-invariant
subspaces F of R™ except Ru and where 1 is the projection mapping to F along its ' Q-
invariant complementary space, in case (ii): as p; the orthogonal projection mapping Ttp,
@®r F as internal space D where the sum is over all irreducible Q-invariant subspaces F of
R™ except E, as p; thesum ®;.1 mp,; ofall the orthogonal projection mappings except Tp =
1tg; in the case (ii), the internal space D is orthogonal to the line Ru.

Proof. — In both cases, the fact that p,(Z™) is dense in D arises from Kronecker’s the-
orem (Appendix B in [Mey]): since B is an algebraic integer of degree m, the m real num-
bers 1 = B, BL,---, ™! are linearly independent over Q . Hence, for all € > 0 and all
m-tuple of real numbers xg, X1, -+ ,X;_1 such that the vector (say) x = “(xo X1 ... Xp_1)
belongs to D, there exist a real number w and m rational integers ug, 43, - , U;—1 such
that | x; — Blw — uj| < e/v/mforall j =0,1,...,m — 1. In other terms, there exists a
point u = "(up, u1,+ -+, um—1) € Z™ such that its image p;(u) is wB € Rup and its image
p2(u) iscloseto x upto €. Hence the result. As for the restriction of the projection mapping
p1 =g =1, : R™ — E tothelattice 2", itis injective after Theorem 3.5. The orthogonality
between D and u comes directly from Corollary 3.4. O

The mapping p,(Z™) — D: x — x* = pp o (pl| )~1(x) will be denoted by the same
Zm
symbol (.)* in the cases (i) and (ii), the context making the difference.

PROPOSITION 3.9. — Let B be a Pisot number, root > 1 of the polynomial X?> — aX — 1,
with a > 1. Putc,; = % Then the two canonical cut-and-project schemes given by

(i) and (ii) in Theorem 3.8 are identical and the inclusion of Z |B|| "t ug in the following model

set holds: Z,;HBH*LLB = mp(Z U (—2) C {v € mp(Z?) | v* € [—cqupp, +cqup2]} where
_t -1

ugp ="' (=B 1)||B||~".

Proof. — The two cut-and-project schemes are identical: by Proposition 3.7 the equality
u = ug holds and the line Rug,, which is obviously orthogonal to the line Rug, is Q-
invariant. Now, if g denotes an arbitrary element of %, it can be written g = xk(tQ)kZO +
e 1(CQ*F 12z + -+ x1(FQ)Zy + xZ for a certain integer k > 0 with x; € A and
(Xj,xj—1,""*,%1,%,0,0,---) < (c1,¢, ") forall j, 0 < j < k. Wehave Zy = su+
stupp with s =|[B| " and s* = —B|[B| ™" . Then g= Y%  x;('Q) 12 =
Zl;zo X (sﬁju + sl(—l)jB_juByg). Thus p(g) = s+ Z];:o x]'(—l)jB_juByz and || p1(g)*| =
2@ < [s"[1B] %5877 = [s™[|B]i=f=r whichis equal to ¢, since ||B] = v2+aB.
This constant is independent of k. Hence we have
p1(g) C {v € mp(Z?) | v* € [—cqupp, +cqup2]} and the claim. O

Let ¢ = { Z';’ZBI(X]Z,' | oej € [0;1] forall j=0,1,---,m — 1} bethe m-cube at the
origin. For all irreducible ’ Q- invariant subspace F of R™, put 6r = maxyec¢ ||tp(x)||, Ar the
absolute value of the eigenvalue of “Q on F and cr = [B] %. Denote by Qf the closed
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interval centred at 0 in F oflength 2cp ifdim F = 1, resp. the closed disc centred at 0 in F of
radius cg ifdim F = 2.

THEOREM 3.10. — Let B be a Pisot number of degree m > 2 and Q = ©pQp where the
sum is over all irreducible ' Q- invariant subspace F of R™ except Ru. Then the inclusion of
Zg||B|| "' up in the following model set defined by Q holds: Zg||B| 'ug = p1(ZU (—2)) C
{v e m (@™ | v* € Q} in the cut-and-project scheme given by the case (i) in Theorem 3.8.

Proof. — If g = 21;20 xjZj€ % with k=dm —1,and d > 1 an integer, then

d—1 m—1 d—1 m—1
8= Xgmu( Q"2 =Y Q| xgmuzi
q=0 I= q=0 1=0
d—1 m—1
Hence p1(g)* = pa(8) = Brmr(g) = Y Y | Q)1 | Y XgmurZi | |, with:
F qg=0 1=0
d—1 m—1 +00 5
< Az Zil < (Blor> A% = L
I (@Il < Y LBIAE" e | D zi | I < (B 6r ) A% LBJI_A? CF
gq=0 1=0 q=0
This constant is independent of d, hence of k = dm — 1. Itis easy to check that it is an upper
bound for || p2(g)|| if kK # —1(mod m) and also for all g € —%. We deduce the claim. O
CoroLLARY 3.11. — If B is a Pisot number of degree m > 2, then Zg is a Meyer set.

