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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frOutline� Catalyti reverse �ow reator (RFR): desription and ontrol issues� Model desription� Observer synthesis� Control objetive: Compare LQR and MPC performanes� Provide real-time multivariable ontrollers for a RFR suh that:� onentration of pollutant released at the inlet stay below athreshold,� limiting operating onditions are aounted for,� optimize the use of the ontrol ations.� LQR design and simulation results� MPC design and simulation results� ConlusionsLAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 2
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Priniple sheme for the atalyti RFR
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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frMonolith setionCordierite monoliths of square ross setions (1*1 mm) hannels:
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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.fr� Monolith in the ore region is atalytially ative and is inert inboth end setions.� Through periodi �ow reversal, heat released by reation is �rsttrapped in the paking and then used to heat up the feed. Therefore,high temperatures exist in atalyst bed whereas the inlet and outlet gasstream (VOC) have ambient temperature.� In the ore region, an eletri heater maintains ignition temperature,while the temperature in the atalyti layer is dereased by fresh airdilution.� A blower loated downstream of the RFR keeps aspiration of thepollutant at a onstant �ow rate.� The paked layer is adiabati, exept in the ore region where heatloss is inevitable due to both the installation for air dilution and thehigh temperature in this region.� Highest temperature is loated at the inlet of atalyti monoliths.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 5



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frVarious behaviours of the RFR: ontrol issuesAording to the operating onditions, various behaviours are possible:� If feed of pollutant onentration is too rih: release of heat due tothe reation produes thermal overheating that deteriorates theatalysts. Temperature inside the reator has therefore to bemaintained under 600K [Ramdani et al., 2001℄.� If feed of pollutant onentration is too lean: low heat releasedduring the reation leads to the extintion of the reator.Temperature inside the reator has therefore to be maintained over450K [Ramdani et al., 2001℄.� If the feed of pollutant onentration is suh that the reationtemperature falls within an envelope outlined by the two previousboundary temperatures: autothermal operation is reahed and noontrol ation would be required.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 6
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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frOverview of RFR ontrol (1)� Various ideas have been proposed to provide e�ient means oftemperature ontrol:� [Nieken et al., 1995℄ to suppress temperature run-away when rihfeed: old gas injetion, hot gas withdrawing or heat reoverythrough internal heat exhangers;� [Cunill et al., 1997℄ to prevent extintion for lean feed: hot gassupply or internal heating.� [Budman et al., 1996℄ was the �rst omplete study on RFR ontrol:a parametri study allows haraterizing the use of 2 RFR MVs: oolant�ow rate and yle time. 2 SISO ontrollers (MV=oolant �ow rate)assume that the temperature and the onentration at the RFRinlet were onstant input disturbanes: use of PID and a feedforward ontroller whih is not usable during transient onditions.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 8
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Overview of RFR ontrol (2)

� [Keith, 2003℄: to avoid extintion and overheating, a simple swithingontrol law strategy tunes the swithing time.� [Dufour et al., 2003℄: SISO MPC optimizes the onsumption of eletrialpower aounting for the maximum amount of onentrationpollutant released at the outlet. Limitation was onerned with theimpossibilities to ontrol overheating and to handle stohastivariations of the inlet onentration.� [Dufour et al., 2004℄: MIMO MPC optimizes the onsumption ofeletrial power and the dilution rate while maintaining the hot spottemperature inside the presribed enveloppe. Limitation wasonerned with the di�ulties to handle stohasti variations of theinlet onentration. Real time ontrol aspet beomes ritial.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 9



