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Trace Theorems for a Class of Ramified Domains with

Self-Similar Fractal Boundaries

Yves Achdou ∗, Nicoletta Tchou †.

January 14, 2009

Abstract

This work deals with trace theorems for a class of ramified bidimensional domains Ω with
a self-similar fractal boundary Γ∞. The fractal boundary Γ∞ is supplied with a probability
measure µ called the self-similar measure. Emphasis is put on the case when the domain is
not a ǫ − δ domain as defined by Jones and the fractal set is not totally disconnected. In
this case, the classical trace results cannot be used. Here, the Lipschitz spaces with jumps
recently introduced by Jonsson play a crucial role. Indeed, it is proved in particular that
if the Hausdorff dimension d of Γ∞ is not smaller than one, then the space of the traces of
functions in Wm+1,q(Ω), m ∈ N, 1 < q < ∞ is JLip(m + 1 − 2−d

q
, q, q;m; Γ∞). The proof

is elementary and uses as a main ingredient a strengthened trace inequality in the norm
Lq

µ(Γ∞).

1 Introduction

This work deals with some properties of the Sobolev spaces Wm+1,q(Ω), m ∈ N, for a class of
ramified domains Ω of R

2 with a self-similar fractal boundary called Γ∞ below, see for example
Figures 1 and 3. The domain Ω essentially depends on a parameter a, 0 < a ≤ a∗. As explained
below, the restriction a ≤ a∗ allows for the construction of Ω as a union of non-overlapping
sub-domains, see (5) below.
Such a geometry can be seen as a bidimensional idealization of the bronchial tree, for example.
Indeed, the present work is a continuation of [1] and of [2], which were part of a wider project
aimed at simulating the diffusion of medical sprays in lungs. Since the exchanges between
the lungs and the circulatory system take place only in the last generations of the bronchial
tree (the smallest structures), reasonable models for the diffusion of, e.g., oxygen may involve
a non-homogeneous Neumann or Robin condition on the boundary Γ∞. Similarly, the lungs
are mechanically coupled to the diaphragm, which also implies non-homogeneous boundary
conditions on Γ∞, if one is interested in a coupled fluid-structure model. It is therefore necessary
to study traces of functions on Γ∞; here, we will focus on functions belonging to Wm+1,q(Ω),
for m ∈ N and 1 < q <∞.
Function spaces defined in irregular domains have been widely studied in the literature:

• Jones [8] (and Vodopjanov et al [24] in the case n = 2, see also [16, 11]) have studied
the open bounded subsets Ω of R

n such that there exists a continuous extension operator
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from W ℓ,p(Ω) in W ℓ,p(Rn), for all nonnegative integers ℓ and real numbers p, 1 ≤ p ≤ ∞.
Jones has proved that if Ω is a ǫ − δ domain for some parameters ǫ, δ > 0, see [8, 11]
for the definition, then the above extension property is true. Moreover, in dimension
two, if the extension property stated above is true, then Ω is a ǫ − δ domain for some
parameters ǫ, δ > 0. In dimension two, the definition of such domains is equivalent to that
of quasi-disks, see [16].

• Jonsson and Wallin [11] have considered closed subsets F of R
n supplied with a Borel

measure µ such that there exists a positive real number d and two positive constants c1
and c2 with

c1r
d ≤ µ(B(x, r)) ≤ c2r

d,

for all x ∈ F and r < 1 (here B(x, r) is the ball in F with center x and radius r, with
respect to the Euclidean distance in R

n); in [11], these sets are called d-sets.
Concerning the set Γ∞ under investigation in the present paper, we will recall in §3.2 below
the notion of self-similar measure µ defined in the triplet (Γ∞, F1, F2), see [13]. With the
Borel regular probability measure µ, Γ∞ is a d-set where d is the Hausdorff dimension of
Γ∞.
In [11], Sobolev and Besov spaces are defined on the d-sets, and extension and trace results
for Besov and Sobolev spaces are proved using as a main ingredient Whitney extension
theory. In particular, see [11] page 182, there exists a continuous trace operator from
W 1,p(Rn) onto Bp,p

1−n−d
p

(F ), if max(1, n − d) < p <∞, where, for 0 < s < 1,

Bp,p
s (F ) =

{
f ∈ Lp

µ(F );

∫

x,y∈F,|x−y|<1

|f(x) − f(y)|p
|x− y|d+sp

dµ(x)dµ(y) <∞
}
,

see the definition in [11] page 103. A more general trace theorem is available, see Theorem
1, page 141 in [11].
The approach of Triebel [23] is somewhat different. In [23] chapter IV, paragraph 18, it
is proved that the space of the traces of functions in Bp,q

n−d
p

(Rn) is Lp
µ(F ) for 0 < d < n,

d/n < p < ∞ and 0 < q ≤ min(1, p); Besov spaces on F are then defined as the space of
the traces of Besov spaces on R

n and embeddings properties are studied.

• There is also a a growing interest in analysis on self-similar fractal sets, see for instance
Kigami [13], Strichartz [21, 22], Mosco[19, 18] and references therein. These works aim at
intrinsically defining function spaces using Dirichlet forms and a different metric from the
Euclidean one. The results in this direction are often subject to the important assumption
that the set is post-critically finite (or p.c.f.), see [13], page 23 for the definition. In a
different direction, Jonsson has studied Lipschitz functions spaces on self-similar fractal
sets under a technical condition which yields a Markov inequality at any order, see the
pioneering works [9, 10]. This theory does not require the fractal set to be post-critically
finite. In [10], Lipschitz functions spaces allowing jumps at some special points in the
self-similar fractal set have been introduced, along with Haar wavelets of arbitrary order.
The previously mentioned function spaces can be characterized using the coefficients of
the expansion in some higher Haar wavelet bases. The theory in [10] is the cornerstone of
the present paper. It will be briefly reviewed in §4.

• The question of extensions or traces naturally arises in boundary value or transmission
problems in domains with fractal boundaries. Results in this direction have been given in
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[20, 15, 14] for the Koch flake. Here also, the assumption that the fractal set is p.c.f. is
generally made.

Our goal here is to study the traces of functions of Wm+1,q(Ω) on the fractal boundary Γ∞.
Note that this is different from considering the traces of functions of Wm+1,q(R2) on Γ∞.
If a < a∗, then Ω is a ǫ−δ domain. In this case, the results of Jones [8] and those of Jonsson and
Wallin [11] can be combined to obtain trace results. This has been done in [2]: if max(1, 2−d) <
q <∞, the space of the traces of functions inW 1,q(Ω) is Bq,q

1−(2−d)/q
(Γ∞), where d is the Hausdorff

dimension of Γ∞.
When a = a∗, the situation is more complicated because

• Ω is not a ǫ− δ domain,

• Γ∞ may not be totally disconnected. It may even be non post-critically finite.

In [2] we mainly focused on the case a = a∗, and especially on the geometry presented in § 2.2.2
below, see Figure 3. We studied some properties of the traces of functions in H1(Ω), without
completely characterizing the trace space. The results proved in [2] are :

• if a ≤ a∗ then the trace of a function in H1(Ω) belongs to Lp
µ(Γ∞), for all real numbers p

such that 1 ≤ p <∞.

• in the case a = a∗, we gave an example of a function in H1(Ω) whose trace on Γ∞ has not
a bounded mean oscillation with respect to µ, (and, as a consequence, does not belong to
L∞

µ (Γ∞)).

• for the geometry displayed in Figure 3 in the critical case a = a∗, the trace of a function in
H1(Ω) belongs to the Besov space B2,2

s (Γ∞, µ) for all real numbers s such that 0 ≤ s < d/4,
where d is the Hausdorff dimension of Γ∞, and there exists a function in H1(Ω) whose
trace does not belong to B2,2

s (Γ∞, µ) for all s > d/4. Note the important contrast with
the case a < a∗ for which the trace of a function in H1(Ω) belongs to B2,2

s (Γ∞, µ) for
0 ≤ s ≤ d/2.

• Similar results concerning the spaces W 1,p(Ω), 1 ≤ p <∞ were also given.

In the present paper, we aim at charaterizing the traces of functions in Wm+1,q(Ω) by using the
results contained in [9] and mostly [10].
The article is organized as follows: the geometry is presented in section 2. In Section 3, we
recall some of the results of [1] on the space W 1,q(Ω), concerning Poincaré inequality and the
construction of the trace operator. The theory proposed in [10] is reviewed in § 4 where we mainly
focus on the spaces JLip(s, q, q;m; Γ∞), m < s < m+ 1, 1 ≤ q < ∞, that we will use later on.
For simplicity, we first investigate the traces of functions in W 1,q(Ω): the main result of the paper
is Theorem 6 stated and proved in Section 5. The proof uses elementary ingredients, mainly the
strengthened trace inequality stated in Theorem 8. The traces of functions in Wm+1,q(Ω) for a
positive integer m are characterized in Section 6.
The results presented here can be generalized to functions in W s,q(Ω) for s non integer or in
Besov spaces: this topic is currently under investigation.