Proof. — If B is a Pisot number, the set Zg, viewed as the set of vertices of an aperiodic
tiling, is obtained by concatenation of prototiles on the line, which are in finite number by
Thurston [Th]. And it is relatively dense by construction. Now, by Theorem 3.10 it is included
in a model set. This proves the claim (see the Appendix). U

In both cases of cut-and-project scheme, as given by Theorem 3.8 where the duality be-
tween the matrices Q and ‘Q clearly appears, the internal space represents the contracting
hyperplane, whereas the line Ru is the expanding direction, when g is a Pisot number. The
duality between both cut-and-project schemes is connected to the substitutive approach by
the following (Arnoux and Ito [Al], Chap. 7 in Pytheas Fogg [PF]): the abelianized Z ]’c of the
iterates of the substitution satisfy Z;.,, = QZ;, and gather now about the line RB. If one takes
the projection on RB of the new set %’ (defined similarly as %) along the other eigenspaces,
one recovers Zg (up to a scalar factor). A striking feature of the internal spaces is that the nu-
meration in base 8(/) (conjugates of B) appears as canonical ingredient to control the distance
between a point of # and its orthogonal projection to the expanding line Ru, in particular at
infinity.

DEFINITION 3.12. — Let B bea Pisot number of degree m > 2. The closure (ZE ||B|| -t uB)* of
the set py (%) is called the canonical acceptance window associated with the set of beta-integers
ZE in both cases (case (i) or (ii) in Theorem 3.8) of cut-and-project scheme: in the case (i) it will
be denoted by R; and in the case (ii) by R.



The notations # and #; (#; C Q by Theorem 3.10) with an ” & ” like Rauzy are used
to recall the close similarity between these sets and the Rauzy fractal (Rauzy [Ra], Arnoux and
Ito [AI], Messaoudi [Me], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). The fact is that the
set # is exactly the Rauzy fractal up to the multiplication by a non-zero scalar factor on each
irreducible Q-invariant subspace (by definition we will speak of quasi-dilation). Let us show it
on an example.

"Tribonacci” case [Me]: let us consider the irreducible polynomial P(X) = X S_x2-x-1.
Its dominant root is denoted by 8, and « and « are the two other complex conjugates roots
of P(X). In this case, the Rauzy fractal is "algebraically” defined by ¢ = {> ‘% e’ | €; €
{0,1} and €;€;41 €42 = Ofor all integer i > 3}. The condition imposed on the sequence (€;) ;>3 is
exactly that given by the conditions of Parry. Indeed ([Frol] and section 2), dg(1) = 0.111 and
the lexicographical maximal sequence is c;cc3--- = (110)®. Now (Proposition 3.6) B -
"1 xo?) and ||X2|? + || X3]|? = 1+ o0&+ «®>&? = B. We deduce that # = 712 ¢ = p,(#) with
the following (metric) identification of C: ¢(C) = Rup, + Rugs where ¢ is the isometry

1 0 u u
which sends the vector , resp. , to B2 , resp. to B3 .
0 1 Up3 —Upg2

ProposITION 3.13. — The canonical acceptance window R (relative to the case (ii) of cut-
and-project scheme in Theorem 3.8) is compact and connected. Its interior int(R) 1is simply
connected, contains the origin. The set R is such that: (i) int(R) = R; (ii) it induces a
tiling of the internal space D modulo the lattice $(Z + Zo): D = U eqpziz00 (PR + 2); (i)
(R+z)Nint(R+7)=0 forall z,Z € p(Z +7x), z + 2.

Proof. — Since # = B~!/2¢&, we deduce the properties of 2 from those of & already
established in Rauzy [Ra], Messaoudi [Me] and [Mel]. O

PropoOSITION 3.14. — The boundary of A is a fractal Jordan curve. A point z belongs to the
boundary of % ifand only if it admits at least 2 distinct Rényi x-expansions. A point belonging
to the boundary of % admits 2 or 3 distinct Rényi x-expansions, never more.

