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Abstract 

 
This paper deals with the experimental control of an infrared drying process of a water based 

epoxy-amine painting. This approach is based on a unidirectional diffusional modeling of infrared drying 
phenomena where both heat and mass transfers under shrinkage conditions are accounted for. The control 
problem is concerned with the tracking of any given trajectory for one of the characteristics (i.e the 
temperature or the mean water content) during the drying cycle. This is solved using the well known 
model predictive control framework where the nonlinear diffusional model is directly used in the control 
formulation. Experimental results show the efficiency of the trajectory tracking. This method can be 
extended for more general constrained control problem. 
Keywords: drying process, heat transfer, mass transfer, model predictive control. 
 

1 Introduction 
 

Reactive painting drying is an important industrial problem through its impact for the quality of the 
final aspect of products in many industries (cars, preglass plaint sheets, cans, etc.). The main difficulty 
encountered during this operation is the evacuation of the solvent. This solvent is needed to 
simultaneously build the painting film and to ensure the film polymerization but should be avoided to be 
trapped in the final dried product. Until now, the use of volatile organic compounds (VOC) allowed the 
control of this evacuation during the polymerization reactions. But the enforced laws concerning 
environment lead now to replace the use of VOC by the use of water based solvent that evacuates less 
rapidly and at higher temperatures than VOC. To overcome this problem, infrared drying has been widely 
developed in industrial processes. Some studies (Okazaki et al.,1974 ; Vrentas and Vrentas, 1994) dealed 
with diffusion problems with both infrared and water used as solvent. 
The problem treated here is dealing with the on-line control of the drying cycle. A control strategy has to 
be developed and has to be able to be implementable for on-line control, taking into account of natural 
physical limitations or specifications (constraints) inherent to any process. An advanced model based 
control strategy is well dedicated to solve this constrained problem: model predictive control (MPC). 
MPC or receding horizon control refers to a class of control algorithms in which a dynamic process model 
is used to predict and optimize process performance. The idea is to solve, at each sample time, an open-
loop optimization problem over a finite prediction horizon in order to find the value of the manipulated 
variable that has to be implemented. The procedure is reiterated at the next sample time with the update of 
process measurements. Historically, two MPC strategies were first developed in the 1970's and permit to 
define the MPC paradigm. In 1986, the second generation was able to handle output constraints. Today, 
MPC has become an advanced control strategy widely used in industry (Eder, 1999). Indeed, MPC is well 
suited for high performance control since constraints can be explicitly incorporated into the formulation 
of the control problem. Therefore, it is not a surprise to see that it is an important tool for control 



engineers where plant being controlled are sufficiently slow for its implementation: indeed, one has to be 
able to solve an on-line optimization problem. More details and references on MPC can be found in (Qin 
and Badgwell, 1996 ; Mayne et al., 2000). 
The paper is organized as follow: first, the first-principles diffusional model obtained in a previous work 
is briefly described. Then, the MPC strategy is detailed. Finally, experimental results are shown. 

2 Knowledge-based modelling 
 
2.1 Painting formulation and characteristics 
 
Due to the great complexity of industrial paintings, the experiments are realized using a water based 
epoxy-amine painting formulated in our laboratory. This permitted us to experimentally determined every 
physical, thermal and chemical properties (Blanc et al., 1997). The painting film is composed of two 
elements:  

� a resin constituted of an ``oil in water'' emulsion of DGEBA (Diglycidylether of Bisphenol A) 
which condensation index is equal to 0.15, 

� a hardener composed of a primary triamine soluble in water. Currently used in the painting 
industry, it is named Jeffamine T403. 

During the experiments, this painting film is coated in low thickness (between 30 and 300 mm) on an iron 
substrate (also named the support), that has been first classically treated at its surface like in the 
automobile industry. The painting characteristics and support characteristics can be found in details in 
(Blanc et al., 1997).During the drying, two phenomena occur: the solvent vaporization (the water in the 
present case) and the reticulation. Given the dynamic of these phenomena (respectively about 100s for the 
vaporization and about 100min for the reticulation in the present experimental conditions), the 
reticulation phenomena is not taken into account in this work. Thus, drying characteristics depend only on 
the temperature and the humidity. Moreover, a non negligible deformation of the film happens during the 
drying due to water content (40% of the humidity in dry basis). Given the low sample thickness with 
respect to its surface, this deformation phenomena is characterized by the sample thickness variation. 
 