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frModeling [Edouard & Hammouri, 2004℄� Motivation: the model is used in the optimal model based ontrolframework and the observer synthesis. The urrent periodi model used[Ramdani et al., 2001℄ need a set of 800 DAE, and the sampling time is10s: auray and time spent for model alulation are ritial.� The new model onsidered for ontrol purpose is obtained from aounterurrent pseudo-homogeneous model [Edouard, Hammouri,2004℄):� Assume that the kineti reation an be negleted under strongmass transfer limitation,� Aounts for periodi frequeny orretion,� 1 nonlinear paraboli PDE, 2 algebrai equations, and nonlinearboundary onditions,� Model more aurate and faster to solve than [Dufour et al., 2004℄).LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 10
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Modeling [Edouard & Hammouri, 2004℄
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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frNotation: some elements [Edouard & Hammouri, 2004℄x = Normalized spae variable [-℄Ts = Solid temperature [K℄Tg1, Tg2 = Upstream and downstream gas temperature in the monolith [K℄T0 = ambient temperature and feed temperature [K℄! = VOC mass fration [-℄� = Period of �ow reversal [s℄� = fration of feed �ow rate [-℄:� if � =1: no dilution� if � =0: maximum dilutionQj =External power supply [W ℄'(x) = Charateristi funtion of the atalyti monolith [-℄:� '(x) = 0 in the inert monoliths (x < ��)� '(x) = 1 in the atalyti monoliths (x � ��)N 0= Number of transfer units for heat loss [-℄LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 12
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Modeling [Edouard & Hammouri, 2004℄Normalizing some variables, we obtain the nonlinear PDE model:8><>: � �Ts(x; t)�t = ( 1Pax� + 1 + �22P� )�2Ts(x; t)�x2 + 1� �2 �Ts(x; t)�x + P��Tad(t) (x; t)��!1(x; t)�x + P�!1(x; t) = 0; � �!2(x; t)�x + P�!2(x; t) = 0 (1)with: 8>>>>>>>><>>>>>>>>:
P� = haH2�0uv0pmg (1� �2� ); 1Pax� = 2�sax(H�0uv0pmg)(1� �2� ) ;� = (1� ")�spsH2�0uv0pmg ; x = zH=2�Tad(t) = �HMpmg !10(t);  (x; t) = '(x)!1(x; t) + !2(x; t)2!10(t)

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 13
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Modeling [Edouard & Hammouri, 2004℄

The boundary ondition at x = 0 is:8<: !1(x; t) = !10(t)Tg1(x; t) = Ts(x; t)� �P� �Ts(x; t)�x = T0The boundary ondition at x = 1 is:8>>>>>>>><>>>>>>>>:
(1 +N 0)(Tg2(x; t)� T0) = �(Tg1(x; t)� T0) + QjS�0uv0CpmgTg1(x; t) = Ts(x; t)� �P� �Ts(x; t)�xTg2(x; t) = Ts(x; t) + 1P� �Ts(x; t)�x�!1(x; t) = !2(x; t)
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Initial onditions are at t = 0:Tg1(x; t) = Tg2(x; t) = Ts(x; t) = T0The �rst term in the right hand side of (1) involves an e�etive axial heatondutivity given by:8>>>><>>>>:
1Pax� + 1 + �22P� = �eff�0uv0pmgH=2(1� �2� )�eff = �sax + 1 + �22 (�0uv0pmg)2ha (2)

When there is no dilution (� = 1), �eff redues to the well-known estimateof [Vortmeyer & Shaefer, 1974℄ as used by Nieken [Nieken et al., 1995℄.This model experimentally mathes the proess behaviour duringopen-loop ontrol and identi�ation [Edouard & Hammouri, 2004℄.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 15
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Observer [Edouard & Hammouri, 2004℄

An observer has to be designed sine:� The input disturbane (inlet VOC onentration) has a more realististohasti behaviour than in the previous RFR ontrol studies, and hasa large in�uene over the proess behavior,� The LQR formulation needs the temperature pro�le,� The MPC needs the input disturbane.The input disturbane and the temperature pro�le in the RFR areestimated on-line using a high gain observer based on threetemperatures measurements [Edouard & Hammouri, 2004℄.
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Sine it seems natural to avoid heating and ooling at the same time,2 ost funtions are onsidered (based on the linearized model):- When the pollutant onentration is too low, the LQR tunes �Qjsuh that the temperature is kept over a 450K:1Z0 (p01(�X(t))2 + p02(�Qj(t))2)dt

- When the pollutant onentration is too high, the LQR tunes ��suh that the temperature is kept below 600K:1Z0 (p11(�X(t))2 + p12(��(t))2)dt

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 17
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LQR formulation

� In both ases, the ontrol obtained from the minimization of these ostfuntions is a linear feedbak of the form �Qj(t) = �F 0�X or��(t) = �F 1�X with �X = Xe(t)� Zi where (i = 0; 1), Xe(t) is theestimate state given by the observer and eah steady state is Zi.� The gains of the feedbak matrix are obtained from the solution of thelassial algebrai Riati equation.
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LQR: simulation results

−500

 0

 500

 1500

 2000

 2500

 3000

 3500

 0  1000  2000  3000  4000  5000  6000

 1

 0.8

 0.6

 0.4

 0.2

 0

 1000

Time t(s)