Proof. — The properties of the boundary of & are given in Ito and Kimura [IK] and Mes-
saoudi [Mel]). Hence the claim. O

The properties of #; follow from the equality: p,(#£) = <;, where p, refers to the case
(i) of cut-and-project scheme in Theorem 3.8, and from Proposition 3.13 and 3.14: in partic-
ular, it has also a fractal boundary. We will speak of "geometrical” Rauzy fractals for &% and
; and of "algebraic” Rauzy fractal for &. They are similar objects as far as they concentrate
all the information about the beta-integers and the completions of their real and complex em-
beddings (Rauzy [Ra]). The respective canonical acceptance windows associated with Zg are
R U (—R) and K; U (—Z;) in the two cut-and-project schemes.

4. Additive properties of Zg

In this section, 8 will be a Pisot number of degree m > 2.
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A) Cones, generators and semi-groups.— We will show that any element of % is generated
by a finite number of elements of # of small norm, over N. By projectionto E by g,
the ambiant 1-dimensional space of the beta-integers (Theorem 3.8), this will imply the same
property for Zg. This finiteness property, stated in Corollary 4.6, constitutes a refinement of
Theorem 4.16 (i) (Lagarias) for the Meyer sets Zg.

First let us fix the notations and simplify them somehow. Let 7 : R™ — Ru be the
projection mapping along its ’Q-invariant complementary space (instead of denoting it by
Try), and p, the projection mapping of the cut-and-project scheme (i) in Theorem 3.8. Let
mll : R™ — Ru be the orthogonal projection mapping and 7t = Id — mll (s the
mapping @;.17p,; in the case (ii) of cut-and-project scheme in Theorem 3.8). The basic in-
gredient will be the construction of semi-groups of finite type associated with cones whose
axis of revolution is the expanding line Ru, following an idea of Lind [Li] in another context.
Truncating them in a suitable way at a certain distance of the origin will be the key for finding
generators of ¢ over N. In the first Lemma we will consider the possible angular openings
of these cones around the expanding line Ru for catching the points of #. For 6 > 0, de-
fine the cone Ky := {x € R™ | 0||p2(x)|| < [[7(x)]|,0 < 7(x) - u}.For rw > 0, define
Ko(r) ={x € K| |[Tm@)| < r}, Ko(rhw) :={x € Ko|r < ||[mx»)| < w} If . isan
arbitrary subset of R™ , denote by sg(.+#) := {> g.:e MiXi | mi € N,x; € .} the semigroup
generated by .«£. Let p be the covering radius of the subset % U (—%) with respect to the
band %; x Ru: p is the smallest positive real number such that for any z € R™ such that
p2(z) € R; the closed ball B(z,p) contains at least one element of Z U (—%). A lower
bound of p is given by the covering radius /m/2 of the lattice Z™. Referring R™ to the basis
{B, V5, V3, -+, Vg2, } and using Corollary 3.4 and Theorem 3.10 we easily deduce the following
upperbound of p: 1||B|| 7'+ }_p cp, where thesum Y means there and in the following ev-
erywhere it will be used ”the sum over all irreducible ! Q-invariant subspaces F of R™ except
Ru”. The notation diam(-) will be put for the diameter of the set (-) in the following.

ProposiTioN 4.1. — (i) Forall 6 > 0, there exists an integer jy = jo(0) = 0 such that
Zj € Ky forall j = jo; (ii) if 'Q is nonnegative, and mln{Ej,l lj=12-,m} >
2||Vi||(diam(&;)) , then the following equality jo(0) = 0 holds forall 0 < 0 < 0,i,, where
Omin = —2 + (diam(;)) |4 || 'min{&;, | j=1,2,--- ,m}.

Proof. — (i) Let 6 > 0. We have just to prove that m(Z;) - u tends to +oc and not to
—oo when j goesto +oo. Let j > 0. Write Z; = 1(Z) + p2(Z) = rr”(Z]) + 1T (Z]) hence
Imizp -z | = Imtzp - pzpll < | @) 4] pe2p) |1 = | 2z —mz) |1+
|| p2(Zj) || < 2| p2(Z)) || < 2diam(%;). On the other hand || 7TB(1T”(Z]))—7TB(Z] ) || =1 (Z;-

) (ug-wup— B~ BT ug || = | (25w (ug-w — | B 87| = | ma(mhz)) || < | w2 | <
diam(#). Hence, since ug - u > 0 (Theorem 3.3), | Z; - u — (up - u)_1||B||_1[3f | < (up-
w)~'diam(#). Consequently || w(Z;) — (up-w) || B]| ' B/u| = | m(zj) —wl(z+7l(z;) -
(ug-u)~ 1HBH lﬁJuH<Hn(Z)—nll D+l (Zj) = (up-w~Y||B|| 7 B/ u || < 2diam (%) +
(up - u)~1)diam(2). The quantity rr(Z) u tendsto +0o as (up - u)~ ' ||B|| '8/ when
j — +o0o. Then there exists jo suchthat Z;-u > 2diam(%;) + ((ug-u)~'+0)diam(%;), for all
Jj = Jo-Asaconsequence(Z;) -u > Z;-u—2diam(%;) > ((ug-u)~'+0)diam(2;) > 0 for
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all j > jo. Weclaimthat Z; € Kp forall j > ]0 Indeed, since || p2(Z;)| < diam(2;),
the inequalities hold: Qsz(Zj)H (0+ (ug - u)~ sz(Z | <0+ (up-u)~ 1ydiam(28;) <
m(Zj) - u=|m(Zp| forall j= jo.