2.2 Infrared Dryer 
 
The near infrared panel curing dryer used during the experiments was previously described in details 
(Blanc et al., 1998). The instrument part is composed of a pyrometer that allows the on-line temperature 
measurement of the sample at the upper surface and a precision balance that allows the follow-up of the 
sample and support set mean mass. The accuracy of the chosen balance is 0.001g since the water loss 
mass is in the order of 0.4 g for a total mass about 100g (painting plus support). The infrared panel is 
composed of 9 quartz lamps with a tungsten filament used in the wave length about 1.2 µm that allows to 
obtain over the sample flow densities that range between 0 and 12 kW/m².  
 
2.3 Drying modelling 
 
The dynamic model of the painting film sample infrared drying is characterized by the assumed uniform 
temperature T and by the humidity X in dry basis. The temperature is assumed to be constant due the low 
thickness of the sample and due to the thermal characteristics of the support. This assumption has been 
experimentally checked. The partial differential equation (PDE) model NLS  is deduced from the 
following mass and energy balances. 
 
2.4 Mass transfer 
 



In the case of shrinking material, assuming an unidirectional transfer along the thickness z, the transfer of 
the solvent is diffusional and convective. In an eurelian (fixed) framework (z,t), this transfer is function of 
the solid deformation rate. By introducing a lagrangian (mobile) framework (ξ,t), this leads to write the 
diffusion equation of the solvent as follow (Blanc et al., 1998): 
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One has introduced the new independent space variables ξ  to account for the shrinkage phenomena 
assumed to be characterized by a linear relation: 
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, the drying rate, is expressed by the film theory (Bird et al., 1960) and Χ  is the mean 
humidity in dry basis. As reported in the literature for polymeric solutions (Okazaki, 1974), it is assumed 
that the  mass diffusion coefficient varies with the temperature and with the humidity content according to 
the relation: 
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where 0D  represents the pre-exponential factor, Ea  is the activation energy and a' is the humidity 

parameter. 
 
2.5 Heat transfer 
 
Due to the small painting film thickness and due to the great thermal heat diffusivity of the iron support, 
the temperature of the whole system (painting film + support) is assumed to be uniform. Consequently 
and neglecting the heat due to the reaction, an overall heat balance accounting for the radiative and the 
convective heat losses and the evaporation losses (Fig. 1) leads to: 
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with the initial condition T(t=0)=Ti and where the infrared flow )t(qɺ  is the manipulated variable. 
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Figure 1: Thermal Flows. 
 

3 Process Control Strategy 
 
3.1 Control Problem 
At the end of the drying cycle, the final product obtained as to be usable: bubbles and fissures phenomena 
that can happen during the polymerization reaction have therefore to be avoided. To ensure the final 
product quality, paint producers propose to track a reference temperature trajectory during the drying 
cycle in order to extract water as best as possible before polymerization reactions starts. Therefore, the 
control problem considered here is to allow the process controlled variable (i.e. the temperature or the 
mean humidity in dry basis) to track any kind of time-varying reference trajectory. Due to the lack of 
space, only experimental results for the temperature tracking will be shown. This leads to determine on-
line the process manipulated variable (i.e. the infrared flow) to apply during the drying cycle. Moreover, 
process physical limitations concerning the magnitude and the velocity of the manipulated variable have 
to be taken into account in the problem resolution. 
 
3.2 Model Predictive Control Strategy 
 
In a previous work (Larabi et al., 2000), we have introduced the model predictive control (MPC) strategy 
to solve this trajectory tracking. The control problem is then stated as an on-line optimization problem 
over a receding horizon Np where the performance index J to be minimized reflects the trajectory 
tracking task. Since the problem will be solved numerically, a mathematical discrete time formulation is 
given. The tracking objective can be written as the initial constrained optimization problem at the actual 
discrete time k: 
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In this formulation, it is first to notice that in the performance index J expression, the knowledge of the 
process output py  is required over the prediction horizon Np (i.e. for future times). These informations 

are obviously not available at the present time k, but this problem can be overcomed using the IMC 
structure. In this structure, the manipulated variable is applied to both the process and its model. This 
structure allows to reformulate the tracking problem:  
 

(j)(j))(j)((j)(j) mrefmdpref yey)j(y)j(yyy −−=−=−  

 
Assumption: (Morari and Zafiriou, 1983) 
The error e between the process output py  and the model output my  remains constant over the 

prediction horizon Np . The error value is updated at each sampled time k thanks to new measurements 
from the plant. 
 
