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Motivation

e Chip level control

- Digester endpoint Kappa ¢gAmirthalingam & Lee, 2000)

e Grade transition control

- Hardwood/softwood swings

* Process monitoring and fault diagnosis

Development of a fundamental model based on maasand
momentum conservation
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Smith and Williams
Series of CSTRs, 3 phase system, kinetic parasn

Christensert al.
Optimal kinetic parameters, specie rate multiplier,

mass transfer data

Maraset al.
Thermal balance for wood and liquor

1996 — Kayihanet al.
2-vessel model

1997 — Wisnewskiet al.
Improved defns. of mass conc. and volume fraction
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Literature Overview: Fundamental
Continuous Digester Models

— Harkonen
Chip compaction, velocityrydraulics

— Michelsen
Hydraulics + simplified Purdue kinetics

» Gustafson and co-workers > 1983
Kinetics, detailed diffusion, chip size distributtio
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Perspective

Smith, Christensen, _
Past models Purdue wisnewski et al. Michelsen (1999

(1974,1982, 1997)

Mass/Energy Mass/Energy/Momentum

High fidelity kinetics Level/compaction profile

No level, fixed compaction Valid for (50-150)K# range

* Thermal-hydraulic Purdue Model

Current Work _ _
e Higher Order Numerical Method

1/15/2009 Doyle Research Group, University of Delava




Wood Chips
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Summary of Assumptions

P - Purdue
M - Michelsen

* Radial property gradients negleci{@&M)

 Solid/entrapped phase in thermal and dynamic kquail(M)

o Stratified, incompressible floWP,M)

 Liquor-wall resistance neglected (correlation/expental datajM)
o Acceleration of liquor negligible (simplifiedM)

e Constant cross-sectional ai@4)

* Pulping chemistry based on McKibbins (1960)

e Hydraulic constitutive laws based blarkdnen(1987)
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Solid Phase

Bulk flow Reaction

Entrapped Liguor Phase

Free Liquor Phase

Vext

N

Bulk flow Diffusion External flows
recirculation/extract

1_
d=1) (Pfi = Pei) £ Pii ext
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Volume Continuity

Chip Phase Volume Continuity

M _ 014
E‘ aZ[(l ’7)Vc]

Overall Digester Volume Continuity

|:lz(vc +vf ) =0

Space not occupied by chips must be filled with hiquo
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Momentum Conservation

Chip Phase Bulk Chip Liguor Chip/liquor flow
| momentum pressure pressureresistance
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Liquor Phase

Gravity Chip/liquor flow

resistance
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Phenomenological Interactions

bulk flow
Momentum Compaction

N\

Inter-phase flo
resistance Mass continuity

J Vi e Reaction
bulk flow Diffusion

Overall volume bulk floW Energy
continuity e conservation
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Computational Issues

Staggered Gri@Patankar, 1980)  *96 control volumes (CVs)
e Height: 0.29 m /CV

j—0.5 e 2213 states

« All variable properties var

Momentum Iinearly

balance

Mass, energy j+ 0.5 . _ _
balance Simulation Time

j+ 1 80 hr sim time - 25 min. real timg

Sun Sparc Ultra 10 - 333Mhz
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» Simultaneous chip feed and blow rate change

 Flow rate change af 11% from nominal value

» Step change filtered using first order filter witB min. time constan
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Near-Fault Scenario
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Higher Order Finite Difference

 Previous results based on first order finite ddfeces (errafO(h))

e Finite differences induces numerical diffusiorconvective flows

.

Exact Solution  Dissipation Dispersion

(typical of odd order) (typical of even order)

» Approach First order at extremities and 4th order (efiofh))

In between
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Enhanced Approximations For Plug
Flow Using Finite Differences

Increase number of CSTRS
e Increases number of model states

Use higher order information for
approximation

dy _ -Uj_3+6u;_, —18u;_; +10u; +3u; 4

dz 12

e For the same volume, plug flow reactor

shows higher conversion than CSTR Conc. profile
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Conclusions & Future Work

e A hydraulic extension of Purdue Model is presented
 Momentum transfer impacts K # and compactionij@®f

e Simulation examples demonstrate coupling betweememtum
transfer and pulp quality profile

A hybrid first/fourth order finite difference appamation
shows Increased conversion
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