(i) If 'Q is nonnegative the coefficients a; in P(X) are nonnegative with ay # 0 and at
least one of the coefficients aj, k > 1, is non-zero since B is assumed to be a Pisot number
and not a Salem number. Hence (Proposition 3.2), since P’(8) > 0, we have ”V1H_1§1,1 =
Il ()| = 2o - u = ﬁ >0and |Vi]| '€ = |nl(Z))| = Z; - u forall j=1,2,-- - m—
1 with |[Vi]|"'min{&;,|j=1,2,---m—1} > % > 0. Because {Zy, Z1,- -+ , Zy—1} isthe
canonical basis of R, any Z j»J = m,can be written as a combination of the elements of this

basis with positive coefficients. Hence, Z; - u > |Vi|| "'min{&;; |1 = 1,2,--- ,m — 1 } forall
j = 0.Buttherelation Z; = n(zj)+p2(zj) = ntl(z;)+m*(Z;) impliesthat m(Z;)—nll(Z;) =

ni(Z;) — p2(Z)). Hence, |m(Z;) - u— Z; - u] [t Zpll + |p2(Z))| < 2Hp2 Zp] <
2(diam(#%)) forall j > 0. Therefore m(Zj) -u > |Vi|” 1mln{ Eall=12---  m—-1}—

2diam(#;) whichis > 0 by assumption for all j = 0. Hence, by definition of Qmm,rr(Z-)-u =
|T(Z)|| = Omin(diam () = Omin|| p2(Z))|| = 0||p2(Z;) || forall j >0 and 0 < 6 < Opin.
We deduce that Z; € Ky forall j > 0 and 0 < € < 6y, Let us observe that the conditions
of the present assertion are generally not fulfilled. U

We now turn to the question of generating the elements of # by a finite number of them
over N. The idea we will follow is simple: let us consider the set of the semi-groups generated
by a finite number of (arbitrary) elements of # N Ky for all 8 > 0; in this set, we will show
the existence of semi-groups (0 > 0 fixed) containing K,y N %, that is containing % excepta
finite number of elements of Z close to the origin. Then we will minimize this finite number
of excluded elements. For this we will consider the maximal possible values of 6. In final this
will provide a suitable value of 6 and a control of the norms of the generating elements of the
semi-group which will contain Z.

LEMMA 4.2. — (Lind [Li]) Let @ > 0. If § = (20 +2)"! and x € Ky with ||m(x)| =
(x) - u > 4, then [x — Ko(1,3)] N Kyg contains a ball of radius 6.

Proof. — [Li] Take y = 2u + 3(mr(x) - u)*lpz(x) . We will show that the ball centred at
x — y and of radius § satisfies our claim. Suppose ||z|| < 6. Then x — y + z € Ky . Indeed,

20 ||p2(x — y + 2)|| <20 [(1 — 3(mr(x) - u)*l) | po(x)|| + 5]

< [1 — 3(m(x) - u)*l] (m(x) - u) +2020+2) " = (m(x) - u) —2 — 2(20+2)!

but py(y) =2.We deduce 20 || po(x — y+2)|| < (x — y+2) - u. Letus show that y — z € Kp.
We have 20| p2(y)| = 69(1T(x) ) Hipe (0] < 3(m(x) - wy~t(m(x) - u) = 3. Therefore
0l p2(y — 2| < O0(p2(p)]| +6) < 3+0(20+2) "1 =2—(20+2)"" < 1 (y — 2) - u. Now, since
0 < 1, wehave the 1nequa11t1es 1< Tr(y — z) - u < 3, establishing the result. O

THEOREM 4.3. — Let 0 > 0. If r issuch that r > p(20+2), then K,gN ¥ C sg(Ky(r)NZ).

