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FAULT DETECTION IN A CONTINUOUS PULP
DIGESTER
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Abstract:
Diagnostic strategies for Fault Detection and Isolation in a continuous pulp digester
are presented. Several methodologies for Fault Detection and Isolation are compared
for accuracy and real-time implementation potential. A Gross Error Detection
methodology for biased and noisy measurements is initially examined. Next, a
Gaussian Radial Basis Function neural network approach for detection of product
quality related changes is also used. Changes in feedstock composition using an
additional neural network approach is also developed. The efficiency and limitations
of all methods are demonstrated using a first principles model.

Keywords: Diagnosis, Pulp and Paper Industry, Gross Error Detection, Neural
Network.

1. INTRODUCTION

The pulp and paper industry forms a large
and important sector of the Chemical Process
Industry and is highly capital intensive. For the
period 1996-1998, planned capital investments
and new facilities to existing facilities were evalu-
ated to exceed $10 billion. Therefore, demand for
higher safety and reliability has increased. Process
diagnosis has gained considerable academic and
industrial interest and numerous approaches have
been proposed. Industrial control systems in this
sector have become more complex, and advanced
control systems like MPC require the presence
of experts to diagnose the cause of performance
degradation and to retune if needed.

The goal of our work is to develop and demon-
strate computational modeling and control method-

1 Corresponding author: Fax: (302) 831 1048, Phone: (302)
831 0760, Email: fdoyle@udel.edu

ologies that will facilitate integration of control
and fault diagnosis methodologies for a continuous
pulp digester. This paper is focused on methodolo-
gies and preliminary simulation results for Fault
Detection and Isolation (FDI) as applied to this
process.

The paper is organized as follows: a first principles
digester model used in the different approaches
is briefly described. Then, three diagnostic tools
applied for the digester are discussed. First, an
extension of a Gross Error Detection method is
applied to the problem of biased and noisy tem-
perature measurements. Then, a neural network
approach dedicated to the qualitative detection
of causes of changes in the final quality of the
pulp, i.e., the blow line kappa number, is shown.
Finally, another neural network approach to infer
feedstock variations is presented.



2. CONTINUOUS PULP DIGESTER MODEL

Continuous digesters (figure 1) are large vertical
tubular reactors. White liquor (aqueous solution
of effective alkali and hydrosulfide) strips the
presteamed porous wood chips of lignin, freeing
the wood fibers. The main reaction takes place
in the upper section of the digester referred
to as the cook zone. In this section, both the
chips and liquor flow cocurrently. At the end
of the cook zone, spent liquor is extracted for
chemical recovery. The chips, however, continue
their downward flow in the modified continuous
cooking (MCC) zone and extended modified
continuous cooking (EMCC) zone where they
encounter weak liquor flowing countercurrently.
The wood pulp is finally extracted at the outlet of
the EMCC. The main control issue is concerned
with the quality of the pulp, i.e., the kappa
number.
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Fig. 1. Schematic of a chemical pulp digester.

For modeling purposes, the digester is approx-
imated as a series of 150 continuous stirred
tank reactors (CSTR). The first principles model
consists of mass balances for the non-porous
solid and the free liquor components as well as
balances between the 2 phases within each reactor.
For modeling assumptions and a description of
the conservation laws, the reader is referred to
(Wisnewski et al., 1997). Based on this model,
a code using Matlab has been developed (Doyle
et al., 1999) and is adopted to simulate the
process and the model in the various approaches
developed in this paper.

3. GROSS ERROR DETECTION

In modern plants, a large number of measure-
ments are available. Their accuracy has an im-
pact on process monitoring, model identification
and control. This section is concerned with

the problem of noise and bias in temperature
measurements. A Gross Error Detection method is
investigated: this method is suited to identify and
eliminate measurements containing systematic
biases. It was initially developed for linear steady
state models (Narasimhan et al., 1987). The idea
is to evaluate the unknown bias vector b and true
measurement vector y by solving:

min
y,b

(yp − b − y)TQ−1(yp − b− y) (1)

subject the constraints:

Ay = C (2)

where yp is the vector of the biaised and noisy
measurements, Q is the known noise covariance,
and Ay = C represents the steady state con-
straints.

This framework has been extended in various
approaches for a nonlinear steady state model
(Renganathan et al., 1999): simulation results in
chemical engineering showed that as the nonlin-
earity of the system in increased, the proposed
test lead to better results rather than tests which
rely on linearizing the model.

In this section, we propose an extension of the
initial approach to nonlinear dynamic system.
This requires the solution of:

min
y,b

(yp − b − y)TQ−1(yp − b− y) (3)

subject to the model resolution:

{
ẋ = f(x, u)
y = g(x) (4)

In the current continuous digester, four tempera-
ture measurements are assumed to be subjected
to noise and bias. These sensors are located at
the upper and lower extracts and at the ends of
the EMCC zone. The results depicted in figure 2
show that all the real unknown measures can be
estimated despite the bias and noise introduced
at different times.

