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ABSTRACT

This paper deals with the constrained optimal @rdf an infrared drying process of a
water based epoxy-amine painting. This approachased on a nonlinear dynamic
unidirectional diffusional model of infrared dryinghenomena where both heat and
mass transfers under shrinkage conditions are ateddor. The control problem is to
minimize the processing time while accounting for aonstraints for some of the
characteristics (i.e. the temperature and the hityngatofile) during the drying cycle.
This is solved using a model predictive controlnfeavork where the nonlinear
diffusional model is directly used in the controfrhulation. Such advanced controller
requires the use of a soft-sensor (observer) ieram@ reconstruct the entire humidity
profile according to the infrared flow applied, tmeasured temperature and the model.

INTRODUCTION

Reactive painting drying is an important inmia$ problem through its impact for the quality thie
final aspect of products in many industries (careglass plain sheets, cans, etc.). The main dit§ic
encountered during this operation is the evacuatfdhe solvent. It is needed to simultaneouslyditiie
painting film and to ensure the film polymerizatibat its presence has to be avoided: it has nbeto
trapped in the final dried product. Until recentlye use of volatile organic compounds (VOCs) afildw



the control of this evacuation during the polymatian reactions. But the enforced laws concerning
environment lead now to replace the use of VOChayuse of water based solvent that evacuates less
rapidly and at higher temperatures than VOC. Ta@wee this problem, infrared flow drying is widely
developed in industrial processes. In (Okazaki.etl@74; Vrentas et al., 1994), diffusion problewith
both infrared and water used as solvent are tackled

Model Predictive Control (MPC) or receding horizoontrol refers to a class of control algorithms in
which a dynamic process model is used to predidtatimize process performance (Qin et al., 20@3).
is widely used in industrial applications. The idsato solve, at each sample time, an open-loop
optimization problem over a finite prediction hanzin order to find the value of the manipulated
variable that has to be implemented. The proceduedterated at the next sample time with the tgpdéa
process measurements. MPC is well suited for higifopmance control since constraints can be
explicitly incorporated into the formulation of tkentrol problem.

In this paper, we present a MPC strategy that allé@rsan infrared drying process of a water based
epoxy-amine painting, to reduce the operating twhde accounting for any constraints for some & th
dynamic characteristics (i.e. the temperature hachumidity profile).To ensure the final producadty,
paint producers propose to track a reference teatyrer trajectory during the drying cycle in order t
extract water as best as possible before polyntenzaeactions starts. But the optimal control peof
would rather be to minimize the operating time whdirectly accounting for constraints dealing vittle
final product quality (bubbles and fissures phenoanat can happen during the polymerization reacti
have to be avoided). Such constraints are not krfowthe moment and would probably be based on the
humidity gradient profile since it is the innerwdng force during the drying. Moreover, process $t3l
limitations such that the magnitude and the veyooitthe manipulated variable have to be taken into
account in the problem resolution. Such an apprea previously experimentally validated (Dufour et
al., 2004) for the trajectory tracking of the maasutemperature or the measured mean humidityisn t
paper, the unmeasured humidity profile is needethbyMPC. This profile is therefore estimated based
on a soft-sensor (observer): it uses the valudefirfrared flow applied, the measured temperadmce
the partial differential equation (PDE) model.

The paper is organized as follow: first, the fpsiaciples diffusional model obtained in a previousrk

is briefly described. Then, observer aspect isflgritiscussed and the MPC strategy is detailedalRin
simulation results are discussed.

KNOWLEDGE-BASED MODELLING
Painting formulation and characteristics

Due to the great complexity of industrial gaigs, the painting is a water based epoxy-amimnatipg
formulated in our laboratory. This permitted ugkperimentally determine every physical, thermal an
chemical properties (Blanc et al., 1997). The pagntilm is composed of two elements:

» aresin constituted of an “oil in water" emulsadrlDGEBA (Diglycidylether of Bisphenol A)

which condensation index is equal to 0.15,

» a hardener composed of a primary triamine solublgater. Currently used in the painting

industry, it is named Jeffamine T403.
During the experiments, this painting film is cahte low thickness (between 30 and 308) on an iron
substrate (also named the support), that has besincfassically treated at its surface like in the
automobile industry. The painting characteristing aupport characteristics can be found in details
(Blanc et al., 1997). During the drying, two pherma occur: the solvent vaporization (the wateha t
present case) and the reticulation. Given the dymaithese phenomena (respectively about 100s for
the vaporization and about 100min for the reticatatin the present experimental conditions), the
reticulation phenomenon is accounted for in thigkwad herefore, drying characteristics depend omly o



the temperature and the humidity. Moreover, a regligible deformation of the film happens during th
drying due to water content (40% of the humiditydmy basis). Given the low sample thickness with
respect to its surface, this deformation phenomésncharacterized by the sample thickness variation