Proof. — Lemma 4.2 implies the following assertion: if x € K¢ is such that m(x) - u >
4r with r > p(20 + 2) , then [x — Ky(r,3r)] N Kyp contains a ball of radius ré6 > p. But
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p is by definition the covering radius of % U (—%), hence this ball intersects % . Now, let
o = Kp(4r) N & be the finite point set of % and let us show that K,g N % C sg(.«£). First the
inclusion Kp(4r) N % C sg(.«¢) holds. We now proceed inductively. Suppose Ko (') N % C
sg(.#) forsome 1’ > 4r. We will show that this implies Kyo(r' + r) N % C sg(.«#) , which will
suffice by induction. For this, let us take g € #Z N [Koo(r' + 1) Kop(r)]. From Lemma 4.2 and
the above, there exists an element, say y, in %, contained in [g — Ko(1,3r)] N Kop(1'). By
assumption, y € sg(«#) and y = g — x for some x € Ky(r,3r) N Xy C sg(«). Therefore
g=x+y € sg(&) +sg(#) C sg(). This concludes the induction. O

LEMMA 4.4. — Forall 0 > 0, the following set: #(0) = {x € Z| p2(x) € Rj,x &
Ko(p(20+2)),x & Kyg } is finite.

Proof. — The proofis clear since all g € % such that m(g) - u > 2p(20 + 2) belongs to
K. O

Define 0 := max{0 > 0 | #(#(0)) isminimal } (where #(-) denotes the number of
elements of the set (-)).If Q is nonnegative and the condition (ii) in Proposition 4.1 satisfied,
then the equality #(£(0)) =0 holds for 0 < 0,;, and therefore 0 r > 0in/2 .

THEOREM 4.5. — (Minimal decomposition). — Any element g € £\ %(0) can be ex-
pressed as a finite combination over N of elements of the finite point set Ko, (p(20f +2)) N 2.

Proof. — Itis a consequence of Theorem 4.3 with 6 = Qf and r = p(29f +2). O

COROLLARY 4.6. — There exist two disjoint finite subsets F = {HBHWB(g) ‘uplge Z(Qf))}
and 7' ={g1, &, - g} C {||B||1T3(g) ‘up|ge Kgf(p(zef +2)) N CZ/} onE such that

ZE CF U NI[gLg 8l M

The generating elements g; € F' satisfy: ||gi|| < p(20 +2)|| B~ || =" + diam(2;). If the
couple (7, F') issuch that n = #J' is minimal for the inclusion relation (1) and F is empty,
then the degree m of B divides n.

Proof. — To obtain the inclusion (1) it suffices to project % by mp and to apply Theorem
4.3 and 4.5 and Lemma 4.4. Let us show the upper bound on the norms of the elements of 7’.
If ge Kgf (p(20 ¢ +2)) N ¥ is decomposed as g = 1(g) + t, where ¢ € %, then, by Theorem
3.3 (i), we have: ||[mg(g)| < [[m(@||[|Bl" |Vi[~! + diam(&). But ||m(g)|| < p(20f +2).
We deduce the claim. Now if ZE C N[g1, &, ,8] the group Z[gi, g, -, gy] contains
Zp and the equality Z[Zg] = Z[g1, &, - , §;] necessarily holds. By Theorem 4.16 we deduce
that m divides n since therank of Z[Zg] = Z[N[Zg]] is n when n is the smallestinteger such
that the set inclusion (1) holds and that % is empty. O

B) Preperiods in the addition of beta-integers.— The Delone set Zg endowed with the usual
addition and multiplication cannot have a ring structure otherwise it would contain Z but it
is obvious that Zg contains no subset of the type AZ,A > 0. This absence of ring structure on
Zg for the usual laws can be partially overcome by controlling the fractional parts of the Rényi
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B-expansions of x+y and x —y when x,y € Zg. Thisis the aim of this paragraph to focus on
the geometrical meaning of the sets 7 and T’ as stated in Theorem 4.8 and of the exponent
q in its Corollary 4.9.

The projection mappings will be the ones redefined (in a simpler way) at the beginning of
the subsection A). Let R > 0 and I be an interval of R having compact closure. Let us
extend the m-cube € for reasons which will appear below. Let ¢’ = { > "~ iz €
[—1;1] forall j = 0,1,---,m — 1 }. For all irreducible Q- invariant subspace F of R",
put 5’FI = max,c¢ |Tr(x)||, Ar the absolute value of the eigenvalue of “Q on F and cf =
|B] lf—ian. Denote by Q). the closed interval centred at 0 in F of length 2¢f ifdim F = 1,
resp. the closed disc centred at 0 in F of radius ¢ if dim F = 2. Let Q' = ®pQf. We will
denote by I := {x € R™| po(x) € |B]7'RQ/,mp(x) - ugp € ||B|| 711} the slice of the
band defined by |8 'RQ’ in the internal space, extended by symmetrization with respect to
|B]"'RQ (compare the definitions of Q' and Q in Theorem 3.10), of axis the expanding line
Ru.Let Fg:= {frac(z) | z = aiB* + ax_1B* '+ -+ af + ap,a; € Z,|a;| < R} C [0,1).