However, since an on-line optimization problem
that includes the model resolution has to be
solved, computational time can become an impor-
tant issue during implementation, as depicted in
figure 3 after 3 hours of simulation (the sample
time is 10 minutes). This can seriously limit
implementation of this method, especially when
a more complex model is employed.
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Fig. 2. Reconstruction of 4 temperature measure-
ments.
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Fig. 3. Computational (o) and sample times (×).

4. PULP QUALITY VARIATIONS
DETECTION

In this paper, two different uses of a neural
network are investigated. The first one is con-
cerned with the variations of the kappa number,
i.e., the pulp quality index at the extraction of
the digester vessel. The problem is that different
changes occuring in physical properties at various
locations accross the digester can similarly affect
the final kappa number at the outlet of the
digester. Four of them are concerned with:

• The lignin increase in the feed chips that
causes the kappa number to increase because
more lignin has to be removed during the
chemical reaction.
• Moisture content increase in the feed chips

dilutes the liquor, thereby reducing the rate
of reaction and also the amount of lignin
removed and hence the kappa number in-
creases.
• Liquor introduced in the impregnation vessel

is coming from a recovery loop. The decrease
of the density of one of its two species,

the hydrosulfide (HS), makes the reaction
rate decrease and then the kappa number
increases.
• The reduction of the temperature in the cook

zone decreases the reaction rate, reducing the
amount of lignin removed and a consequence
rise in the kappa number.

To normalize the fault signatures, the slope
of each ramp for the implementing variable is
adjusted so that a kappa number increase of 2
after 24 hours occurs at precisely the same hour
for each fault. Therefore, the sole examination of
the kappa number does not indicate which of these
variables has changed.

Neural networks have been used for over 15 years
for modeling and control as well as for fault
detection (Belsito et al., 1998) (Yu et al., 1999).
Another approach combining a neural network
and a fuzzy system improves the diagnosis time
and performance for a qualitative feedstock vari-
ations detection in a chemical plant (Ruiz et al.,
2001).

The approach used here is a three nodes gaussian
radial basis neural network, where each node
corresponds to a fault. Each node is trained to
respond with a 0 if there is no fault and a 1 if
this particular fault occurs: the neural network
is constructed here in a qualitative manner. The
cause of this kappa number variation is inferred
from 16 simulated plant measurements:

01. Cook zone heat exchanger temperature
02. MCC zone CSTR # 16 temperature
03. EMCC zone heat exchanger temperature
04. Effective alkali Cook out
05. Effective alkali MCC out
06. Effective alkali EMCC out
07. Hydrosulfide Cook in
08. Hydrosulfide Cook out
09. Dissolved solids Cook out
10. Dissolved solids EMCC in
11. Kappa Cook in
12. Kappa Cook out
13. Kappa EMCC out
14. EMCC liquor volumetric rate
15. Dissolved lignin MCC in
16. Dissolved lignin EMCC out

Moreover, because neural network construction
requires a training data set, different rates of
change for the implementaion variable were used
to create the training data from the plant simula-
tor.

Several cases studies with the final 3 node neural
network are now presented where each simulation
is run and a fault begins at 10 hours in the
corresponding implementation variable. Using the
neural network in the trained situations depicted



in figure 4a for the HS density variation and in
figure 4b for the moisture content variation leads
to promising results: in spite of some errors in the
2 other nodes when the fault starts, the third node
is able to recognize the origin of the fault.
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Fig. 4. Neural Network Responses to trained fault:
(a) HS, (b) Moisture

The generalization of the 3 node neural network
can also be seen for an untrained situation: in
figure 5a, a reduction of the cook temperature
leading to an increase of the kappa number has
been introduced. The neural network outputs
behave well since one of the three faults is
persistently recognized. However, the natural
limitation of the neural network to extrapolate
to untrained regions can be noticed in figure 5b:
while the training set has been built with 23, 24
and 25 hours ramps, the network is unable to
detect the 21 hour ramp in HS density.
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Fig. 5. Neural Network Responses to untrained
faults: (a) Cook Temperature, (b) HS

A more general evaluation of this neural network
shows that 74 % of the fault cases were correctly
diagnosed. The influence of the structure of the
neural network (Henrique et al., 2000) is also
emphasized here: a single node neural network has
also been constructed (giving 4 different values 1,
2 and 3 for the three different trained faults and
0 if none). It was able to diagnose correctly only
54 % of the faults.

It can be concluded that gaussian radial basis
neural network is capable of detecting such
variations.