Dilution
rate(�

)

Heating
Power(

W)

 450

 500

 550

 600

 0  1000  2000  3000  4000  5000  6000Time t(s)

Tenpera
ture(K

)

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 21



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.fr

MPC formulation: model linearizationsTo derease the on-line omputational burden, the model islinearized about the nominal nonlinear model with variations s.t.:8>><>>: Qj(k) = Qj:0(k) + �Qj(k)�(k) = �0(k) + ��(k)X(k) = X0(k) + �X(k)The linearized model used in the MPC is:� _X(t) = A(�0; Q0; X0)�X(t) +B1(�0; Q0; X0)��(t) +B2(�0; Q0; X0)�Qj(t)

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 22
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MPC formulation [Dufour & Touré, 2004℄

The MPC formulation is:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
min�Qj(k);��(k)J(�Qj(k);��(k)) = (wQ[ Qj(k)�Qj:minQj:max�Qj:min ℄2 + w�[ �(k)��max�max��min ℄2)with onstraints on MVs magnitude:Qj:min = 0W � Qj(j) = Qj:0(j) + �Qj(j) � Qj:max = 3000W��min = 0 < �(j) = �0(j) + ��(j) � ��max = 0:95with 2 onstraints i on the estimated state:1(X(j); Qj(j); �(j)) = Ts:min � Ts(x101; j) � 0 (j 2 fk + hpi1; k + hpf1g)2(X;Qj(j); �(j)) = Ts(x101; j)� Ts:max � 0 (j 2 fk + hpi2; k + hpf2g)

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 23
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MPC formulation [Dufour & Touré, 2004℄

� k=atual disrete time index, j=disrete time index.� wQ and w� are positive weights.� In order to derease the omputational burden, the tuning of theontrol horizon is one. Even if it is true that this tuning reduesstrongly the degrees of freedom to solve the optimization problem, itallows dereasing the omputational time, whih is an importantissue here.� Tuning parameters are the horizons: hpi1 and hpf1 (resp. hpi2 andhpf2) are the initial and future predition horizons desribing the lower(resp. upper) temperature onstraint.

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 24
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MPC: Tuning of the horizons

It is lear that the tuning of the ontroller parameters diretly in�uenes theonstrained optimization problem and therefore losed-loop ontrol results,sine:� This onstrained optimization problem uses the estimation of theinput disturbane (the adiabati temperature rise �Tad) whih has anevident impat over the losed-loop performanes (espeially theonstraints satisfation).� The non-miminum phase behavior of the proess has to be handled.Regarding the impat of the input disturbane over the optimizationtask and the onstraints satisfation required, some guidelines for thetuning of the ontroller parameters are �rst given.

LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 25



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frNon-miminum phase behaviorTime evolution of 2 distributed sensitivities of Ts w.r.t. �:
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MPC: Tuning of the initial horizon predition

� The ooling ation reates a non-minimum phase behaviour inthe temperature involved in output onstraints. Therefore, initialpredition horizon has to be tuned su�iently large suh that thisbehaviour is not aounted for into the ontroller, espeially whenonstraints are saturated.Conlusion: a su�iently large initial predition horizon isrequired.� If some onstraints are urrently saturated, they may no more besatis�ed in the very lose future due to possible strong variations of�Tad.Conlusion: the smallest initial predition horizon is required.
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MPC: Tuning of the �nal horizon predition

� The dynami of the temperature involved in the output onstraintsis relatively low and has to be aounted for into the onstrainedoptimization problem.Conlusion: a su�iently large �nal predition horizon isrequired.� Sine �Tad is used in the predition framework, is strongly stohastiand has a large impat over losed-loop performanes, large preditionhorizons will foreast an unertain future.Conlusion: the smallest �nal predition horizon is required.
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MPC: simulation #778, hpi1 = 2; hpf1 = 4; hpi2 = 1; hpf2 = 12
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MPC: simulation #798 (=#778 w/o observer)
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MPC: simulation #787, hpi1 = 1; hpf1 = 3; hpi2 = 8; hpf2 = 8
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Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frConlusions� In spite of the input disturbane, Ts an be maintained by bothontrollers inside the spei�ed temperature envelope.� Conerning the optimization performanes, LQR > MPC sine itrequires less heating ation while treating more gas: ( �Qj = 83:4W ,�� = 0:894) for LQR, ( �Qj = 274:6W , �� = 0:849) for MPC(0 � t � 4500s). MPC overevaluates the real ontrol needs sine thestohasti variations of the input disturbane.� With the non minimum phase behaviour of the proess, the horizonstuning is uneasy for the MPC.� A swithing ontrol struture is used for the LQR: therefore, heating andooling ation are initially deoupled. The drawbak is that it introduesa severe nonlinearity for stability analysis whereas MPC is moresuitable than the LQR for general MIMO ontrol problems.LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 32