LEMMA 4.7. — Theset {||B||mp(g) - up | g € Jjo1),re|p) NZ™} is a finite subset of Z[B] N
[0, 1) and the following inclusion holds: Fr C {||B||ma(g) - up | & € Jjo,1),re(p) N 2™}

Proof. — The finiteness of the set is obvious: it is a discrete set in a subset of R” having
compact closure. The inclusion relation is a reformulation of Lemma 2.1 in [Bu]. Let us briefly
recall the proof. Let z = z];:() ajB’ with a; € Z,|a;| < R. We have also z = Z’;?OO xjB/ as
I;:Oxjﬁf .Since 0 < x; < |B] and
|a,~| < R, frac(z) € [0,1) is a polynomial in S, the coefficients of which have their absolute

B - expansion of z . Therefore z—int(z) = S5 aipk—>"

values bounded by R + |B]. Here the coefficients may be negative or positive. This is why
we have introduced ¢’ instead of @. We deduce the result in a similar way as in the proof of
Theorem 3.10 for the computation of the upper bound cr, except that now itis with Q’, ¢} and
the fact that the absolute value of the digits is less than R + | 8]; this obliges to multiply Q' by
the factor (R + [B])/|B]. The set Fy is finite (Lemma 6.6 in [So]), and (Proposition 3.5) is in
one-to-one correspondence with a subset of the finite point set Jjg 1) rs|p|- We deduce the

claim. O
L _ . 1/2

Let L;g := | min {[111(/3(’*1) H1t 1n( (Z,’C”ZOI(B“*”)Z’C) ! w,,mm) } | where the

minimum is taken over the real positive embeddings of Q(8) (i=1,2,...,s and B(i_l) > 0)

and where wrp = max{||y]| | ¥ € Jir}. Let us consider an element z € Fz. Its B

- expansion: Z;‘f’l z_ jB_f is eventually periodic [Be] [Sch] and therefore can be written

ki i k k+1 i . ..
> j‘):(lz> BT+ 20 2 ].Oz(kzo)(;() +J;<r)(rz()i)1 z_ jB~ 7 where the integers ko(z), r(z) > 1 are mini-
mal. We will denote by Jr = max{ky(z) | z € Fg} the maximal preperiod of the B - expansions

of the elements of Fg. An upper bound of Jz will be computed below.

THEOREM 4.8. — (i) Forall x,y € ZE such that x+y has a finite B-expansion the following
relation holds: x +y € B~ Z; where L := minyLjy1)28(, ) ; (i) the following inclusions
lation hold, Bt 74 wh in{Lig1)215, o) }; (ii) the following inclusi
hold: Zj+ 7} C Zy+T,Zy — 2y C Zp+ T, where T = {||B||mp(g) - up| & € Fo,.1) 35 N 2™}

and T' = {||B||[mp(g) - up | g € F_1,41)28) N Z"}.
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Proof. — (i) Let x = xB5 + -+ xp and y = ylﬁl + --- + ) denote two elements of
Zy. Then z = x +y is of the form z = aij+'---+a0 with 0 < aj < 2|B] . Write now
the B - expansionof z as z = > "%z ;877 + 3% (2;B/ and assume it is finite. Then
it admits only a B-expansion up till the term indexed by its preperiod ky(z) and the period
has necessarily the form given above with r(z) = 1 and z_j =0 assoonas j > ko(2).
Then Z];O:(lz) z_ B~ = (ajB) + - +ap) — (3, 2B"). This means that the fractional part
21;0:(12> z_jB~7/ is a polynomial of the type Z};O biB! with —|B] < b; < 2|B] hence with
|bi| < 2[B] . Theset E) g is finite (Lemma 4.7) and the set of all possible fractional parts of

elements of ZE is exactly in one-to-one correspondence with a subset of the finite point set
Jo,1),318) N 2™ of 2™ . Therefore, there exists a unique g, = Zi];o biZi € Jo,) 318 NZL™ such
that ||B||mp(g;) - ug = zijlo bip! = z];":(f) z_ jB~/ = frac(z) . Let us apply the real and complex
embeddings of the number field Q(B). It gives: Z]]c‘):(lz) z,j(B("_l))_f = Z]f.zo bj(B(i_l))f for
all i=2,3,..., m. For the real embeddings in particular this implies (Proposition 3.6):
Lo by(BI) Y 2 (g
UB,i =
[1Xi] [1Xi]