2 The Geometry

We first describe the general geometrical setting, then we give two relevant examples.
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2.1 General Setting

2.1.1 The similitudes F1 and F2 and the self-similar set Γ∞

Consider four real numbers a, α, β, θ such that 0 < a < 1/
√

2, α > 0, β > 0 and 0 ≤ θ < π/2.
Let Fi, i = 1, 2 be the two similitudes in R

2 given by

F1

(
x1

x2

)
=

(
−α
β

)
+ a

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)
,

F2

(
x1

x2

)
=

(
α
β

)
+ a

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
.

(1)

The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain F2

by composing F1 with the symmetry with respect to the axis {x1 = 0}.
We call Γ∞ the self-similar set associated to the similitudes F1 and F2, i.e. the unique compact
subset of R

2 such that
Γ∞ = F1(Γ

∞) ∪ F2(Γ
∞).

For n ≥ 1, we call An the set containing all the 2n mappings from {1, . . . , n} to {1, 2}. We
define

Mσ = Fσ(1) ◦ · · · ◦ Fσ(n) for σ ∈ An. (2)

The definition of Γ∞ implies that for all n > 0,

Γ∞ =
⋃

σ∈An

Mσ(Γ∞).

We state without proof the following proposition, which says that, up to an affine map, the
shape of Γ∞ does not depend on α and β.

Proposition 1 Let F1 and F2 be defined by (1) where the parameters a, θ, α, β satisfy the as-
sumptions above. Let the similitudes G1 and G2 be defined by

G1 =

(
−γ
δ

)
+ F1, G2 =

(
γ
δ

)
+ F2,

where
α+ γ > 0 and β + δ > 0.

The self-similar set associated to G1 and G2 is




0
αδ − βγ

βa sin θ + α(1 − a cos θ)


+

(
1 +

δa sin θ + γ(1 − a cos θ)

βa sin θ + α(1 − a cos θ)

)
Γ∞

where Γ∞ is the self-similar set associated to the similitudes F1 and F2.

Note that the assumptions in Proposition 1 imply that the parameter

(
1 +

δa sin θ + γ(1 − a cos θ)

βa sin θ + α(1 − a cos θ)

)

is positive.
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2.1.2 The simplest possible construction with F1 and F2

Call P1 = (−1, 0) and P2 = (1, 0) and Γ0 the line segment Γ0 = [P1, P2]. We impose that F2(P1)
and F2(P2) have positive coordinates, i.e. that

a cos θ < α and a sin θ < β. (3)

We first describe the simplest possible ramified domain containing the images of P1 and P2 by
all the mappings Fi1 ◦ · · · ◦ Fin , ij = 1, 2. This domain will be noted Ω̃. Let Ỹ 0 be the open
polygonal set obtained as the convex hull of the six points

P1, P2, F2(P2), F2(P1), F1(P2), F1(P1).

The domain Ỹ 0 is hexagonal if θ > 0 and trapezoidal if θ = 0, contained in the half plane x2 > 0

and symmetric w.r.t. the vertical axis x1 = 0. It it possible to glue together Ỹ 0, F1(Ỹ 0) and

F2(Ỹ 0) and obtain a new polygonal domain, also symmetric with respect to the axis {x1 = 0}.
The assumption (3) implies that Y 0, F1(Ỹ

0) and F2(Ỹ
0) do not overlap.

We also define the ramified open domain Ω̃, see Figures 1 and 3:

Ω̃ = Interior

(
Ỹ 0 ∪

(
∞∪

n=1
∪

σ∈An

Mσ(Ỹ 0)

))
. (4)

Note that Ω̃ is symmetric with respect to the axis x1 = 0, and that for a < 1/
√

2, the measure
of Ω̃ is finite.

It can be proved that there exists a∗ < 1/
√

2 (depending on θ only) such that

1. for all a, 0 < a ≤ a∗ and α, β satisfying (3), the sets Ỹ 0, Mσ(Ỹ 0), σ ∈ An, n > 0 are
disjoint,

2. for all a, 0 < a < a∗, for all α, β satisfying (3), F1(Ω̃) ∩ F2(Ω̃) = ∅,

3. for a = a∗ and α, β satisfying (3), F1(Ω̃) ∩ F2(Ω̃) 6= ∅.

The proof of this result is elementary but long. We skip it for brevity.
Hereafter, we will only consider a such that 0 < a ≤ a∗. It can be proved that Γ∞ ⊂ ∂Ω and
that

0 < a < a∗ ⇒ F1(Γ
∞) ∩ F2(Γ

∞) = ∅ ⇒ Γ∞ is totally disconnected,
a = a∗ ⇒ F1(Γ

∞) ∩ F2(Γ
∞) 6= ∅ ⇒ Γ∞ is connected, see Th. 1.6.2 in [13].

We are able to compute the Hausdorff dimension of Γ∞ because the Moran condition (open set
condition) see [17, 13] is satisfied: the Moran condition is that there exists a nonempty bounded
open subset O of R

2 such that F1(O) ∩ F2(O) = ∅ and F1(O) ∪ F2(O) ⊂ O. Here, one can take
O = Ω̃. From this, the Hausdorff dimension of Γ∞ is

d = dimH(Γ∞) = − log 2/ log a,

see [17, 13]. The assumption on a < 1/
√

2 implies that d < 2.
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2.1.3 More general constructions

We also consider more general polygonal domains Y 0: we assume that for all a, 0 < a ≤ a∗,
(where a∗ has been introduced above),

1. Y 0 is contained in the half-plane x2 > 0.

2. ∂Y 0 ∩ {x2 = 0} = Γ0 = [P1, P2].

3. F1(Γ
0) and F2(Γ

0) are contained in some sides of ∂Y 0.

4. the sets Y 0, Mσ(Y 0), σ ∈ An, n > 0 are disjoint.

With these assumptions, we can construct the ramified open domain

Ω = Interior

(
Y 0 ∪

(
∞∪

n=1
∪

σ∈An

Mσ(Y 0)

))
, (5)

see Figure 2 for an example. The self-similar fractal set Γ∞ is contained in ∂Ω. We split the
boundary of Ω into Γ∞, Γ0 = [−1, 1] × {0} and Σ = ∂Ω\(Γ0 ∪ Γ∞).

Remark 1 A further generalization is possible: all the assumptions above are maintained except
that ∂Y 0\

(
Γ0 ∪ F1(Γ

0) ∪ F2(Γ
0)
)

may be made of curved lines. All what follows is valid in this
case. For simplicity, we will still assume that Y 0 is polygonal.

2.1.4 Additional notations

For what follows, it is important to define the polygonal open domain Y N obtained by stopping
the above construction at step N + 1,

Y N = Interior

(
Y 0 ∪

(
N∪

n=1
∪

σ∈An

Mσ(Y 0)

))
. (6)

We introduce the open domains Ωσ = Mσ(Ω) and ΩN = ∪σ∈AN
Ωσ = Ω\Y N−1, for N > 0.

When needed, we will agree to say that Ω0 = Ω. We define the sets Γσ = Mσ(Γ0) and
ΓN = ∪σ∈AN

Γσ. The one-dimensional Lebesgue measure of Γσ for σ ∈ AN and of ΓN are given
by

|Γσ| = aN |Γ0| and |ΓN | = (2a)N |Γ0|.

2.2 Two Examples

2.2.1 Example 1

Let F1 and F2 be the affine maps in R
2

F1(x) = (−α+ ax1, β + ax2), F2(x) = (α+ ax1, β + ax2), (7)

so θ = 0, and (3) becomes a < α and β > 0. The domain Ỹ 0 is trapezoidal:

Ỹ 0 = Interior
(

Conv(P1, P2, F2(P2), F1(P1))
)
.

The sets Ỹ 0, Mσ(Ỹ 0), σ ∈ An, n > 0 do not overlap if

a ≤ a∗ =
1

2
.
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The domain Ω̃ described in § 2.1.2 is shown in Figure 1 for α = 3/2, β = 3 and a = a∗ = 1/2.
If a < 1

2 , the Hausdorff dimension of Γ∞ is smaller than 1; the set Γ∞ is totally disconnected,

(i.e. F1(Γ
∞) ∩ F2(Γ

∞) is empty), and contained in a straight line; it can be proved that Ω̃ is a
ǫ− δ domain as defined by Jones [8], see also [11] and [16].
In the critical case when a = a∗ = 1

2 , Γ∞ is the straight line segment [−2α, 2α] × {2β}, so it is
connected and its Hausdorff dimension is one. It is post-critically finite because F1(Γ

∞)∩F2(Γ
∞)

is a singleton. The open set Ω̃ is not a ǫ− δ domain. Indeed, take the point X = (0, β/2) and
call An = (F1 ◦ Fn

2 ) (X), Bn = (F2 ◦ Fn
1 ) (X), we have that

• limn→∞An = limn→∞Bn = (0, 2β), therefore limn→∞ |AnBn| = 0,

• An ∈ Ω̃ and Bn ∈ Ω̃,

• the length of any curve joining An and Bn that is contained in Ω̃, is greater than 2β.

−3 −2 −1 0 1 2 30

1

2

3

4

5

6

Figure 1: The ramified domain Ω̃ for the critical value a = a∗ = 1/2, and for α = 3/2, β = 3.

As described in § 2.1.3, one can construct a different domain Ω whose boundary contains Γ∞

by choosing for example Y 0 as a T-shaped domain, see Figure 2.