Infrared dryer

The near infrared panel curing dryer usedrduthe experiments was previously described inildeta
(Blanc et al., 1998). The instrument part is conegglosf a pyrometer that allows the on-line tempeeatu
measurement of the sample at the upper surface @necision balance that allows the follow-up a th
sample and support set mean mass. The infrared gaoemposed of 9 quartz lamps with a tungsten
filament used in the wave length about [in2 that allows densities ranging between 0 and 12n@aN

Modeling

The dynamic model of the painting film sampifared drying is characterized by the temperaiure
and by the distributed humidity X on dry basis. Tamperature is assumed to be lumped due the low
thickness of the sample and due to the thermalackenistics of the support. This assumption has bee
experimentally checked. The PDE mo&g|, is deduced from the following mass and energgrizas.

Mass transfer

In the case of shrinking material, assumingigirectional transfer along the thickness z, tthasfer
of the solvent is diffusional and convective. Inanerian (fixed) framework (z,t), this transfefusction
of the solid deformation rate. By introducing arkaggian (mobile) framework ft), this leads to write the
diffusion equation of the solvent as follow (momalls for the modelling and the parameter expoessi
may be found in (Blanc et al., 1997, Blanc et398)):

X (E,1) :i( D(X,T) a_x} 0
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One has introduced the new independent space lemigdbto account for the shrinkage phenomena
assumed to be characterized by a linear relation:

d 1
d—E = 2)
Z 1+B X
The initial condition is, at t=0 and fOI< & < 3y, X(§,1) = X; . The two boundary conditions are:
" Dt>0andat£zomzo 3)
= D(X,T
= [t>0 and atf =dqyy: m(X,T): —ma_x (4)
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where m(Y,T), the drying rate is expressed by the film thed@yd et al., 1960) and(t) is the mean
humidity on dry basis. As reported in the literatdor polymeric solutions (Okazaki et al., 1974)isi
assumed that the mass diffusion coefficient vandh the temperature and with the humidity content
according to the relation:



D(X,T) = Dg exp(—%) exp(—%) (5)

(Dg represents the pre-exponential factor, Ea isttieation energy and a' is the humidity parameter)

Heat transfer

Due to the small painting film thickness andedo the great thermal heat diffusivity of theniro
support, the temperature of the whole system (pantilm + support) is assumed to be uniform.
Consequently and neglecting the heat due to thetioea an overall heat balance accounting for the
radiative and the convective heat losses and thpagation losses (Figure 1)
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Figure 1: Thermal Flows.
leads to:

dT Ay 7
[PoCop®o +Pspsds) G = e (KJa=Ne(T =T) =0 (T4 ~Tit) = o (T ~Ty) = a0 (T* ~Ti) =1, (Mm(X. T)
©)

with the initial conditionT(t =0) =T, and where the infrared flow q(i¥ the manipulated variable.

OBSERVER DESIGN

Observer is a software sensor (algorithm) usedduce the effects of noise of measurementseisaw
to estimate variables which are not measured. tblisoriginated from control science, and was #fii
developed for linear dynamic systems (Luenberg@86)l and has been more recently extended to non-
linear dynamic systems. If the model fulfils thecatled "observability' properties, the softwaresse
provides real-time estimates of the key procesmblms. The point of this theoretical device lieshe
juxtaposition of the two types of information awadile on the system: its theoretical behaviour stpdo
by the model, and its behaviour represented byoiindine measurements. The observers were first
developed based on an ordinary differential equatimdel. In our work, we develop an observer based
on the PDE model like in (Xu et al., 1995; Ligaretsal., 1998; Hua et al., 1998). Finally, basedhan
control u(t) = g(t) and on the measured process owpyt) = T(t), the observer estimates the humidity

profile)A( (z,t) in the sample.

PROCESS CONTROL STRATEGY



Model Predictive Control strategy

In a previous work (Dufour et al., 2003), wavé introduced a MPC strategy to solve an output
trajectory tracking problem based on a PDE modefdDr et al., 2004). Here, the control problem ban
stated in a more general framework: it is an or-bptimization problem over a receding horizon wher
the cost function J to be minimized reflects angtom problem and where any constraints on measured
output variables or estimated state variables nmeayeXplicitly specified. Since the problem is solved
numerically, a mathematical discrete time formulatiis given (more details for the parameter
expressions may be found in (Dufour et al., 200&oDr et al., 2004)):
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where k (resp. j) is the actual (resp. future) @igetime index,y o (resp.Xef) describe the specified
behaviour for the process measuyrg (resp. for the estimated process S&%t)a U is the optimization

argument. N[ (resp. Nf') are the initial (resp. final) horizon predict&nN; = g[]glx]NP, N.is the
n , M

control horizon. In this formulation, it is firsb hotice that in the cost function expression,kihewledge

of the process behaviour is required over the ptedi horizon (i.e. for future times). These infation
are obviously not available at any present tim&his problem is overcome using, in an internal nhode
control (IMC) structure (Bequette, 1998), an obseer{Figure 2). In this structure, the manipulated
variable is applied to both the process and its ehothis structure allows reformulating the control
problem since:

{Yref () -yp@) =yYa(D) = Ym() = (Yrer () €y () ~ym() @)

Xref () =Xp () = Xd(}) =Xm(1) = (Xrer () —€x () =Xm ()

Assumption: (Morari et al., 1983)

The error between the process output and the nodplt remains constant over the prediction horizon
The error value is updated at each sampled kithanks to new measurements from the plant.