! 2.
g,i(8z) = WB,i(Z bjZj) = Up,j

j=0
forall i = 1,2,---,s withall z_; > 0. The case of real embeddings will provide a direct
computation of the first upper bound Lg;)2|g) of the preperiod and merits to be isolated.
Indeed, since in this case 0 < B(i_” <1 forall i € {2, 3, ,s}, with s assumed > 2, and
that all the digits z_; are positive, we necessarily have: || X;| ™" (B("_l))ij > Yo 3|p) aS

1 172
soon as j is large enough. Recall that || X;|| = ( ,’CZOI(B(HI))ZIC) . With the definition of

Lio;1),2| g » this implies that the sum of the positive terms le_

-(l(lz) z_ j(ﬁ(i_l))_j cannot contain
any term indexed by — j with j > L1 2|5)- Hence, ko(z) < Lig;1)2(p)- As for the negative
real embeddings and the complex embeddings they will provide the second upper bound of
the preperiod by the computation of J;|4: indeed, its calculation gives an upper bound of the
number of terms ky(z) in the fractional part of z, hence, after reducing frac(z) to the same
denominator, which will be Bkom, we immediately get the result; (ii) (This is reformulation of
Theorem 2.4 in [Bu]) First, we have Fg| C Byg second ZE + ZE C ZE + Bg| ZE — ZE C
Zg + (Fg) U —Fg)). Since Q' is invariant by inversion and that Fgj U —Fg C {|B|ms(g) -
ug| g € Fonplp) NL"HUA{|Blms(8) - up| g € F1,01218) N 2™} = {||Bllma(g) - us | g €
I—141)2(8] N 7™} (Lemma 4.7), we deduce the claim. ]

COROLLARY 4.9. — Let q = min{L(_,.1)2(g], J2|g|}. Then, for all x,y € Zg such that
x+y and x — y have finite B-expansions, the following relations hold: x + y (resp. x —y) &€

B~ Zg.

Proof. — Indeed, T C TU (—T).Hence Zg+Zg C Zg+(T U (—T)).Since TU (—T) =
{lIBllmp(g) - up | g € F—141)318) N 2™}, we deduce the exponent g from the definition of
L; g and from Theorem 4.8. O

Computation of an upper bound of the maximal preperiod Jr.— We will use the case (ii)
of cut-and-project scheme in Theorem 3.8. Let {Z_;} j> be the sequence of vectors defined
by Z = ("Q)/Z_ ;. We denote as usual the algebraic norm of B by N(B) = Ngs)q(B) =
Hl’:gl BV . Recall that ay = (—1)™ IN(B).
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LEMMA 4.10. — (i) The following limit holds: lim j_, || Z_ ;|| = +o0; (ii) forall j €
N, Z_j € N(B)~Iz™. In particular, if B is a unit of the number field Q(B) , then all the
elements Z_ j belongto 7™ .

Proof. — (i) Since \/3(")]*1 > 1 forall i=1,2,..., m— 1, theinverse operator (‘Q)~! acts
as a dilation by a factor of modulus strictly greater than one on each ’(Q-invariant subspace
F in R™ except Ru: all the non-zero components of the vector Z_ ; (which never belongs to
Ru) in the system {V;};-23...,,n diverge when j tends to infinity, hence the claim. (ii) Solving
the equation 7, = (*Q)'Z_, showsthat Z_, canbe written Z_; = —ao_l(aIZo +apZy+ -+
Am-1Zm—2 — Zm—1) € N(B)~1Z™. Since by construction we have Zj = (tQ)_l(Zj+1) for all
j € 7,applying (‘*Q)~! to the last equality clearly gives Z_, € N(8) 22" and, by induction
Z_p € N(B)_th forall h > 0. Now itis classical that S is a unit of Q(g) if and only if
N(B) = £1 establishing the result. O

THEOREM 4.11. — Denote by

arel gl (1—|BED|™) +
e%’R:<|x€Rm|||1TB,,-(x)||< Vo relp) (1 1B7701") LBJ) i=2,3,---,m}

-1 - 1/2 . ’
(i 0 (1= 10|
the cylinder (band) of axis the expanding line Ru and ¥ = {x € Bg || B||mp(x) - ug €
[0,1)} theslice of the band HBg . Then this slice is such that Jgp < #(Yg N N(B)~™7™).

Proof. — Each element « € Fp can be written « = Z?:’O’l Piﬁi with p; € Z and
Z:Zo_l piZ; € Q'[O_l)_mwﬁzm (Lemma4.7). Thus, | p;| < Wio),re|p) forall i=0,1,---, m—1.