5. FEEDSTOCK VARIATIONS DETECTION

This section addresses detection of unmeasured
variations of feedstock properties in the inlet of
the digester (figure 6) that affect the final kappa
number, even in a MPC structure (figure 7)

(Wisnewski et al., 1998.). Precisely, theses changes
consist of:

• Moisture content that is measured once a
day,
• unmeasured densities of the five wood species

fed in the chip bin: high reactivity lignin, low
reactivity lignin, carbohydrate, galactoglu-
comman and araboxylan, and,
• unmeasured densities of the two liquor species

fed in the impregnation vessel, i.e., the effec-
tive alkali(EA) and the hydrosulfide(HS).
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Fig. 6. Stochastic wood densities
compositions(kg/m3): (a) high and (b)
low reactivity lignin, (c) carbohydrate,
(d) araboxylan, (e) galactoglucomman
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Fig. 7. Kappa number in open loop (dashed)
and with MPC (solid): (a) no noise, (b)
with noise

The method developed here is based on a neural
network. The idea lies in inferring the value
of these eight unknowns using real available
measurements present in the digester. Moreover,
the use of an accurate model is crucial in this case,
since these eight feedstock qualities descriptors
are not available and therefore their effects can
not be quantified.

A sensitivity analysis shows that, among all
the sensors actually available, the EA and HS
measurements of the liquor at the upper extract
of the digester are the most useful to detect the
causes of the changes in the kappa number. They
will both be used to infer the eight unknown
values in the neural network strategy.

The first issue concerned with the training of the
neural network is the construction of the training
set: i.e, how to choose the variation set defined
by the values that can take the eight simulated



unknowns? And which of them can be inferred by
this method?

An initial neural network was trained using simple
cases to construct the variations set: each of the
eight unknowns can take eight different values
about its nominal value (100 %) but all the
changes that occur have the same step magnitude.
This involves the computation of 28 × 8 = 2048
simulations that last 12 hours, i.e., sufficiently
long such that the EA and HS measurements at
the upper extract are affected by these changes.
Using this neural network in trained situations
allows one to conclude that the moisture content
(figure 8a), the carbohydrate density (figure 8b),
the araboxylan density and the HS density can be
inferred.
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Fig. 8. Moisture content (a) and Carbohydrate
density (b): normalized variations introduced
(solid) and neural network response (dashed)

Using this neural network in untrained regions
(here with uncorralated variations for each of the
eight variables) shows its limitations: the results
are very poor (figure 9). This underlines the
problem of constructing the variations set.

Since the measurements used to feed the neural
network are sensitive to three candidate manip-
ulated variables (MV) of the control structure,
these MVs have to be introduced in the vari-
ation set: the chips flow rate at the inlet of
the impregnation vessel, the liquor flow rate at
the upper extract and the cook temperature.
Moreover, as only four of the eight unknowns seem
to be reconstructable by the neural network and
in order to reduce the amount of data needed
to create the training set, only the four most
detectable unknowns are used.

The idea is now to build a variation set for each of
the unknowns as follows: it is assumed that only
the three MV and also the relevant unknowns can
vary among nine different values. This leads to
94 = 6561 different simulations where only step
changes are introduced to produce the variations.
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Fig. 9. Moisture content (a) and Carbohydrate
density (b): normalized variations introduced
(solid) and neural network response (dashed)

To avoid computational issues encoutered in the
neural network creation, only 2000 of them are
used randomly to create the training set.

Using this neural network in trained situations
leads to good results. The extension to untrained
behaviors (figure 10) where the changes have a
first order shape leads to interesting results (figure
11): in spite of transient errors, the tracking of
the variations introduced during the simulation is
effective. More interesting is the use of the neural
network to another untrained situations: a suite of
changes for each of the seven others unknowns are
introduced (starting from the moisture content
figure 12a to the EA density figure 12b). It can
be seen that the neural network can naturally
reject these disturbances (figure 13), except for
the moisture content (the first change) and the
carbohydrate (the fourth change). Since both of
these variables can be inferred using other neural
network, theses results could be combined to
correct these errors. Otherwise, after transient
errors, the normal value is nearly reached again.
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Fig. 10. Neural Network Responses to untrained
faults: (a) Cook Temperature, (b) HS

6. CONCLUSION

Three different approaches for the diagnosis of a
pulp digester have been evaluated based on a first
principles model. For the Gross Error Detection,
even if good results have been obtained, on-line
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Fig. 12. First (a) and last (b) changes introduced
in the suite
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computational time can restrict the use of this
method. This limitation is not present with the
neural networks since the necessary training is
performed off-line. A first neural network method
has shown good potential to detect changes in
properties at the inlet of the digester. A second
neural network approach leads to good results to
infer changes in the moisture content, the density
of two wood species and one density of the white
liquor, even with untrained situations. A potential
problem in the choice of the variation set leading
to the construction of the training set has also
been pointed out. Future developments are related

to a Moving Horizon Estimation strategy (Gatzke
et al., 2001) for the feedstock variation problem
and with the on-site evaluation of these methods.
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