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Abstract

This work deals with a model-based approach to non-
linear (NL) parabolic distributed parameter system con-
trol. We address two problems in the optimization and
control of the autoclave lay-up curing process as pre-
sented in [11]. The first is to find the best process tra-
jectory corresponding to the shortest possible operating
time. The second is to determine the process control re-
quired to track the optimized trajectory within the con-
straints of the system. In previous work, a simulation
based approach was used called local criteria optimiza-
tion (LCO) [10]. Here the former problem is stated as a
constrained optimization problem. A predictive type ap-
proach with a penalty method is solved by the Levenberg-
Marquardt (LM) algorithm. For the tracking problem,
the well-known Internal Model Control (IMC) structure
is used for the predictive control strategy. Finally, a time-
varying linear model around an initial profile with param-
eters depending on the nonlinear model is used for the
on-line optimization like in [4].

1 Introduction

This paper deals with the distributed parameter systems
(DPS) control governed by non-linear parabolic partial
differential equations where we state two problems. Find
the control and output trajectories such that the process
output reaches a minimum extent in a minimum time.
Then, find the process control in order to track in process
output the best trajectory induced by the first problem.
Concerning the former problem, a first approach consists
in the model based approach. The most direct way is using
the Pontryagin’s minimum principle developed through
calculus of variations. But, in spite of basic methodol-
ogy that guarantees optimal solutions, it does not seem to
be easily implementable for NL DPS [8]. It is also possi-
ble to use an expert control [7] where finding pseudo-rules
is a very difficult task. For batch processes, a simulation
based optimization scheme with heuristic rules for control
has been found to be more successful. This approach was
previously applied to the process described in [10].

In this work, we propose a model-based approach. A con-
strained optimization problem, set in finite dimension, is
combined with a predictive approach and solved using a
nonlinear programming (NLP).

Few works have dealt with distributed parameter systems.
The existed ones deal with structurally interested cases for



one partial derivative equation but not for a set of equa-
tions. A first approach consists of using a transformation
method based on the inverse scattering problem developed
by Magri [9], where an exact linearization by geometrical
transformation is proposed. The main problem is that the
order of this transformation has to be fixed by a non trivial
manner. In the nonlinear distributed parameter systems
study, the most popular approach is the linearization ap-
proach, or else the finite dimensional approximation [12].
Concerning the control synthesis, explicit control law be-
comes more difficult: in [1], the problem is to solve Riccati
equations, but therefore, it is still an open loop control.
In [6], a structural approximation of the DPS is done in
finite dimension taking into account of constraints. In
this paper, we use an optimization approach taking into
account of various constraints. We use also the Internal
Model Control structure in its indirect version that brings
to a predictive control approach by minimizing a criterion
over a receding horizon [3, 4].

This approach is developed through an application ex-
ample: an autoclave curing process used to manufacture
composites from a thermosetting polymer matrix. The
first objective is to find the fastest curing cycle, taking
into account of constraints on the temperature and the
degree of cure. Then, the control aim is to track a given
temperature profile in process output. In the first section
that follows, we present the autoclave curing process and
its control problem: we describe the nonlinear boundary
control system. In the next section, the reference deter-
mination problem is stated as a constrained optimization
and the results are shown. The tracking problem, stated
also in term of constrained optimization, is then exposed.

2 Process and control objectives

The process being studied is an autoclave curing pro-
cess used to manufacture composites with a thermosetting
polymer matrix. Prior to cure, the polymer is a viscous
fluid. The assembly (Fig. 1) is sealed in a vacuum-bag and
placed in an autoclave. It is then subjected to a prescribed
autoclave temperature 7T, (t) (the process control variable)
and pressure cycle, known as a cure cycle. Due to the ap-
plication of heat, the resin solidifies through an irreversible
exothermic chemical reaction of cure. The model version
used here is in one spatial dimension since a 2-D problem
has demonstrated that the temperature gradients in the
lateral direction were negligible. The critical dimension is
therefore across the thickness and is divided in three parts
Du, D., Dy (Fig. 2).
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Figure 1: Composite layup [10].
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Figure 2: Spatial domains.