Now ([Sch] and section 2), the following equality holds for all n > 0:

T"(e0) = B" - (fx - Ek(O()ﬁk> =y et

k=0 k=1

where (ex(x)) >0 is the sequence of digits of the Rényi B-expansion of « and (r{m, rz("), -

, 7)) € 7™ . Recall that €y(x) = || = 0. The real and complex embeddings of the number
field Q(B) appliedto T"(«x) provide the m equalities, with j=1,2,--- , m:

m—1 . n m
(13(];1))” : (Z pi (ﬁ(jfl))l - ZEk(lX) (B(jl))k) = Z ri (ﬁ(];l))ik

i=0 k=1 k=1

- i 1/2 1)\ — i—1)\—
Wededucethat (zm 1,3(: 1),21«) H"Bi(zkm1 (n>(B(] Dy=k|| = ‘zkmzl rl(cn)('B(] ) k‘

Z ’p HB(] 1)’n+l+|_i8 Z ’B(] 1)‘]6 ’B(] 1)‘ I:W[O,l),R+|_BJ (1— ‘B(]_l)‘m) + LBJ] for

al n >20,j=23,---,m wuh 0 < Zk 1 ">B_ < 1. From Proposition 3.6 and Lemma
4.10 the element Yy L, r k">B k" can be uniquely lifted up to the element Py r,(c"> Z_ €
N(B)~™z™. Tts projections by the projection mappings mg;, i = 2,3,--- ,m to the Q-
invariant subspaces of R™ are bounded by constants which are independant of n . The
restriction of the lifting of the operator T to ¥z N N(B)~™Z™ has self-avoiding orbits (to
have a preperiod) whose length is necessarily smaller than the number of available points in
the volume . We deduce the upper bound #( ¥z N N(B)~"2™) of Ji. |
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Appendix.- Classification of Delone sets

We will say that a subset A of R” is (i) uniformly discrete if there exists r > 0 such that
lx —y|| = r forall x,y € A, x # y, (ii) relatively dense if there exists R > 0 such that,
for all z € R”, there exists A € A such that the ball B(z, R) contains A, (iii) a Delone set if
it is relatively dense and uniformly discrete. Delone sets are basic objects for mathematical
quasicrystals [La2] [MVG].

DEerINITION 4.12. — A cut-and-project scheme consists of a direct product E X D, where
E and D are Euclidean spaces of finite dimension, and a lattice L in E X D so that, with
respect to the natural projections py : EXD — E,py : EXD — D : (i) py restrictedto L is
one-to-one onto its image p(L), (ii) p2(L) isdensein D. We will denote by * the following
operation: x := p, o (pllL)_1 : p1(L) — D.

DEerINITION 4.13. — A subset A of a finite dimensional Euclidean space E is a model set
(also called a cut-and-project set) if there exist a cut-and-project scheme (E X D, L) and a subset
Q of D with nonempty interior and compact closure such that A = A(Q) = {pl(l) | | €
L, po(l) € Q}, equivalently = {v € p1(L) | v* € Q}. Theset Q is called acceptance window.

Meyer sets were introduced in [Mey]. By definition, we will say that A, assumed to be a rel-
atively dense subset of R”, is a Meyer set of R” ifit is a subset of a model set. Other equivalent
definitions can be found in [Mo] or [Mey]. For instance, A is a Meyer set if and only if it is a
Delone set and there exists a finite set F such that A — A C A + F; or if and only if it is relatively
dense and A — A is uniformly discrete. The above definition shows that the class of Meyer sets
of R" contains the class of model sets of R”.

THEOREM 4.14. — ( Meyer [Mey]) Let A be a Delone setin R" such that nA C A for a real
number n > 1. If A is a Meyer set, then n is a Pisot or a Salem number.

DEerFINITION 4.15. — A Delone set A is said to be finitely generated if Z[A — A] is finitely
generated. A Delone set A is said to be of finite type if A — A is such that its intersection with any
closed ball of R" is a finite set.

The class of finitely generated Delone sets of R” is strictly larger than the class of Delone
set of finite type of R”, which is itself larger than the class of Meyer sets of R” [La] [Lal].

THEOREM 4.16. — ( Lagarias [La]) Let A be a Delone set in R" such that nA C A for a real
numbern > 1. The following assertions hold: (i) If A is finitely generated, then n is an algebraic
integer. If the rank of Z[A] is s, then the degree of n divides s, (ii) If A is a Delone set of finite
type, then n is a Perron number or is a Lind number.

Although Zg is associated with two canonical cut-and-project schemes when § is a non-
integer Perron number, the converse of the assertion (ii) of Theorem 4.16 seems to be an open
problem. It is at least already related to the question Q1’ of the introduction and to various
arithmetical and dynamical problems [ABEI].
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