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Motivation

• Chip level control

- Digester endpoint Kappa #  (Amirthalingam & Lee, 2000)

• Grade transition control

- Hardwood/softwood swings

• Process monitoring and fault diagnosis

Development of a fundamental model based on mass, heat and 
momentum conservation 
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Literature Overview: Fundamental 
Continuous Digester Models - Purdue Model

Smith and Williams1974
Series of CSTRs, 3 phase system,  kinetic parameters

Christensen et al. 1982
Optimal kinetic parameters, specie rate multiplier, 
mass transfer data

Maraset al. 1986
Thermal balance for wood and liquor

Kayihan et al. 1996
2-vessel model

Wisnewskiet al. 1997
Improved defns. of mass conc. and volume fractions
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Härkönen1987
Chip compaction, velocity -hydraulics

Literature Overview: Fundamental 
Continuous Digester Models

Michelsen1995

Hydraulics + simplified Purdue kinetics

• Gustafson and co-workers > 1983
Kinetics, detailed diffusion, chip size distribution
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Perspective

Mass/Energy

High fidelity kinetics

No level, fixed compaction

Mass/Energy/Momentum

Level/compaction profile

Valid for (50-150) Κ# range

• Thermal-hydraulic Purdue Model

• Higher Order Numerical Method
Current Work

Past models Purdue Michelsen (1995)
Smith, Christensen,

Wisnewski et al. 
(1974,1982, 1997)



1/15/2009 Doyle Research Group, University of Delaware 7 UD

Digester
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Model

1. Active EA
2. Passive EA
3. Active HS
4. Passive HS
5. Dissolved lignin
6. Dissolved Carb.

η
1. Lo reactive lignin
2. Hi reactive lignin
3. Cellulose
4. Araboxylan
5. Galactoglucomannan

ε

Entrapped 
Liquor

Tc, vc, pc, ρsi Tfl, vfl, pfl,  ρfl,iρei

Tc, vc, pc, ρsi ρei Tfl, vfl, pfl,  ρfl,i

Mass Transfer
Reaction  Site

Solid Free Liquor
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• Radial property gradients neglected (P,M)

• Solid/entrapped phase in thermal and dynamic equilibria (M)

• Stratified, incompressible flow (P,M)

• Liquor-wall resistance neglected (correlation/experimental data) (M)

• Acceleration of liquor negligible (simplified) (M)

• Constant cross-sectional area (M)

• Pulping chemistry based on McKibbins (1960) 

• Hydraulic constitutive laws based on Härkönen(1987)

Summary of Assumptions

P - Purdue
M - Michelsen
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Volume Continuity

Chip Phase Volume Continuity

Overall Digester Volume Continuity

Space not occupied by chips must be filled with liquor
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Momentum Conservation
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Energy Conservation

Chip Phase

Liquor Phase

Heat of reaction

Diffusive 
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Phenomenological Interactions

Mass continuity

Compaction

Overall volume 
continuity

Energy 
conservation

Momentum
bulk flow

η

vc

Κ #, 
pc

Reaction
Diffusion

inter-phase flow 
resistance

bulk flow

η

vf

η

bulk flow

vc

η
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Computational Issues

j

j – 0.5

Momentum 
balance 

j + 0.5Mass, energy 
balance

j+ 1

Staggered Grid (Patankar, 1980) • 96 control volumes (CVs)

• Height: 0.29 m /CV

• 2213 states 

• All variable properties vary 
linearly

Simulation Time

80 hr sim time - 25 min. real time

Sun Sparc Ultra 10 - 333Mhz
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Production Rate Change

• Simultaneous chip feed and blow rate change

• Flow rate change of ≈ 11% from nominal value

• Step change filtered using first order filter with 13 min. time constant

IZ CZ

WZ

IZ CZ

WZ LPR

HPR
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Steady-state Spatial Profiles

Compaction Chip Velocity Liquor Velocity

IZ CZ

WZ

IZ CZ

WZ IZ CZ WZ

LPR
HPR
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Transient Response

Endpoint Κ#

Level

EA at X-Screen

(1) ↑ in production rate

(2) ↓ in upper heater temperature

(3) ↓ in white liquor flow

(4) ↓ in dilute liquor flow
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Near-Fault Scenario

• Step increase in white liquor flow
initial
final
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Higher Order Finite Difference

• Previous results based on first order finite differences (error∼O(h))

• Finite differences induces numerical diffusion in convective flows

Exact Solution Dissipation 

(typical of odd order)

Dispersion

(typical of even order)

• Approach: First order at extremities and 4th order (error ∼O(h4)) 
in between 
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Enhanced Approximations For Plug 
Flow Using Finite Differences

1) Increase number of CSTRs

• increases number of model states

2) Use higher order information for 
approximation

i

i+1

i-1

i-2

i-3

12

310186 1123 +−−− ++−+−
= iiiiii uuuuu

dz

du

Conc. profile

• For the same volume, plug flow reactor 
shows higher conversion than CSTR
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Higher Order Numerical Method 

• Better approximation of plug flow leads to lower Kappa #

Normalized Distance
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Conclusions & Future Work

• A hydraulic extension of Purdue Model is presented

• Momentum transfer impacts K #  and compaction profiles 

• Simulation examples demonstrate coupling between momentum 
transfer and pulp quality profile

• A hybrid first/fourth order finite difference approximation 
shows increased conversion

• Hardwood/softwood grade transition model extension

• Kappa profile control in a continuous pulp digester
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