At the edge of the composite (Dy, D4) , heat transfer
resistance in the autoclave, the bag, the fabric and the
mold have been lumped. In the composite part (D,), the
behaviour of temperature T'(z,t) is linked with the dis-
tributed degree of cure a(z,t) via the internal heat gener-
ation term. This degree of cure is equivalent to an extent
of reaction and ranges from 0 to 1.

2.1 Nonlinear boundary control system

The curing process can then be described by the follow-
ing NL system (Snr) [10] (where the model parameters
description can be found):
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with the boundary conditions:
% T(eq+ ec + ey, t) = T,(t)
T(0,t) = T,(t)

with the output:
y(t) =T(eq + e, t) witht >0
and with the initial conditions:

} with ¢ > 0

T(2,0) =T, with z € DUOD
l a(z2,0) =0 with z € D,
where the center point is located at ¢ = fifeeten,
0D = {0,eq + e+ e,} and D = Dy U D, UD

This system can be represented by a more general
boundary control nonlinear distributed parameter system
[(SNL),E(Z),w(z,t),u(t),y(t),A,B, C, € DUadD, t >
0] :

= A(w(z,t)) withzeD, t>0
)=0 with 2€ 9D, t>0

u(t)
(Snr) t) with z€e DUID, t >0
)

where w(z,t) is the state defined on a Hilbert space X, u(t)
is the control and y(¢) the output. A is a NL operator, B
and C are bounded operators. Moreover, we assume that
this NL model is regular in the sense of [2].

3 Reference determination

The manufacture of such thick composites is fraught
of problems. The most detrimental effect is an inter-
nal temperature exotherm resulting from the heat gener-
ated by the cure reaction within the thermosetting resin.
Hence, large thermal gradients can develop, which result
in nonuniform curing. Moreover, if the part cures from
outside inward, the large thermal stresses trapped in the
part can lead to delamination and render it unusable. The
task in optimizing lies therefore in decreasing the process
time, while simultaneously improving the reliability and
quality of the final product.

The problem is to find the control variable u(t) such that
the operating time is minimum taking into account of the
following constraints: limit thermal gradients and ensure
an inside-out curing. Obviously, the determinated control
variable must be physically applicable: its amplitude and
its control must be bounded. This problem can be ex-
pressed as a discrete time constrained optimization prob-
lem. At each sampling time k, we seek a vector p min-
imizing a performance index J. This vector p is the N,

horizon control sequence. At each sampling time k, only
the first component of the final p is kept and the proce-
dure is performed again at the next sampling time. The
performance index is chosen in order to maximize the de-
gree of cure dynamic at the center of the polymer over a
receding horizon Np:

_k+N
maz J(p) = % )
P ]:

5= (u(k)..u

The nco constraints must be satisfied at any time:

| lale I

(k+Nc -7

(Po)

9imin < gz’(UJ, U) < Ji,maz (]- <i< TLCO) (1)

Then, these constraints are reformulated by rescaling
them such that they have the same weight in the prob-
lem:

g —gimin <

9i,maz —9i,min

9i (W,u)—gi,min —1<0

gi,maz —gi,min

(Co)

The maximization problem (Pg) is finally formulated un-
der an equivalent minimization problem:

+
min J(p) = 1y | TR
(Pe) ci(Pp) <0 (i eJI k+{1 — QJnco})
5= (u(k).u(k + N — 1))7

In order to solve the constrained optimization problem
(P;), we adopt a nonlinear programming method that
combines the interior and exterior penalty methods [5],
a transformation method and an unconstrained nonlin-
ear resolution method. The advantage is that constraints
can be easily introduced in the formulation. We then ex-
pressed the constrained problem into an unconstrained pe-
nalized optimization problem where the new performance
index Jio¢ to minimize is:

(Pu) {

From the previous performance index J in (P.), we have
added an interior (resp. exterior) penalty function de-
pending on the constraints. It is weighted by a penalty
coefficient pins (resp. Pest)-

mﬁin Jiot (13) =

P = (u(k)..u(k + N, — 1))T

3.1 Interior penalty method

The main advantage of this method is that we can en-
sure that every constraint is checked at any time for any
control sequence p tried by the resolution method. It is
therefore a very interesting way if we have to determine
an on-line control: the algorithm has to be able to give a
physical solution even if the resolution method is stopped

J(i)) + Dint Jint (ci (ﬁ)) + Deat Jezt (ci (ﬁ))



due the maximal computational time constraint. The ma-
jor known drawback is the initialization problem. For the
nci constraints set here, the interior penalty function Jp;
can be an inverse barrier function [5]:

i=nci —]

Jint(ci(P)) = El

) ?