According to this assumption and with the IMC structure, the performance index J to be minimized can 
be expressed as:  
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where the model is introduced into the control algorithm. From a practical point of view, the second 
problem is the computational time aspect. Indeed, as it can be seen in the new performance index 
formulation, the model aims to predict the future dynamic behavior of the process output over a finite 
prediction horizon Np and therefore has to be solved on-line. To reduce the on-line nonlinear PDE model 
resolution time, we use a linearization method (Friedly, 1972) of the nonlinear model NLS  about a similar 

nonlinear model 0S  computed off-line by choosing its input 0u   (Larabi et al., 2000). Finally, the off-line 

solved nonlinear model 0S  and the on-line solved linearized model TVLS  replace the initial nonlinear 

model NLS   as depicted Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Time Varying Linearized Internal Model Control (TVLIMC) structure. 
 
The control objective is now to find the variation u∆   of the manipulated variable u about a chosen 
trajectory 0u  leading to the best optimization result. A constrained optimization problem including an on-

line resolution of the linear model LTVS  has therefore to be solved (Larabi et al., 2000). The last point is 

concerned with the way to handle input constraints: this is done replacing the constrained parameter u~∆    
by an unconstrained parameter p~∆  through a simple hyperbolic transformation (Fletcher, 1987 ; Larabi et 
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al., 2000) that uses the constraints bounds. Output constraints can also be accounted for through an 
exterior penalty method (Fletcher, 1987). The optimizer argument is now an unconstrained argument and 
any unconstrained optimization algorithm can be used to solve the final on-line penalized optimization 
problem: widely known and used for its robustness and convergence properties, we apply the Levenberg-
Marquardt’s algorithm (Fletcher, 1987), where the parameter p~∆  are determined at each sample time k 
using the model prediction and the process measurement. 
 

4 Experimental results 
 
In this first attempts, the control horizon Nc is tuned to 1: It allows to minimize the on-line computational 
time. Experiments have been realized to point out the influence of the control tuning parameter Np over 
the tracking performance.  
 
4.1 Operating Conditions 
 
The operating conditions are the following one: 

� the linearization about 0S  is performed with 0u =5000 W/m² and with the initial conditions Ti= 

36 °C and iΧ =0.4  kg/kg, 
� the value for the sampling period Ts is 1s, 
� constraints bounds are: maxu =12,000 W/m², minu =0 W/m², maxu∆ =500 W/m², minu∆ =-500 W/m², 

� atmospheric conditions are: airΧ  =  20 %,  hT  = 52 °C, bT  = 20 °C, 

� the control algorithm, written in Fortran code, has been combined to C code in order to realize the 
interface with the sensors and the actuator, 

� the processor rate is 400 MHz.  

In order to compare results for any value of Np, one introduces the normalized cost function 
Np
J

'J = . 

 
4.2 Temperature Reference Trajectory Tracking 
 
From Fig. 3, one can see that the tracking objective is correctly achieved in all cases. 

 
Figure 3:.Temperature trajectory tracking (left)  and tracking error (right)  

for Np=3 (dotted), 6 (solid), 12 (dashed).  
 

Moreover, the intermediate value Np=6 for the horizon prediction gives the best result: 
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� with a small prediction horizon (Np=3), the discontinuities handling (around k=80, 120 and 200) 
is less efficient than with Np=6 as confirmed by the values taken by the normalized cost function. 
In this case, informations quantity available describing the future process behavior are 
insufficient. In a way, with Np=3, the problem is badly stated for its resolution, as we can see on 
the applied control: when the three discontinuities points appear, the infrared flow is always either 
saturated in magnitude or in velocity (Fig. 4). The optimizer does not correctly capture the future 
behavior of the process. Then, the algorithm tends too often to find a non admissible solution and 
to do bang-bang control. This leads consequently to poor tracking performances ; 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4:.Magnitude (left) for Np=3 (dotted), 6 (solid), 12 (dashed)  
and velocity (right) for Np=3 (dotted)for the infrared flow. 