2.2.2 Example 2

We make the choice θ = π/4, α = 1− a√
2
, β = 1 + a√

2
, so the similitudes Fi, i = 1, 2 are defined

by

Fi(x) =


 (−1)i

(
1 − a√

2

)
+ a√

2

(
x1 + (−1)ix2

)

1 + a√
2

+ a√
2

(
x2 + (−1)i+1x1

)

 .

It can be proved by elementary geometrical arguments that the condition to prevent the sets
Mσ(Y 0), σ ∈ An, n > 0, from overlapping is

2
√

2a5 + 2a4 + 2a2 +
√

2a− 2 ≤ 0, (8)

i.e.
a ≤ a∗ ≃ 0.593465.
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−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

Figure 2: An example of a possible ramified domain Ω for the critical value a = a∗ = 1/2.

45
◦

P3

P1 P2

P4

P5 P6

2a

−3 −2 −1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 3: The angle θ is π/4. Left, the construction (more exactly Ỹ 3). Right, the ramified
domain Ω̃ for the critical value a = a∗.

8



The domain Ω̃ constructed in § 2.1.2 is shown in Figure 3.
If a > 1/2, the Hausdorff dimension of Γ∞ is larger than one. For instance, if a = a∗, then
dimH(Γ∞) ≃ 1.3284371.
In the case when a < a∗, it can be proved that F1(Γ

∞)∩F2(Γ
∞) is empty and that Ω is a ǫ− δ

domain, see [2].
In the critical case when a = a∗, it can be proved, see [2], that F1(Γ

∞)∩F2(Γ
∞) ⊂ Γ∞ is a non

countable set, whose Hausdorff dimension is half the Hausdorff dimension of Γ∞. The set Γ∞

is not post-critically finite. It was also proved in [2] that Ω̃ is not a ǫ− δ domain.

2.3 The self-similar measure µ

2.3.1 Basic facts

For defining traces on Γ∞, we recall the classical result on self-similar measures, see [5, 7] and
[13] page 26:

Theorem 1 There exists a unique Borel regular probability measure µ on Γ∞ such that for any
Borel set A ⊂ Γ∞,

µ(A) =
1

2
µ
(
F−1

1 (A)
)

+
1

2
µ
(
F−1

2 (A)
)
. (9)

The measure µ is called the self-similar measure defined in the self-similar triplet (Γ∞, F1, F2).

Proposition 2 The measure µ is a d-measure on Γ∞, with d = − log 2/ log a, according to the
definition in [11], page 28: there exists two positive constants c1 and c2 such that

c1r
d ≤ µ(B(x, r)) ≤ c2r

d,

for any r 0 < r < 1 and x ∈ Γ∞, where B(x, r) is the Euclidean ball in Γ∞ centered at x and
with radius r. In other words the closed set Γ∞ is a d-set, see [11], page 28.

Proof. The proof stems from the Moran condition in § 2. It is due to Moran [17] and has been
extended by Kigami, see [13], §1.5, especially Proposition 1.5.8 and Theorem 1.5.7.

Remark 2 In the first example with a = 1/2, the measure µ is such that 6µ is the one-
dimensional Lebesgue measure on the straight line Γ∞.

We define Lp
µ, p ∈ [1,+∞) as the space of the measurable functions v on Γ∞ such that∫

Γ∞ vpdµ < ∞, endowed with the norm ‖v‖Lp
µ

=
(∫

Γ∞ vpdµ
)1/p

. We also introduce L∞
µ , the

space of essentially bounded functions with respect to the measure µ. A Hilbertian basis of L2
µ

can be constructed with e.g. Haar wavelets.

2.3.2 The case when a < 1
2

The condition a < 1
2 implies d < 1. In this case, Γ∞ is totally disconnected, see [6], Lemma 4.1

page 54. This implies that F1(Γ
∞) ∩ F2(Γ

∞) = ∅, see [13], theorem 1.6.2 page 33. Therefore,
a < a∗ and we can apply the result stated in the introduction: if q > max(1, 2 − d), then the
space of the traces on Γ∞ of the functions v ∈W 1,q(Ω) is Bq,q

1− 2−d
q

(Γ∞) (see the introduction for

the definition) and we will see in Theorem 5 below that in this case, Bq,q

1− 2−d
q

(Γ∞) = JLip(1 −
2−d

q , q, q; 0; Γ∞).
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3 The space W 1,q(Ω)

Hereafter, except when explicitly mentioned, we will not distinguish between the simplest ge-
ometries presented in § 2.1.2 and the more general ones introduced in § 2.1.3. The former can
be seen as a special case of the latter. Therefore, we will use the notation Ω for all the domains
constructed in § 2. We also take a such that 1/2 ≤ a ≤ a∗, so the Hausdorff dimension d of Γ∞

is not smaller than 1, because the case a < 1/2 has already been discussed in § 2.3.2.
For a real number q ≥ 1, let W 1,q(Ω) be the space of functions in Lq(Ω) with first order
partial derivatives in Lq(Ω). We also define Vq(Ω) =

{
v ∈W 1,q(Ω); v|Γ0 = 0

}
and Vq(Y

n) ={
v ∈W 1,q(Y n); v|Γ0 = 0

}
.

The results stated below are important for the study of elliptic boundary value problems in Ω.
Section 3.1 contains some Poincaré inequalities and §3.2 deals with the construction of a trace
operator on Γ∞. We refer to [1] for the proofs.
We will sometimes use the notation . to indicate that there may arise constants in the esti-
mates, which are independent of the index n in Ωn (recall that Ωn is the union of all Mσ(Ω),
σ ∈ An) or Γn ( Γn is the union of all Mσ(Γ0), σ ∈ An), Y n = Y 0 ∪⋃1≤p≤n

⋃
σ∈Ap

Mσ(Y 0), or

the index σ in Ωσ = Mσ(Ω) or Γσ = Mσ(Γ0).

3.1 Poincaré inequality and consequences

Theorem 2 There exists a constant C > 0, such that

∀v ∈ Vq(Ω), ‖v‖q
Lq(Ω) ≤ C‖∇v‖q

Lq(Ω).

Corollary 1 There exists a positive constant C such that for all v ∈W 1,q(Ω),

‖v‖q
Lq(Ω) ≤ C

(
‖∇v‖q

Lq(Ω) + ‖v|Γ0‖q
Lq(Γ0)

)
.

Corollary 2 There exists a positive constant C such that for all integer n ≥ 0 and for all
σ ∈ An, for all v ∈W 1,q(Ωσ),

‖v‖q
Lq(Ωσ) ≤ C

(
aqn‖∇v‖q

Lq(Ωσ) + an‖v|Γσ‖q
Lq(Γσ)

)
,

and for all v ∈W 1,q(Ωn)

‖v‖q
Lq(Ωn) ≤ C

(
aqn‖∇v‖q

Lq(Ωn) + an‖v|Γn‖q
Lq(Γn)

)
.

We need to estimate ‖v‖q
Lq(Ωn) when v ∈W 1,q(Ω):

Lemma 1 There exists a positive constant C such that for all v ∈W 1,q(Ω), for all n ≥ 0,

‖v‖q
Lq(Ωn) ≤ C (2a2)n

(
‖∇v‖q

Lq(Ω) + ‖v|Γ0‖q
Lq(Γ0)

)
. (10)

Since 2a2 < 1, (10) implies the Rellich type theorem:

Theorem 3 (Compactness) The imbedding of W 1,q(Ω) in Lq(Ω) is compact.

The following lemma will be useful for defining a trace operator on Γ∞:

10



Lemma 2 There exists a positive constant C such that for all v ∈ W 1,q(Ω), for all integers
p ≥ 0, ∑

σ∈Ap

∫

Γσ

(v|Γσ )q ≤ C(2a)p
(
‖∇v‖q

Lq(Ω) + ‖v‖q
Lq(Ω)

)
. (11)

Remark 3 Note that |Γp|
|Γ0| = (2a)p, so (11) is equivalent to

1

|Γp|
∑

σ∈Ap

∫

Γσ

(v|Γσ )q . ‖∇v‖q
Lq(Ω) + ‖v‖q

Lq(Ω).

Corollary 3 There exists a positive constant C such that for all v ∈ W 1,q(Ω), for all integers
p ≥ 0, ∑

σ∈Ap

∫

Γσ

(v|Γσ − 〈v|Γ0〉)q ≤ C(2a)p‖∇v‖q
Lq(Ω),

where 〈v|Γ0〉 is the mean value of v|Γ0 on Γ0.

Remark 4 Similar results in a different geometry were proved by Berger [3] with different meth-
ods.

3.2 A trace operator on Γ∞

We construct a sequence (ℓn)n of approximations of the trace operator: consider the sequence
of linear operators ℓn : W 1,q(Ω) → Lq

µ,

ℓn(v) =
∑

σ∈An

(
1

|Γσ|

∫

Γσ

v dx

)
1Mσ(Γ∞), (12)

where |Γσ| is the one-dimensional Lebesgue measure of Γσ, see [1].

Proposition 3 The sequence (ℓn)n converges in L(W 1,q(Ω), Lq
µ) to an operator that we call ℓ∞.

Proof. See [1].