Jint is defined on K = {p such that ¢;() < 0}. The

advantage of this formulation is that, in the domain K,
Jint is always a penalty term since it takes always positive
value.

3.2 Exterior penalty method

The advantage of this method is that the vector p can be
initialized anywhere. The induced drawback is that the
constraints can be violated during the calculation time.
For the nce constraints stated here, the exterior penalty
function Jeut is [5]:

3.3 Resolution method

The problem (P,,) can now be solved by any unconstrained
optimization method. In this domain, the Levenberg-
Marquardt’s algorithm is one of the most important [5].
The evolution in the parameters space P follows the law :

~i ~i 2 i — 1
P =5 — (VI + M)V, (3)

Algorithm modification

But, a structural problem can occur. Indeed, this algo-
rithm is able to find a solution anywhere in P. Since the
interior penalty function J;,; is defined anywhere out of
the boundary of the constraints domain K, some p vector
are prohibited. Moreover, we have to ensure that any p
tried by the algorithm is such that J;,; is a positive term
otherwise it is not a penalty term. This leads to a modi-
fication in the algorithm by introducing a new parameter
0:

~i+1 =i

P =5 = 0(V Tiy + AD TV, (4)

Parameter transformation

Considering the nonlinear model (Syr), a numerical di-
vergence can happen with the Arrhenius kinetic behav-
ior and the temperature therefore has to be kept over
a minimal value. The only way to avoid a small poly-
mer temperature is to forbid small control values. So, the
constraints dealing with the control amplitude are stated

using a parameter transformation instead of the interior
penalty function :

(5)

Umin < U < Umaz

becomes:

_ Umaz T Umin

Umaz — Umin ¢

5 5 anh(w)

(6)

where p = (w(k)...w(k + N. —1))T is the new parameters
vector to find that can take value anywhere in P. In this
application, this replaces implicitly 6.

3.4 Simulation results

Concerning the constraints, the control sequence com-
puted must be physically attainable:

Tamin S Ta S Tamaz (7)
Tamin S Ta S Ta,m-n (8)

As we mentioned before, control amplitude constraints
have been expressed using a transformation method. Since
computational time is not constrained here, the other con-
straints are set using an exterior penalty function. We just
take into account of the inside-out cure problem. This is
done by introducing fictitious constraints. This means
that we express our process behavior skill. At first sight,
the inside-out cure happens if the temperature inside the
polymer is almost uniform and has reached a minimum ex-
tent. We have therefore put thermal gradients constraints
and extent of cure gradient constraints :

Airmzn S T(ed + €c, t) - T(C, t) S Airmaar:
Aamin < aleq+ e t) —ale,t) < Atmaz

9)
(10)

The previous framework is then applied to the optimiza-
tion problem (P,). The remaining problem is to tune the
horizons. With N, =1, N, = 15, the best resulting tra-
jectory for temperatures and extents of cure inside the
composite are shown:
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Figure 3: Temperatures
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haviour

In this case, the cure is completed in 163 minutes. The
inside-out cure is ensure but the thermal gradient seems
to be too important when the exothermic reaction occurs.
At each sampling time, the algorithm output condition en-
sures that the most violated exterior constraints related to
the final solution p does not exceed 1% of the constraints

scale (cf (Co)):

ed

Calculate
0.014 - Maximum allowed

0.012 -

Constraint overflow ()
o

100
Time (minutes)
Figure 5: Algorithm output condition

With this method, we have found the best manner in
which to cure the polymer. The problem is now to find
the control of the closed-loop system such that the output
temperature tracks effectively the optimal output temper-
ature yres(t) induced we just have found. This is a more
classical control problem that follows.