 
� increasing the prediction horizon value to 6 and 12, the infrared flow becomes more and more 

smooth (Fig. 4), but with a big prediction horizon (Np=12), another problem appears for 
800 ≤≤ k : the model, qualitatively true, is quantitatively false. Since more values calculated by 

the model resolution are taken into account in the optimization problem, the criteria minimization 
is less efficient than in the case where the prediction horizon take an average value for (Np=6). 
This is confirm when tuning Np to values higher than 12. 

 
Therefore, the prediction horizon value Np=6 is the ``optimal'' choice for this main parameter: Np: tuned 
to 5, 7, 8, 9, 10 or 11 it was giving less interesting results. 
 

5 Conclusion 
 
In this paper, an efficient approach for the on-line control of an infrared drying process has been shown. 
The model predictive control approach uses a diffusional model leading to the knowledge of the drying 
characteristics, i.e the temperature and mass content.To allow the on-line application of this method, the 
nonlinear diffusional model is first solved off-line. Adjustments in the infrared flow to apply are then 
computed on-line using a linearized model involved in the constrained optimization problem. The final 
tracking experimental results are very interesting. It shows that this two-phases MPC approach allows to 
determine a physically applicable infrared flow. The influence of the MPC tuning parameter, i.e the 
prediction horizon, has been point out even if the results are acceptable is all cases. Moreover, since the 
balance measurements can be very noisy, a new approach is under study for a better humidity set points 
tracking: it is concerned with a soft sensing approach where both the model and the unnoisy temperature 
measurements are needed instead of the balance measurements. Moreover, since any objective function 
can be stated, one could introduce a new one that handle directly the final properties of the product. 

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300

Time (s)

M
ag

ni
tu

de
 (

W
/m

²)

-600

-400

-200

0

200

400

600

0 50 100 150 200 250 300

Time (s)

V
el

oc
ity

 (
W

/m
²/s

)



 

6 Bibliography 
 
Bird, R.B., Stewart, W.E. & Lighfoot, E.N.,1960, Transport Phenomena., John Wiley and Sons. 
 
Blanc, D., Laurent, P. & Andrieu J.,1998, Modeling of the Reactive Infrared Drying of a Model Water-
based Epoxy-amine Painting Coated on Iron Support with Experimental Validation, Proc. of the 11th 
IHTC, 5, 181-186. 
 
Blanc, D., Laurent, P., Andrieu, J. & Gerard, J.F.,1997, Convective and Radiant IR Curing of Bulk and 
Waterborne Epoxy Coating as Thin Layers. Part I: methodology, Polymer Eng. and Science, 37 (12), 
1959-1969. 
 
Eder, H.H., 1999, MBPC Benefits and Key Success Factors, Proc. of the European Control Conference, 
Paper F1033-6. 
 
Fletcher, R. 1987, Practical Methods of Optimization, John Wiley and Sons. 
 
Friedly, J.C.,1972, Dynamic Behavior of Processes, Prentice-Hall, Inc. 
 
Larabi, M.C., Dufour, P.,  Laurent,  P. &  Touré Y., 2000, Predictive Control of a Nonlinear Distributed 
Parameter System: Real Time Control of a Painting Film Drying Process, Proc. of the MTNS conference, 
Paper B167. 
 
Marquis, P. & Broustail, J.P., 1988, SMOC, a Bridge between State Space and Model Predictive 
Controllers: Application to the Automation of a Hydrotreating Unit, Proc. of the IFAC Workshop on 
Model Based Process Control, 37-43. 
 
Mayne, D.Q., Rawlings, J.B., Rao, C.V. & Scokaert, P.O.M., 2000, Constrained Model Predictive 
Control: Stability and Optimality, Automatica, 36(6), 789-814. 
 
Morari, M. & Zafiriou, E. 1983, Robust Control, Dunod. 
 
Okazaki, M., Shioda, K., Masuda, K. & Toei, R., 1974, Drying Mechanism of Coated Film of Polymer 
Solution., Journal of Chem. Eng. of Japan, 7(2), 99-105. 
 
Qin, S.J., &  Badgwell, T.A., 1996, An Overview of Industrial Model Predictive Control Technology. 
Proc. of the Fifth International Conference on Chemical Process Control, 232-256. 
 
Vrentas, J.S. & Vrentas, C.M.,1994, Drying of Solvent-coated Polymer Films, Journal of Polymer 
Science: Part B: Polymer Physics, 32, 187-194. 
 