4 Lipschitz Functions with Jumps on Γ∞

In [10], A. Jonsson has introduced Haar wavelets of arbitrary order on self-similar fractal sets and
has used these wavelets for constructiong a family of Lipschitz spaces. These function spaces are
named JLip(α, p, q;m;K), where K is the fractal set, α is a nonnegative real number, p, q are
two real numbers not smaller than 1 andm is an integer (m is the order of the Haar wavelets used
for constructing the space). Here J stands for jumps, since the considered functions may jump at
some points of K. If the fractal set K is totally disconnected, then these spaces coincide with the
Lipschitz spaces Lip(α, p, q;m;K) also introduced in [10]. The latter are a generalization of the
more classical spaces Lip(α, p, q;K) introduced in [11] since Lip(α, p, q; [α];K) = Lip(α, p, q;K).
Note that Lip(α, p, q; [α];K) = Bp,q

α (K), see[12].
Since this is sufficient for what follows, we are going to focus on the case when K = Γ∞ and
p = q.
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4.1 Definition of JLip(α, q, q; 0; Γ∞) for 0 < α < 1.

We review the theory proposed in [10] in the special case when 0 < α < 1 and m = 0. Here,
since we focus on the case m = 0, we do not need to suppose that Γ∞ is not contained in a
straight line, as it was done in [10] in order to obtain that the fractal set has a Markov property.
For a function f ∈ Lq

µ, a positive integer n and σ ∈ An if n > 0, we define Pσf as the projection
of f on constants defined as follows:

Pσf = 2n

∫

Mσ(Γ∞)
fdµ.

We also define P0f as the projection of f on constants:

P0f =

∫

Γ∞

fdµ.

For an integer ν, we define the set Jν :

Jν = {p ∈ N, s.t. ∀σ ∈ Ap, 2−ν ≤ diam(Mσ(Γ∞)) < 2−ν+1}, (13)

agreeing that Mσ = Id if p = 0, σ ∈ Ap.
Let ν0 be the integer (possibly negative) such that 0 ∈ Jν0

.
Consider a real number α, 0 < α < 1. For a function f ∈ L2

µ and an integer ν ≥ ν0, we define
Aν(f) by

Aν0
(f) = 2αν0



∫

Γ∞

|f − P0f |qdµ+
∑

p∈Jν0
,p>0

∑

σ∈Ap

∫

Mσ(Γ∞)
|f − Pσf |qdµ




1/q

,

Aν(f) = 2αν


∑

p∈Jν

∑

σ∈Ap

∫

Mσ(Γ∞)
|f − Pσf |qdµ




1/q

, if ν > ν0.

(14)

Definition 1 The function f belongs to JLip(α, q, q; 0; Γ∞) if the norm

‖f‖JLip(α,q,q;0;Γ∞) =

(
‖f‖q

Lq
µ

+

∞∑

ν=ν0

Aq
ν(f)

) 1

q

(15)

is finite.

Following [10], it is possible to characterize JLip(α, q, q; 0; Γ∞) by using expansions in the stan-
dard Haar wavelet basis on Γ∞. Consider the Haar mother wavelet g0 on Γ∞,

g0 = 1F1(Γ∞) − 1F2(Γ∞), (16)

and for n ∈ N, n > 0, σ ∈ An, let gσ be given by

gσ |Mσ(Γ∞) = 2n/2g0 ◦M−1
σ , and gσ|Γ∞\Mσ(Γ∞) = 0. (17)

It is proved in [9] §5 that a function f in Lq
µ can be expanded on the Haar wavelet basis as

follows:
f = P0f + β0g

0 +
∑

n≥1

∑

σ∈An

βn,σg
σ .

12



Let b0 be a real number and (bn,σ)n≥1,σ∈An be a sequence of real numbers, we define ‖(b0, bn,σ)‖bq,q
α

by

‖(b0, bn,σ)‖bq,q
α

=




2αν0q2
dν0( 1

2
− 1

q
)q


|b0|q +

∑

p∈Jν0
,p>0

∑

σ∈Ap

|bp,σ|q



+

∞∑

ν=ν0+1

2ανq2
dν( 1

2
− 1

q
)q
∑

p∈Jν

∑

σ∈Ap

|bp,σ|q




1

q

. (18)

Theorem 4 (Jonsson) A fonction f ∈ Lq
µ belongs to JLip(α, q, q; 0; Γ∞) if and only if the

coefficients of its expansion in the Haar wavelets basis satisfy |P0f | + ‖(β0, βn,σ)‖bq,q
α

is finite;
this defines a norm in JLip(α, q, q; 0; Γ∞) equivalent to the one in (15).

Proof. This is a particular case of Theorem 1 in [10]).
If the fractal set Γ∞) is totally disconnected, then the jumps which are allowed in the space
JLip(α, q, q; 0; Γ∞) disappear:

Theorem 5 (Jonsson) If F1(Γ
∞) ∩ F2(Γ

∞) is empty, then

JLip(α, q, q; 0; Γ∞) = Lip(α, q, q; 0; Γ∞) = Bq,q
α (Γ∞),

where the Lipschitz space Lip(α, q, q; 0; Γ∞) and the Besov space Bq,q
α (Γ∞) are defined in [11].

Proof. This is a particular case of Theorem 2 in [10], see also [9] for a partial proof.
Let us assume that diam(Γ∞) > 0. Since in our case the ratii of the similitudes F1 and F2 both
take the value a, we see that diam(Mσ(Γ∞)) = andiam(Γ∞) if σ ∈ An and n > 0. Therefore,
for n > 0, n ∈ Jν if and only if

2−ν ≤ andiam(Γ∞) < 2−ν+1,

which can be written

−ν ≤ n
log a

log 2
+

log(diam(Γ∞))

log 2
< −ν + 1, (19)

or

−ν =

[
n

log a

log 2
+

log ((diam(Γ∞))

log 2

]

=

[
−n/d+

log (diam(Γ∞))

log 2

]
.

(20)

where d = − log 2/ log a is the Hausdorff dimension of Γ∞ and where [·] stands for the integer
part.
Let b0 be a real number and (bn,σ)n≥1,σ∈An be a sequence of real numbers; we define ‖(b0, bn,σ)‖b̃q,q

α

by

‖(b0, bn,σ)‖b̃q,q
α

=

(
|b0|q +

∞∑

n=1

2qαn/d2n(1/2−1/q)q
∑

σ∈An

|bn,σ|q
) 1

q

.

=

(
|b0|q +

∞∑

n=1

a−qαn2n(1/2−1/q)q
∑

σ∈An

|bn,σ|q
) 1

q

.

(21)
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Assuming that diam(Γ∞) 6= 0, there exist two positive constants c1 and c2 such that

c1‖(b0, bn,σ)‖bq,q
α

≤ ‖(b0, bn,σ)‖b̃q,q
α

≤ c2‖(b0, bn,σ)‖bq,q
α
,

for any sequence (bn,σ)n≥1,σ∈An such that |b0|q +
∑∞

n=1 2n(1/2−1/q)q
∑

σ∈An
|bn,σ|q <∞. We have

the corollary of Theorem 4:

Corollary 4 A fonction f ∈ Lq
µ belongs to JLip(α, q, q; 0; Γ∞) if and only if the coefficients of

its expansion in the Haar wavelets basis satisfy |P0f | + ‖(β0, βn,σ)‖b̃q,q
α

is finite; the norm of f
in JLip(α, q, q; 0; Γ∞) is equivalent to this sum. Another equivalent norm is

(
‖f‖q

Lq
µ

+

∫

Γ∞

|f − P0f |qdµ+

∞∑

n=1

a−αqn
∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ

) 1

q

. (22)

Remark 5 In the special case when α = 1 − 2−d
q ,

‖(b0, bn,σ)‖b̃q,q
α

=

(
|b0|q +

∞∑

n=1

2
nq

2 a−n(q−2)
∑

σ∈An

|bn,σ|q
) 1

q

,

and the norm in (22) reads

(
‖f‖q

Lq
µ

+

∫

Γ∞

|f − P0f |qdµ +
∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ

) 1

q

.

These observations will be useful in the proof of Theorem 6 below.

4.2 Definition of JLip(α, q, q; m; Γ∞) for a positive integer m and m ≤ α < m+1.

Following [10], we suppose that Γ∞ is not contained in a straight line (this rules out the geometry
presented in § 2.2.1 above). This assumption implies that Γ∞ preserves Markov’s inequality, see
[10].
Call S0 the subspace of L2

µ made of polynomials of order not larger than m; thanks to Markov’s

inequality, its dimension is M0 = (m+2)(m+1)
2 ; let (φi)1≤i≤M0

be a basis of S0 orthonormal with

respect to (·, ·)L2
µ
. For f ∈ L1

µ, we define by P
(m)
0 f the projection of f onto Pm defined as

follows: let (φj)1≤j≤M0
be an orthonormal basis of S0 and P

(m)
0 f =

∑
i φ

i
∫
Γ∞ fφidµ.

Similarly, for f ∈ L1
µ(Mσ(Γ∞)), we define by P

(m)
σ f the projection of f onto Pm defined as

follows:
P (m)

σ f =
(
P

(m)
0 (f ◦Mσ)

)
◦M−1

σ .