According to this assumption and with the IMC staue, the function g involved in the cost functicam
be expressed asg(Y ef (j),xref(j),ey(k),éx(k),ym(j),xm(j),u(j -1)) and the constraints as

h'(yref(j),xref(j),ey(k),éx(k),ym(j),xm(j),u(j—1)). This allows introducing the measures, the

estimated measures, and the model into the coalyolithm. From a practical point of view, the sedo
problem is now to reduce the computational timededeto solve the constrained optimization problem
during the sampling period. Indeed, the model aangredicting the future dynamic behaviour of the



process over the finite prediction horizon and ¢fme has to be solved on-line. To reduce the uéisol
time required by the on-line nonlinear PDE modaloimed during the optimization task, we use a
linearization method (Friedly, 1972) of the nondnanodel Sy about a similar nonlinear mod8g}

computed off-line by choosing its inpy. Finally, the off-line solved nonlinear mod8} and the on-
line solved time-varying linearized mod8&ir, replace the initial nonlinear mod8&l; as depicted

Figure 2 (Dufour et al., 2003). Such controlleeflcient even if modelling errors may exist (Dufoet
al., 2003).
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Figure 2: Observer based Time Varying Linearizedrimal Model Control structure.

The control objective is now to find the variatiddu of the manipulated variable u about a chosen
trajectory U, leading to the best optimization result. A consgd optimization problem including an on-

line resolution of the linear mod8,,,, has therefore to be solved (Dufour et al., 20@8ncerning input

constraints, they are handled replacing the cdnstlasequencédU by an unconstrained sequence
through a simple hyperbolic transformation (Flet¢cli®87, Dufour et al., 2003) that uses the coimgga
bounds. Output-state constraints are accountethfough an exterior penalty method (Fletcher, 1987)
The optimizer argument is now an unconstrainedragyui and any unconstrained optimization algorithm
can be used to solve the final on-line penalizedmpation problem (Dufour et al., 2003): widelydwn

and used for its robustness and convergence pregpevie apply the Levenberg-Marquardt’s algorithm
(Fletcher, 1987), where the optimization argumsrdetermined at each sample time k using the psoces
measurement, the process state estimation (Xu, 19815 and the model prediction.

SIMULATION RESULTS

The optimization of the control of the process b#har is dealing with the minimization of the
processing time (hence, the minimization of theemse of the drying rate) while accounting for any
constraints. The state constraints are for the momat specified. Therefore, to demonstrate thalirgl
of the approach, the following constraints (on thput magnitude and on the input velocity) are
specified:



U, =0W.m?<ulk)<u,, =12kwW.m™

Au_ =-500N.m? <uk)-u(k-)<u_.

X(Z,,K) = X({,,K) < X, = 0.014kg kg™
whith the positiong; = 08 dqry,{o = 0.9* 84y . The sampling time is 1s and a correct tuningtfier

=500N.m™ (9)

horizons isN’=1, N?=10. Simulation results show that a realistic iréchflow may be applied by the

MPC (Figure 3 shows the magnitude constraints agdré& 4 shows the velocity constraints) in order to
minimize the operating time. In the meantime, thectfied state constraint is always satisfied (Fegh):

the state constraint satisfaction clearly limite thfrared flow applied (see the change of infrafteds
dynamic from k=20s). This controlled drying cyclendbe compared with another drying cycle where no
constraints were specified for the difference ahidity betweenl, and {, (Figure 6). Therefore, MPC

clearly allows maintaining the state constraintidasthe specified envelope, while increasing the
processing time as expected.
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CONCLUSION

In this paper, an efficient approach for any caistrd optimal control of an infrared drying process
been shown. A diffusional model is used leadinghtoknowledge of the drying dynamic characteristics
i.e. the temperature and mass content. To allovetidkne application, the nonlinear diffusional nebds

first solved off-line. Adjustments in the infrardtbw to apply are then computed on-line using a
linearized model involved in the constrained optiation problem. The MPC approach is based on an
observer to estimate the unmeasured humidity profihe next step is concerned with the experimental



validation of the approach and with the definitiminthe constraints that will really limit the praseng
time.
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