4 Nonlinear predictive control

The control problem can be stated as follows: for a given
optimal output temperature trajectory (Fig. 3), find a
control strategy such that the process output tracks this
profile with the above control constraints and the extent
of cure crossover constraint. We restate this control prob-
lem again as a constrained optimization problem with a
predictive type approach in the Internal Model Control
(IMCQ) like structure.

4.1 IMC structure

The objective is to find a controller such that the process
output y, tracks some reference points set y,.s in spite of
some modelling error and added disturbances. It can be
an explicit control law [13]. But for nonlinear systems and
time-varying linear systems, the indirect one seems to be
more feasible: at each sampling time, a control sequence
over a control horizon optimizing a criterion is computed
[3]. It uses the process output predicted over the predic-
tion horizon by the model. The control structure becomes
the following one:

y(©)
Process

+ e(t)

)xln(rl) + X(l)*' Optimization u(®
algorithm

Nonlinear model
y(©)

Figure 6: Internal Model Control structure

The optimization problem is similar to (P¢). It is formu-
lated in the discrete form by minimizing a classical track-
ing criterion over a receding horizon Np:

j=k+N, . .
j-:k+1 "[lyrer (5) — yp(4)

P = (u(k)..u(k + N, — 1))T
9i,min < 9i(w, 1) < Gimaa (1 <@ < nco)

maz = 1% [1?
P

To solve this constrained optimization problem, we choose
again the penalty method associated with the Levenberg-
Marquardt method. The computation is made at each
sampling time to get the optimal control sequence p, but
only the first component u(k) is applied to both model
and process. As expected, it can be viewed as the dual
problem of the optimal trajectory determination. Since
we considered an off-line study, computational time was
not taken into account. But now, this must be taken into
account since it is an on-line control determination.

4.2 Real-time control

The previous results show that, for this process, we are
able to find optimal temperature and extent of cure cor-
responding to the optimal control. In order to take
into account the on-line control problems (computational
time limitation, modelling uncertainties and some distur-
bances), we adopt the internal linearized model control
approach like in [4]. We just recall here the main ideas:
the first one is to assume that the previous system (Sp)
is not really optimal but is not so far from the real-time
optimal system. So, this variations can be described by a



moving system (Sry ) which is a time-varying linearized References

distributed parameter system :

Awy(z,t) = AL (1) Aw(z,t) withz€ D, t >0

Bp, (t)Aw(z,t) + Br,(t)Au(t) =0 with 2 € 9D, t >0
Aym(t) = CAw(z,t) with z€e DUOD, t>0
Aw(z,0)=0

AL(t), Br, (t) and Bp,(t) are linear time-varying (LTV)
operators obtained by the linearization of the nonlin-
ear operators A and B around the standard operating
point (ug(t),wo(t)). The control problem is now to find
the control variation Aw(t), with u(t) = ug(t) + Au(t)
leading to the moved output y,,(t) = yo(t) + Ayn(t) =
C(wo(z,t) + Aw(z,t)), such that the process output y,(t)
tracks the given optimal trajectory yr.s(t): this time-
varying control problem can be achieved using the IMC
strategy:
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Figure 7: Internal linearized model control structure

5 Conclusion

In this work, we have presented a dual problem in the
control of nonlinear parabolic distributed parameter sys-
tem. It concerned the determination of the process control
such that the operating time becomes the shortest possi-
ble and the classical induced tracking problem. For the
former problem, we have used a model based approach
with a predictive approach using nonlinear programming.
The most important problem is to set constraints from
the behaviour knowledge. Indeed, we still do not have an
efficient model linking the autoclave temperature and the
residual stresses induced during the cure cycle. Concern-
ing the horizons tuning, a receding horizon of 1 seems to
be sufficient like in the tracking problem. Concerning the
prediction horizon, it has to be sufficiently important to
take correctly into account of the constraints. Otherwise,
the optimization problem is not well set and has no physi-
cal solution. For the tracking problem, we have introduced
the Internal Model Control strategy with the same predic-
tive approach. The internal model is the combination of a
nonlinear model and its small perturbations model. The
perspectives are a generalization study for the closed-loop
stability.
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