The following definition of the space JLip(α, q, q;m; Γ∞) has to be compared to (22):

Definition 2 Let m be a positive integer and α be a real number such that m ≤ α < m + 1.
The function f ∈ Lq

µ belongs to JLip(α, q, q;m; Γ∞) if the norm

‖f‖JLip(α,q,q;m;Γ∞) =

(
‖f‖q

Lq
µ

+

∫

Γ∞

|f − P
(m)
0 f |qdµ +

∞∑

n=1

a−αqn
∑

σ∈An

∫

Mσ(Γ∞)
|f − P (m)

σ f |qdµ
) 1

q

.

(23)
is finite.
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Haar wavelets of order m can be used for an equivalent definition of JLip(α, q, q;m; Γ∞): call
S1 the space of the functions f defined on Γ∞ such that f coincides with a polynomial of degree
m on Fi(Γ

∞)\ (F1(Γ
∞) ∩ F2(Γ

∞)), i = 1, 2. The dimension of S1 is 2M0. The orthogonal
complement S1 ⊖ S0 of S0 in S1 has dimension M0. Choose an orthonormal basis (g0,i)1≤i≤M0

of S1 ⊖ S0. Finally, for n ≥ 1 and σ ∈ An, define

gσ,i = 2n/2g0,i ◦M−1
σ .

The family (φi, g0,i, gσ,i), 1 ≤ i ≤ M0, σ ∈ An, n ≥ 1 is an orthonormal and complete family of
L2

µ. It is proved in [10] that a function f ∈ Lq
µ can be expanded as follows

f =

M0∑

i=1

λiφ
i +

M0∑

i=1

β0,ig
0,i +

M0∑

i=1

∑

n≥1

∑

σ∈An

βn,σ,ig
σ,i. (24)

Proposition 4 (Jonsson, [10], Th. 1) A function f ∈ Lq
µ belongs to JLip(α, q, q;m; Γ∞) if and

only if
(

M0∑

i=1

|λi|q +

M0∑

i=1

|β0,i|q +

M0∑

i=1

∞∑

n=1

a−qαn2n(1/2−1/q)q
∑

σ∈An

|βn,σ,i|q
) 1

q

<∞, (25)

where λi, β0,i, βn,σ,i are the coefficients in (24). The norm in (25) is equivalent to that in (23).

5 Traces of functions belonging to W 1,q(Ω)

We consider the case when 1/2 ≤ a ≤ a∗; we are going to give a trace theorem with a direct
proof (which differs from the previous argument when a < a∗).
The main theorem is as follows:

Theorem 6 If 1/2 ≤ a ≤ a∗, then for all q, 1 < q <∞,

ℓ∞
(
W 1,q(Ω)

)
= JLip(1 − 2 − d

q
, q, q; 0; Γ∞). (26)

Proof. Theorem 6 is a straightforward consequence of Proposition 5 and Theorem 7 below.

Remark 6 Note the contrast with the fact that functions in W 1,q(R2) have their traces in
Lip(1 − 2−d

q , q, q; 0; Γ∞), see [11] page 182 and [9, 10].

Proposition 5 For all real number q ≥ 1, there exists a constant C such that for all v ∈
JLip(1 − 2−d

q , q, q; 0; Γ∞), there exists ṽ ∈ Vq(Ω) with the following properties: ℓ∞(ṽ) = v, and

‖ṽ‖q
Vq(Ω) ≈

∫

Ω
|∇ṽ|q ≤ C‖v‖q

JLip(1− 2−d
q

,q,q;0;Γ∞)
. (27)

Proof. First, let us consider the case when v is a Haar wavelet on Γ∞. We start with the
mother wavelet g0. One can construct a function g̃0 such that g̃0 ∈ Vq(Ω) for all 1 ≤ q <∞ and

g̃0|F1(Ω) = −1 and g̃0(−x1, x2) = −g̃0(x1, x2), ∀x = (x1, x2) ∈ Ω. (28)

It is an easy matter to check that ℓ∞(g̃0) = g0 and that
∫
Ω |∇g̃0|q =

∫
Y 0 |∇g̃0|q.

For a positive integer n and σ ∈ An, let us define the function g̃σ, g̃σ ∈ Vq(Ω) for all 1 ≤ q <∞,
by:

g̃σ |Ωσ = 2n/2 g̃0 ◦M−1
σ , (29)

g̃σ |Ω\Ωσ = 0. (30)
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From the definition of gσ , we see that ℓ∞(g̃σ) = gσ. The change of variable x = Mσy yields
that ∫

Ω
|∇g̃σ|q =

∫

Ωσ

|∇g̃σ |q = 2n q

2 a(2−q)n

∫

Ω
|∇g̃0|q = 2n q

2a(2−q)n

∫

Y 0

|∇g̃0|q. (31)

Moreover, the support of ∇g̃σ is contained in Y σ, which implies that for all positive integer n
and n′, for all σ ∈ An, η ∈ An′,

• the supports of ∇g̃σ and ∇g̃0 are disjoint.

• if (n, σ) 6= (n′, η) then the supports of ∇g̃σ and ∇g̃η are disjoint.

We also introduce a function χ, χ ∈ Vq(Ω) for all 1 ≤ q < ∞, such that χ|Ω1 = 1 and that
χ(x1, x2) = χ(−x1, x2). It is clear that ℓ∞(χ) = 1. Moreover, it can be seen that





∫

Ω
∇χ · ∇g̃0 = 0 ,

and

∫

Ω
∇χ · ∇g̃σ = 0 for all integer n > 0 and all σ ∈ An.

(32)

Consider now v ∈ JLip(1 − 2−d
q , q, q; 0; Γ∞). We can expand v on the Haar basis:

v = P0v + β0g
0 +

∑

n≥1

∑

σ∈An

βn,σg
σ ,

where β0 =
∫
Γ∞ vg0dµ and βn,σ =

∫
Γ∞ vgσdµ. We know from Theorem 1 and Corollary 4 (see

Remark 5) that

|β0|q +
∞∑

n=1

2n q

2 a(2−q)n
∑

σ∈An

|βn,σ|q <∞. (33)

Let us define the function ṽ : Ω → R, by

ṽ = (P0v)χ+ β0g̃
0 +

∑

n≥1

∑

σ∈An

βn,σ g̃
σ , (34)

where we agree to identify the function P0v with its real value. From a classical inequality, we
obtain that

∫

Ω
|∇ṽ|q . |P0v|q

∫

Ω
|∇χ|q +

∫

Ω

∣∣∣∣∣∣
β0∇g̃0 +

∑

n≥1

∑

σ∈An

βn,σ∇g̃σ

∣∣∣∣∣∣

q

.

From (31) and the observation on the supports of the functions ∇g̃σ, this yields that

∫

Ω
|∇ṽ|q . |P0v|q

∫

Ω
|∇χ|q +


|β0|q +

∑

n≥1

∑

σ∈An

2n q

2 a(2−q)n|βn,σ|q


∫

Y 0

|∇g̃0|q,

which is finite from (33), and the right hand sides of the two above estimates coincide. Therefore,
ṽ ∈ Vq(Ω), and it is an easy matter to see that ℓ∞(ṽ) = v using the continuity of ℓ∞ in W 1,q(Ω),
see Proposition 3. Finally, (27) is a consequence of Theorem 1 and Corollary 4, (see Remark 5).

Theorem 7 Assume that 1/2 ≤ a ≤ a∗. For all q, 1 < q <∞ and v ∈ W 1,q(Ω), ℓ∞(v) belongs
to JLip(1 − 2−d

q , q, q; 0; Γ∞) and there exists a constant c such that

‖ℓ∞(v)‖JLip(1− 2−d
q

,q,q;0;Γ∞) ≤ c‖v‖W 1,q(Ω), ∀v ∈W 1,q(Ω). (35)
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The proof of Theorem 7 is postponed to the end of the section. It makes use of the strengthened
trace inequality stated in Theorem 8 below. The following lemma (see, e.g., [4], p. 126) will
play an important role in the proof of Theorem 8.

Lemma 3 (Peetre–Tartar) Let V, V1, V2,W be Banach spaces, and let Ai ∈ L(V, Vi) be con-
tinuous linear maps for i = 1, 2, the map A1 being compact. Suppose there exists c0 > 0 such
that

‖v‖V ≤ c0
(
‖A1v‖V1

+ ‖A2v‖V2

)
,

for any v ∈ V . In addition, let L ∈ L(V,W ) be a continuous linear map such that

L
∣∣
ker A2

≡ 0.

Then there exists C > 0 such that

‖Lv‖W ≤ C‖A2v‖V2
,

for any v ∈ V .

Theorem 8 Assume that a ≥ 1/2.

1. For all real number ρ such that
(2a2)q−1 < ρ < 1, (36)

there exists a constant C such that for all v ∈ Vq(Ω),

‖ℓ∞(v)‖q
Lq

µ
≤ C

(
‖∇v‖q

Lq(Y 0)
+

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

‖∇v‖q
Lq(Mσ(Y 0))

)
. (37)

2. For all real number ρ satisfying (36), there exists a constant C such that, for all v ∈
W 1,q(Ω),

‖ℓ∞(v) − P0 (ℓ∞(v)) ‖q
Lq

µ
≤ C

(
‖∇v‖q

Lq(Y 0)
+

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

‖∇v‖q
Lq(Mσ(Y 0))

)
.