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frNotationa = Spei� solid-�uid surfae area [m�1℄ps =Solid heat apaity [J:kg�1:K�1℄pmg = Fluid heat apaity [J:kg�1:K�1℄H =Total length of monolith [m℄h = Solid-�uid heat transfer oe�ient [W:m�2:K�1℄kD =Solid-�uid mass transfer oe�ient [m:s�1℄M = VOC moleular weight [kg:mol�1℄N 0= Number of transfer units for heat loss [-℄P = Pelet number for solid-�uid heat transfer [-℄Pax = Axial Pelet number for heat ondution [-℄P� = P orreted for the �nite frequeny [-℄Qj =External power supply [W ℄S = Total ross-setion of the monolith [m2℄Tg1; Tg2 = Gas temperature in the upstream, downstream monolith [K℄LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 33



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frNotationT0 = Inlet and external temperature [K℄Tmax = Maximum solid temperature in the RFR [K℄Ts or T = Solid temperature [K℄t = Time [s℄uv0 = Super�ial gas veloity in the referene state [m:s�1℄x = Redued absissa, 2z=H[�℄z = Absissa [m℄� = fration of feed �ow rate [-℄�H = Reation enthalpy [J:mol�1℄�Tad = Adiabati temperature rise [K℄" = fration of open frontal area [-℄'(x) = Charateristi funtion of the atalyti monolith [-℄ (x) = '(x)(!1 + !2)=(2!10)[-℄� = Fluid density [kg:m�3℄LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 34



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frNotation�0 = Gas density in the referene state [kg:m�3℄�s = Solid density [kg:m�3℄� = Heat storage time onstant [s℄� = Period of �ow reversal [s℄!1su; !2su = VOC mass fration of solid phase in the up/downstreammonoliths [-℄!1; !2 = VOC mass fration in the up/downstream monoliths [-℄!10 = VOC mass fration in the feed [-℄� = Redued absissa of the boundary between inert/atalyti monoliths�� = � orreted for the �nite frequeny [-℄X = State vetorXe = Estimated state vetory = Filtered temperature measurements [K℄
 = Calibration parameter of the observer [-℄LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 35
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Gains in the LQR: algebrai Riati equation

8>>>>><>>>>>:
F 0 = (p02)�1(B02)TS0S0A(�0) + (A(�0))TS0 + CTC � S0B02(p02)�1(B02)TS0 = 0F 1 = (p12)�1(B11)TS1S1A(�1) + (A(�1))TS1 + CTC � S1B11(p12)�1(B11)TS1 = 0 (3)

where C = [C1 : : : C100 C101 : : : C200℄ with [C1 : : : C100℄ = [0 : : : 0℄ and[C101 : : : C200℄ = [1 0 : : : 0℄.
LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 36



Multivariable Control of a Catalyti RFR ... dufour�lagep.univ-lyon1.frMPC: Constraints on the manipulated variable:a transformation method [Flether, 1987℄From the onstrainted variable �:�min � � � �maxan unonstrained variable p is de�ned suh that:� = f(p) = 12(�max + �min) + 12(�max � �min) tanh(p)
p

��max
�minLAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 37
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MPC: Constraints on measured and estimated variables:external penalty method [Flether, 1987℄

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
min� Jtot(�) = J(�) + w H(i(�))) (i 2 I)� 2 IR� ; w > 0H(i(�)) =Phi(i(�)) � 2 Ihere hi is any C1 funtion (at least) suh that:� hi(i(�)) = 0 if i(�) � 0(i.e. when the onstraint is satis�ed or saturated)� and hi(i(�)) > 0 if i(�) > 0(i.e. when the onstraint is not satis�ed)here: hi(i(�)) = max2(0; i(�))LAGEP University Claude Bernard Lyon 1-UMR CNRS 5007 38
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MPC: Constraints on measured and estimated variables:external penalty method [Flether, 1987℄
x

H J
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