(38)

Proof.
The proofs in the cases when a = 1/2 and a > 1/2 slightly differ. Hereafter, we thoroughly

discuss the case a > 1/2. For the ease of the reader, the case a = 1/2 will be discussed in the
appendix A. In both cases, the proof of Theorem 8 is done in three steps.

The case when a > 1/2

Step 1 The first step consists of proving (37) in one of the simplest case introduced in § 2.1.2:
the two similitudes are the maps F̃1 and F̃2

F̃1(x) = (a cos θ − 1 + a cos θx1 − a sin θx2, b+ a sin θ + a sin θx1 + a cos θx2) ,

F̃2(x) = (1 − a cos θ + a cos θx1 + a sin θx2, b+ a sin θ − a sin θx1 + a cos θx2) ,
(39)

for θ, 0 < θ < π/2, 1/2 < a ≤ a∗, b > 0. This corresponds to (1) with α = 1 − 2a cos θ and
β = b+ a sin θ.
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We recall the construction of Ω̃ described in § 2.1.2. We take P1 = (−1, 0), P2 = (1, 0), and
define P3 = F̃1(P1) = (−1, b), P4 = F̃2(P2) = (1, b), P5 = F̃1(P2) = (2a cos θ−1, b+2a sin θ) and
P6 = F̃2(P1) = (1− 2a cos θ, b+ 2a sin θ). Let Ỹ 0 be the open hexagonal subset of R

2 defined as
the convex hull of these six points.

Ỹ 0 = Interior
(

Conv(P1, P2, P3, P4, P5, P6)
)
.

For n ≥ 1 and σ ∈ An, we define

M̃σ = F̃σ(1) ◦ · · · ◦ F̃σ(n)

and

Ω̃ = Interior

(
Ỹ 0 ∪

(
∞∪

n=1
∪

σ∈An

M̃σỸ 0)

))

The domain Ω̃ is displayed in Figure 3 for θ = π/4, b = 1 and a ≃ 0.593465.
The proof of (37) in this particular case is done by explicitly constructing a measure preserving
and one to one mapping from Ω̃ onto the fractured set Ω̂ displayed in Figure 5. The important
feature of Ω̂ is that it lies under the graph of a function. Consider the piecewise linear map H:

H(x1, x2) =





(
x1

x2

)
if x2 ≤ b+ 2a sin θ(1 − |x1|),

(
1 +

1

2a sin θ
(b− x2)

b+ 2a sin θ(x1 − 1) + 2(x2 − b)

)
if x1 > 0, x2 > b+ 2a sin θ(1 − x1),

(
−1 − 1

2a sin θ
(b− x2)

b− 2a sin θ(x1 + 1) + 2(x2 − b)

)
if x1 < 0, x2 > b+ 2a sin θ(1 + x1).

It can be seen that H maps the set Ỹ 0 to the fractured domain Ŷ 0 displayed on figure 4. By

(1 −
√

2a, 1 +
√

2a)(
√

2a − 1, 1 +
√

2a)

(−1, 1) (1, 1)

(1, 0)(−1, 0)

(0, 1 +
√

2a)

(−1, 0) (1, 0)

(−1, 1) (1, 1)

(0, 1 + 2
√

2a − 2a2)

Figure 4: Left: the cell Ỹ 0 for θ = π/4 and b = 1. Right: the fractured open set Ŷ 0. The
Jacobian matrix of H on the left (resp. of H−1 on the right) jumps across the broken lines.

computing the Jacobian of H (H is piecewise smooth), we see that that H is measure preserving.
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Let G1 and G2 be the maps in R
2 defined by

G1(x1, x2) =
(

1
2(x1 − 1), b + (2a sin θ − a2 sin(2θ))(1 + x1) + 2a2x2

)
,

G2(x1, x2) =
(

1
2(x1 + 1), b + (2a sin θ − a2 sin(2θ))(1 − x1) + 2a2x2

)
.

Note that for i = 1, 2, the abcissa of Gi(x1, x2) only depends on x1. This implies that for i = 1, 2,
Gi maps the vertical boundaries of Ŷ 0 to vertical lines. Moreover, G1(P2) = G2(P1) is a point
on the axis {x1 = 0}.
We define

M̂σ = Gσ(1) ◦ · · · ◦Gσ(n) for σ ∈ An,

the sets

Ŷ N = Interior

(
Ŷ 0 ∪

N⋃

n=1

⋃

σ∈An

M̂σ(Ŷ 0)

)
,

Ω̂ = Interior

(
Ŷ 0 ∪

∞⋃

n=1

⋃

σ∈An

M̂σ(Ŷ 0)

)
,

see Figure 5, and the one to one mapping

χN :

∣∣∣∣∣∣

Ŷ N → Ỹ N ,

x 7→ Mσ ◦H−1 ◦ M̂−1
σ (x) if x ∈ M̂σ(Ŷ 0).

Note that χN is a piecewise linear function and that the Jacobian of χN is almost everywhere
1. Moreover, take σ ∈ An with n ≤ N , (x1, x2) ∈ M̂σ(Y 0) and h ∈ R such that (x1, x2 + h) ∈
M̂σ(Y 0). We aim at bounding |χN (x1, x2 +h)−χN(x1, x2)|: call (z1, z2) = M̂−1

σ (x1, x2). It can

be easily seen that M̂−1
σ (x1, x2 + h) = (z1, z2 + (2a2)−nh). Therefore,

|χN (x1, x2 + h) − χN (x1, x2)| = |Mσ ◦H−1(z1, z2 + (2a2)−nh) −Mσ ◦H−1(z1, z2)|
≤ CHa

n(2a2)−n|h| = CH(2a)−n|h|,

where the constant CH is the norm of H−1, and where we have used the fact that Mσ is a
similitude with dilation ratio an. But 2a > 1. Passing to the limit as h tends to zero, we see
that

‖∂χ
N

∂x2
‖∞ ≤ CH . (40)

Note that Ŷ N is contained in the rectangle [−1, 1] × [0, ζ], where

ζ = (b+ 4a sin θ − 2a2 sin(2θ))

∞∑

n=0

(2a2)n =
b+ 4a sin θ − 2a2 sin(2θ)

1 − 2a2
.

Moreover Ŷ N has IN = 2 +
∑N

n=0 2n vertical boundaries, (among which
∑N

n=0 2n vertical frac-
tures) see Figure 5. We order increasingly the abscissa (αi)i=1,...,IN of these vertical segments,

and we have αi+1−αi = 2−N , i = 1, . . . , IN −1. Notice also that Ŷ N can be seen as the epigraph
of a function ΦN : (−1, 1) 7→ R+, and that ΦN is discontinuous at αi, i = 2, . . . , IN − 1, and
linear in the intervals (αi, αi+1), i = 1, . . . , IN − 1. Another important and natural property is
that the sequence (ΦN )N is nondecreasing with respect to N .

19
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Figure 5: The open set Ω̂
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Call Γ̂∞ the self-similar set associated to G1 and G2, (Γ̂∞ is part of the boundary of Ω̂), and
µ̂ the self-similar measure associated to (Γ̂∞, G1, G2). As above, it is possible to define a trace
operator ℓ̂∞ from W 1,q(Ω̂) to Lq(Γ̂∞).
Consider a function v ∈ C∞(Ω) such that v|Γ0 = 0. Since χN is piecewise affine and continuous,
and since |Γ̃N+1| = 2N+1|Γ̃σ|, for all σ ∈ AN+1,

1∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q =
∑

σ∈AN+1

1

2N+1
∣∣∣Γ̃σ
∣∣∣

∫

eΓσ

|v|q =
∑

σ∈AN+1

1

2N+1
∣∣∣Γ̂σ
∣∣∣

∫

bΓσ

|v ◦ χN |q.

On the other hand,

∑

σ∈AN+1

1

2N+1
∣∣∣Γ̂σ
∣∣∣

∫

bΓσ

|v ◦ χN |q =
1

2

IN−1∑

i=0

∫ αi+1

αi

∣∣v ◦ χN (x,ΦN (x))
∣∣q dx.

Therefore,

2∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q =

IN−1∑

i=0

∫ αi+1

αi

∣∣v(χN (x,ΦN (x)))
∣∣q dx

=

IN−1∑

i=0

∫ αi+1

αi

∣∣∣∣∣

∫ ΦN (x)

0

d

dt
(v(χN (x, t))) dt

∣∣∣∣∣

q

dx

=

IN−1∑

i=0

∫ αi+1

αi

∣∣∣∣∣∣

N∑

j=0

∫ Φj(x)

Φj−1(x)

d

dt
(v(χN (x, t))) dt

∣∣∣∣∣∣

q

dx.

Thus,

2∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q

≤
IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ
j

q−1




q−1


N∑

j=0

ρ−j

∣∣∣∣∣

∫ Φj(x)

Φj−1(x)

d

dt
(v(χN (x, t))) dt

∣∣∣∣∣

q

 dx

.

IN−1∑

i=0

∫ αi+1

αi

N∑

j=0

ρ−j

∣∣∣∣∣

∫ Φj(x)

Φj−1(x)

d

dt
(v(χN (x, t))) dt

∣∣∣∣∣

q

dx

≤
IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ−j(Φj(x) − Φj−1(x))q−1

∫ Φj(x)

Φj−1(x)

∣∣∣∣
d

dt
(v(χN (x, t)))

∣∣∣∣
q

dt


 dx

.

IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ−j(2a2)j(q−1)

∫ Φj(x)

Φj−1(x)

∣∣∣∣
d

dt
(v(χN (x, t)))

∣∣∣∣
q

dt


 dx
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where we have used several Hölder’s inequalities. This yields that

2∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q

.




IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ−j(2a2)j(q−1)

∫ Φj(x)

Φj−1(x)

∣∣∣∣
∂v

∂x1
(χN (x, t))

∂χN
1

∂t
(x, t)

∣∣∣∣
q

dt


 dx

+

IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ−j(2a2)j(q−1)

∫ Φj(x)

Φj−1(x)

∣∣∣∣
∂v

∂x2
(χN (x, t))

∂χN
2

∂t
(x, t)

∣∣∣∣
q

dt


 dx



.

Using (40),

1∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q .

IN−1∑

i=0

∫ αi+1

αi




N∑

j=0

ρ−j(2a2)j(q−1)

∫ Φj(x)

Φj−1(x)

∣∣∇v(χN (x, t))
∣∣q dt


 dx.

Performing the inverse change of variables, one obtains that

1∣∣∣Γ̃N+1
∣∣∣

∫

eΓN+1

|v|q ≤ C

(∫

eY 0

|∇v|q +

N∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

∫

fMσ(eY 0)
|∇v|q

)
,

where the constant C can be chosen independently of N .
Finally, since 1

|eΓN+1|
∫

eΓN+1 |v|q tends to
∫

eΓ∞ |ℓ̃∞(v)|qdµ̃ as N → ∞, we find that

∫

eΓ∞

|ℓ̃∞(v)|qdµ̃ ≤ C

(∫

eY 0

|∇v|q +

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

∫

fMσ(eY 0)
|∇v|q

)
, (41)

which is the desired result. We conclude by using the density of {v ∈ C∞(Ω); v|Γ0 = 0} in
Vq(Ω).

Step 2 We aim at proving (38) for the special geometry described in Step 1 by using Lemma 3.
Let V2 be the Banach space

V2 =

{
v : Ω̃ → R

2, v measurable ‖v‖q

Lq(eY 0)
+

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

‖v‖q

Lq( fMσ(eY 0))
<∞

}
,

and let V be the Banach space

V =
{
v ∈ Lq

loc(Ω̃), v|eY 0 ∈ Lq(Ỹ 0), ∇v ∈ V2

}
,

endowed with the norm

‖v‖V =

(∣∣∣∣
∫

eΓ0

v|eΓ0

∣∣∣∣
q

+ ‖∇v‖q

Lq(eY 0)
+

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

‖∇v‖q

Lq( fMσ(eY 0))

)1/q

.

Remark 7 It can be proved that

V =
{
v ∈ Lq(Ω̃), ∇v ∈ V2

}
.
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It is clear from (36) that W 1,q(Ω̃) is a subspace of V .
Furthermore, we will prove at the end of the paragraph that W 1,q(Ω̃) is dense in V .
As a consequence of (37), one can extend the operator ℓ̃∞ to a continuous linear operator from
V to W = Lq

eµ = Lq(Γ̃∞, dµ̃), that we still denote ℓ̃∞.

Let P̃0 be the projection on constants: P̃0v =
∫

eΓ∞ vdµ̃. It is straigthforward to see that the

operator L : v 7→ ℓ̃∞(v) − P̃0

(
ℓ̃∞(v)

)
is also a continuous linear operator from V to W = Lq

eµ.

Define V1 as the space of the constant functions on Ω̃. We introduce the linear operators

A1 : V 7→ R, A1v =

∫

eΓ0

v,

and
A2 : V 7→ V2, A2v = ∇v.

We can apply Lemma 3 since L
∣∣
ker A2

≡ 0. Therefore, there exists a constant C > 0 such that

‖ℓ̃∞(v)−P̃0

(
ℓ̃∞(v)

)
‖q

Lq

eµ

≤ C

(
‖∇v‖q

Lq(eY 0)
+

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

‖∇v‖q

Lq( fMσ(eY 0))

)
, ∀v ∈ V,

(42)
which implies (38) in the case when Ω = Ω̃, since W 1,q(Ω̃) ⊂ V .

Proof of the density of W 1,q(Ω̃) in V . We introduce a smooth real valued function φ defined
on Ỹ 0 such that 




0 ≤ φ ≤ 1, in Ỹ 0,

φ = 1, on Γ̃0,

φ = 0, on Σ̃0,

where
Σ̃0 = {x ∈ ∂Ỹ 0 such that x2 > b}.

For n > 0 and σ ∈ An, we also introduce the function φσ defined on M̃σ(Ỹ 0) by φσ = φ◦(M̃σ)−1.
For a function v in V , we define vn by:





vn|eY n−1 = v|eY n−1 ,
vn| fMσ(eY 0)

= φσv| fMσ(eY 0)
+ (1 − φσ) 〈v〉σ , ∀σ ∈ An,

vn|eΩη = 〈v〉σ , for η = σ ◦ F̃i, σ ∈ An, i = 1, 2,

where

〈v〉σ =
1

|Σ̃σ|

∫

eΣσ

v and Σ̃σ = M̃σ(Σ̃0).

It is easy to see that un ∈W 1,q(Ω̃). Morover, limn→∞ ‖u− un‖V = 0; indeed,

∇u−∇un =





0 in Ỹ n−1,

φσ∇u+ (u− 〈u〉σ)∇φσ in M̃σ(Ỹ 0), ∀σ ∈ An,

∇u in Ω̃\Ỹ n.
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But ‖∇φσ‖∞ = a−n‖∇φ‖∞. Therefore

‖u− un‖q
V ≤ cq




∑

p≥n

ρ−p(2a2)p(q−1)
∑

σ∈Ap

∫

fMσ(eY 0)
|∇u|q

+ρ−n(2a2)n(q−1)‖∇φ‖q
∞
∑

σ∈An

∫

fMσ(eY 0)
a−nq |u− 〈u〉σ |q




≤ cq


∑

p≥n

ρ−p(2a2)p(q−1)
∑

σ∈Ap

∫

fMσ(eY 0)
|∇u|q + Cqρ

−p(2a2)n(q−1)‖∇φ‖q
∞

∫

fMσ(eY 0)
|∇u|q


 ,

using the Poincaré-Wiertinger inequality in M̃(Ỹ 0):
∫

fM(eY 0)
|u− 〈u〉|q ≤ Cqa

nq

∫

fM(eY 0)
|∇u|q,

and where the constants cq and Cq do not depend on n. From this and Lebesgue theorem, we
see that limn→∞ ‖u− un‖V = 0.

Step 3 We now aim at proving (37) and (38) in the general case, i.e. for Y 0 satisfying the
assumptions made in § 2. For that, we are going to construct a self-similar piecewise linear map
from the domain Ω to Ω̃. It is easy to see that there exist

1. a partition T of Y 0 into p non-overlapping triangles, such that Γ0, F1(Γ
0), F2(Γ

0) are the
whole side of a triangle in the partition.

2. a partition T̃ of Ỹ 0 into p non-overlapping triangles, such that Γ̃0, F̃1(Γ̃
0), F̃2(Γ̃

0) are the
whole side of a triangle in the partition.

3. a continuous, one to one and piecewise linear function ψ from Y 0 onto Ỹ 0, such that

• its restriction to the triangles in T is linear,

• ψ maps each triangle in T to a triangle in T̃ ,

• the restriction of ψ to Γ0 is the identity,

• for i = 1, 2,
Fi(ψ

−1(x)) = ψ−1(F̃i(x)), ∀x ∈ Γ̃0.

An example of such a construction is shown in Figure 6.
This construction allows for the definition of the continuous linear operator

Ψ : W 1,q(Ω) →W 1,q(Ω̃),

Ψ(u) = ũ, ũ defined by

{
ũ|eY 0 = u|Y 0 ◦ ψ−1,

ũ| fMσ(eY 0)
= u|Mσ(Y 0) ◦Mσ ◦ ψ−1 ◦ (M̃σ)−1, σ ∈ An, n ≥ 1.

(43)
Using the same argument as in the proof of Theorem 4 in [2], we have that

‖ℓ∞(v)‖Lq
µ

. ‖ℓ̃∞(Ψ(v))‖Lq

eµ
, ∀v ∈ Vq(Ω). (44)

From (44) and (41), we see that

‖ℓ∞(v)‖q
Lq

µ
.

∫

eY 0

|∇(Ψ(v))|q +

∞∑

n=1

ρ−n(2a2)n(q−1)
∑

σ∈An

∫

fMσ(eY 0)
|∇(Ψ(v))|q, ∀v ∈ Vq(Ω). (45)
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Figure 6: The domains Y 0 and Ỹ 0 are partitioned into eight triangles

The inverse change of variables yields (37).
Similarly, the proof of (38) follows from the observation that P0(ℓ

∞(v)) = P̃0(ℓ̃
∞(Ψ(v))) and

from (42).

The case a = 1/2. See Appendix A.

Proof of Theorem 7 Call f = ℓ∞(v). Recall that

‖f‖q

JLip(1− 2−d
q

,q,q;0;Γ∞)
= ‖f‖q

Lq
µ

+

∫

Γ∞

|f − P0f |qdµ+

∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ.

(46)
We have to prove that the right side of (46) is finite. A change of variables leads to

∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ

=
∞∑

n=1

(
2a2−q

)n ∑

σ∈An

2−n

∫

Γ∞

|f ◦Mσ − P0(f ◦Mσ)|qdµ.

This and Theorem 8 imply that
∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ

.

∞∑

n=1

an(2−q)
∑

σ∈An


‖∇(v ◦Mσ)‖q

Lq(Y 0)
+

∞∑

p=1

ρ−p(2a2)p(q−1)
∑

η∈Ap

‖∇(v ◦Mσ)‖q
Lq(Mη(Y 0))




=
∞∑

n=1

an(2−q)
∑

σ∈An


an(q−2)


‖∇v‖q

Lq(Mσ(Y 0))
+

∞∑

p=1

ρ−p(2a2)p(q−1)
∑

η∈Ap

‖∇v‖q
Lq(Mσ◦η(Y 0))






where ρ is such that (2a2)q−1 < ρ < 1. Thus,

∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ .

∞∑

i=1

ρ−i(2a2)i(q−1)

(
i∑

n=1

ρn(2a2)n(1−q)

) ∑

µ∈Ai

‖∇v‖q
Lq(Mµ(Y 0))

.
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From ρ(2a2)1−q > 1, we deduce that
∑i

n=1 ρ
n(2a2)n(1−q) . ρi(2a2)i(1−q). Thus,

∞∑

n=1

(
2a2−q

)n ∑

σ∈An

∫

Mσ(Γ∞)
|f − Pσf |qdµ .

∞∑

i=1

∑

µ∈Ai

‖∇v‖q
Lq(Mµ(Y 0))

,

and the desired result follows easily.

6 Traces of functions belonging to Wm+1,q(Ω) for a positive inte-

ger m.

We now assume that a ≥ 1/2 and that Γ∞ is not contained in a straight line. We use the
notations defined in § 4.2. To keep the length of the paper reasonable, some proofs will be
omitted or just sketched.

Proposition 6 For all real number q ≥ 1, there exists a constant C such that for all f ∈
JLip(m + 1 − 2−d

q , q, q;m; Γ∞), there exists f̃ ∈ Wm+1,q(Ω) with the properties f̃ |Y 0 = 0,

ℓ∞(f̃) = f and

‖f̃‖q
W m+1,q(Ω)

≈
∫

Ω
|Dm+1f̃ |q ≤ C‖f‖q

JLip(m+1− 2−d
q

,q,q;m;Γ∞)
. (47)

Proof. The proof resembles very much that of Proposition 5. It mainly consists of constructing
functions g̃0,i ∈Wm+1,q(Ω), i = 1, . . .M0 such that

• g̃0,i|Y 0 = 0,

• g̃0,i|Mσ(Ω) belongs to Pm, for all σ ∈ A2,

• ℓ∞(g̃0,i) = g0,i.

For a positive integer n and σ ∈ An, let us define the function g̃σ,i by:

g̃σ,i|Ωσ = 2n/2 g̃0,i ◦M−1
σ , (48)

g̃σ,i|Ω\Ωσ = 0. (49)

From the definition of gσ,i, we see that ℓ∞(g̃σ,i) = gσ,i. For a fixed i ∈ {1, . . . ,M0},
• the supports of Dm+1g̃σ,i and Dm+1g̃0,i are disjoint,

• if (n, σ) 6= (n′, η) then the supports of Dm+1g̃σ,i and Dm+1g̃η,i are disjoint.

Consider also M0 functions φ̃i ∈Wm+1,q(Ω) such that

• φ̃i|Y 0 = 0,

• ℓ∞(φ̃i) = φi.

For a funtion f ∈ JLip(m + 1 − 2−d
q , q, q;m; Γ∞) given by the expansion (24), it can be shown

as in the proof of Proposition 5 that the function f̃ given by

f̃ =

M0∑

i=1

λiφ̃
i +

M0∑

i=1

β0,ig̃
0,i +

M0∑

i=1

∑

n≥1

∑

σ∈An

βn,σ,ig̃
σ,i

has the desired properties.
We have the analogue of Theorem 8:
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Theorem 9 For all q, 1 < q <∞ and all real number ρ satisfying (36), there exists a constant
C such that, for all v ∈W 1,q(Ω),

‖ℓ∞(v) − P
(m)
0 (ℓ∞(v)) ‖q

Lq
µ
≤ C




‖Dm+1v‖q
Lq(Y 0)

+

∞∑

n=1

ρ−n(m+1)(2a2)n((m+1)q−1)
∑

σ∈An

‖Dm+1v‖q
Lq(Mσ(Y 0))


 .

(50)

Proof. We skip the proof, because it is long and resembles that of Theorem 8.
Theorem 9 makes it possible to prove the analogue of Theorem 7:

Theorem 10 For all q, 1 < q < ∞ and v ∈ Wm+1,q(Ω), ℓ∞(v) belongs to JLip(m + 1 −
2−d

q , q, q;m; Γ∞) and there exists a constant c such that

‖ℓ∞(v)‖JLip(m+1− 2−d
q

,q,q;m;Γ∞) ≤ c‖v‖W m+1,q(Ω), ∀v ∈Wm+1,q(Ω). (51)

Proof. The proof is very similar to that of Theorem 7.
From Proposition 6 and Theorem 10, we obtain that for all q, 1 < q <∞,

ℓ∞
(
Wm+1,q(Ω)

)
= JLip(m+ 1 − 2 − d

q
, q, q;m; Γ∞). (52)

Appendix

A Some details in the proof of Theorem 8 in the case when

a = 1/2

The proof of Theorem 8 is similar to that given in the case a > 1/2, except that the set Ω̃ and
Ω̂ are defined in a slightly different manner. The set Ω̃ is defined in § 2.2.1 and is displayed in
Figure 1, so the similitudes are the affine maps (θ = 0) given by (7) with a = 1/2. The polygonal
cell Ỹ 0 is the convex hull of the points A = (−1, 0), B = (1, 0), F2(B), and F1(A).

Step 1 We limit ourselves to describing the set Ω̂. It is possible to define a piecewise affine
one to one and measure preserving map H from Ỹ 0 onto the fractured set

Ŷ 0 = Interior
(
((−1, 1) × (0, h)) \

(
{0} × (h′, h)

))
,

where h = β
2

(
α+ 3

2

)
, and h′ is a real number smaller than h. The map H is such that

• the restriction of H to Γ0 is the identity,

• for i = 1, 2, H induces a one to one map from F1(Γ
0) onto [−1, 0] × {h} and from F2(Γ

0)
onto [0, 1] × {h}.

The domains Ỹ 0 and Ŷ 0 are shown in Figure 7.
In Figure 7, we also show a partition of Ỹ 0 into triangles corresponding to a possible map H
with H linear on the triangles. The images of the triangles by H are triangles which form

a partition of Ŷ 0. The points on the figure are I =
(
1 + 1

8 (α− 1
2), β

8

)
, J =

(
0, 2β

3

)
, K =
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Ỹ 0 Ŷ 0

I

J

K

I ′

J ′

K ′

L

M ′

M

L′H

Figure 7: The domains Ỹ 0 (left) and Ŷ 0 (right). The restriction of the map H to the triangles
covering Ỹ 0 is linear.

(
1 + 7

8(α− 1
2), 7β

8

)
, L =

(
α− 1

2 , β
)
, I ′ =

(
1, β

8

)
, J ′ =

(
0, 2β

3 (1 + 1
8(α − 1

2 ))
)
, K ′ =

(
1, h − β

8

)
,

M ′ =
(
0, h− β

8 (α− 1
2)
)
. In this construction, h′ is h′ = h− β

8 (α − 1
2 ) = β

(
3α
8 + 13

16

)
.

Let us introduce Q̂0 = ((−1, 1) × (0, h]) \ ({0} × [h′, h]). Let G1 and G2 be the maps in R
2

defined by
G1(x1, x2) =

(
1
2(x1 − 1), h+ x2

2

)
,

G2(x1, x2) =
(

1
2(x1 + 1), h+ x2

2

)
.

We define
M̂σ = Gσ(1) ◦ · · · ◦Gσ(n) for σ ∈ An,

the sets

Ŷ N = Interior

(
Q̂0 ∪

N⋃

n=1

⋃

σ∈An

M̂σ(Q̂0)

)
,

Ω̂ = Interior

(
Q̂0 ∪

∞⋃

n=1

⋃

σ∈An

M̂σ(Q̂0)

)
,

see Figure 8, and the one to one mapping

χN :

∣∣∣∣∣∣

Ŷ N → Ỹ N ,

x 7→ Mσ ◦H−1 ◦ M̂−1
σ (x) if x ∈ M̂σ(Ŷ 0).

The set Ω̂ is obtained by removing an infinite number of vertical segments from the rectangle
(−1, 1)×(0, 2h). It is constructed by assembling translated/dilated copies of the set Q̂0 displayed
on the left of Figure 8. Note that χN is a piecewise affine function and that the Jacobian of χN

is almost everywhere 1. Similarly, we can construct a one to one map χ∞ from Ω̂ to Ω̃, which
preserves the measure.
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2 2

h

2h

Figure 8: Left: the set Q̂0. Right: the open set Ω̂ (only the longest fractures are displayed)
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