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Project Overview

• DOE Agenda 2020 Project
• Objective: 

– Develop a model-based approach to sensing, diagnostics, and 
control of key internal operating parameters of extended 
delignification digesters (i.e., lignin profile and final Kappa)

• Approach: 
– Interface first principles model with DCS system to develop on-line 

estimator
– Integrate digester parameter estimation with multivariable control and 

fault handling

• Benefits:
– Improved final Kappa control
– Diagnostic status of fault conditions
– Better understanding of lignin profile
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Project Overview (cont’d)

• Challenge:
– Monitor and operate digester during transient operations 

(grade and rate changes)
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Motivation – Profile Management

• High levels of dissolved solids has negative impact  on 
pulping efficiency and pulp properties (Lloyd et al., 1998)

• Recent studies on effect of EA concentration profil e
– pulp strength properties (higher EA at end cook ⇒ increased 

tear index & improved bleachability (Kettunen et al., 1997))
– HW pulping: alkali profile has major impact (6%) on selectivity 

(yield and viscosity (Achren et al., 1998)) at same kappa level
– multiple WL additions/BL extractions/CC impregnation         

(Lo-Solids) ⇒ low/even EA profile and 2-5% yield improvement 
(Marcoccia et al., 1998)

“with an optimized EA profile, pulp yield, strength  and 
bleachability can be increased” (Kettunen et al., 1998)



Digester Flowsheet
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Process Faults in the Digester

• Hardware failures
– sensors (over 100 - noise, bias , drift, failure)
– actuators (e.g., pumps - inlet, circulation, extract)
– controllers

• Feedstock variation
– chip composition
– moisture
– liquor concentrations
– higher priority



Feedstock Properties Variation

Chips Densities Kappa Number

3m
kg

Without 
Noise

With 
Noise

[Wisnewski and Doyle, JPC 98]

Open Loop with MPC



Classification of Fault Methodologies

People

Experiences Based

First Principles

Model Based

Expert Rules

Fuzzy Rules

Decision Tree 

Principal Component Analysis

Qualitative Trend Analysis

Neural Network

Residual and Statistic Approach

Gross Error Detection

Moving Horizon Estimation

Extended Kalman Filter

Parameters Estimation

Observers



Process Fault Diagnosis Approach

• NL Dynamic Gross Error Detection

• Abnormal event detection with ANN

• Inference of faults with ANN



Gross Error Detection

• Approach: evaluate bias b and the real physical value   
y using model and sensors measurement

• G.E.D. initially developed for linear steady-state (s/s) 
model [Narasimhan et al., 1987] and extended to 
nonlinear s/s model [Renganathan et al., 1999]
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Nonlinear Dynamic Gross Error Detection

• Introduce the nonlinear dynamic for the model 
constraints:

• On-line implementation strategy:
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Gross Error Detection: Results

Signals :      x : real . : measured  (with noise and bias)o : determined



Gross Error Detection: Results

Error:
Target (o)
Measure (+)
Solution (*)



Gross Error Detection: CPU Time

CPU time (o)
Sample  rate (x)



Process Fault Diagnosis Approach

• NL Dynamic Gross Error Detection

• Abnormal event detection with ANN

• Inference of faults with ANN



Kappa # Variation Cause Detection:

Neural Network Approach

• Issue: different faults may have similar effect on kappa #:
� lignin increase

� moisture content increase

� liquor density decrease

� cook temperature decrease 

• Proposed solution: train a multi-node neural network to 
recognize (output =1) the fault (lignin, moisture or liquor) 

• No plant data available: 
� Training set generated with first principles model

� Faults induce a ramp increase in kappa # by 2 on a 24 hours period



Results with Trained Faults (24h ramp)

ANN responses for (a) HS variationand (b) moisture variation

(a) (b)



Results with Untrained Faults

(a) (b)

Neural Network responses for (a) cook temperature variation, 
and (b) HS variation inducing a 21h ramp for the Kappa #

(a) (b)



Kappa# Variation Cause Detection:

Observations

• Extrapolation: faults that lead to an increase in kappa 
# by 2 over 24h (training set), 23h and 25h periods are 
recognized

• Extrapolation: NN is unable to recognize faults which 
introduce kappa # increase by 2 over 21h

• NN responds correctly to unknown faults

• NN structure influence:
• 3 nodes (ideal outputs     {0,1}): 74% of correct diagnosis
• 1 node (ideal output     {0,1,2,3}): 54% of correct diagnosis

∈
∈



Process Fault Diagnosis Approach

• NL Dynamic Gross Error Detection

• Abnormal event detection with ANN

• Inference of faults with ANN
– recurrent neural network structure
– NARMA structure
– studied training set design



Neural Net vs. Residual Approach

Fundamental Model
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Feedstock Properties Variation Detection:

Training Set Design

Step 1: Variations Set Design

• Combination of step changes with 8 possible magnitudes from 92% 
to 108% around each nominal value for:

� Moisture content

� 5 wet chips densities

� 2 white liquor densities

Step 2: Data Generation

• 4096 simulations of the open loop model

Step 3: Get Training Set

• With measurements set (EA and         
HS at the upper extraction in the 
digester)



Results

Trained behavior 
Untrained behavior

• Observations: 
� The neural network does not extrapolate to untrained regions
� Moisture, carbohydrate, araboxylan and HS densities are detectable



New Variation Set Design

� Include the 3 manipulated variables (MV) that affect 
measurement needed at NN inputs : 2 flow rates and the 
cook temperature

� Reduce training set size by building a variation set for 
only each of the 4 detectable properties with the 3 MVs

� One NN is dedicated for each detectable property

� Among all the cases generated in the variations set, 
2000 runs are chosen randomly

� Only step variations are used in the training set



Results

Variations introduced in 2 MVs: white 
liquor flowrate (top) and cook 

temperature (bottom)

Moisture content: normalized variations 
introduced and neural network response 

Good extrapolation to various signals 
shape not used by the training set



Results

Hydrosulfide density: normalized variations 
introduced and neural network response 

First and last changes introduced in 
the suite of the 7 remaining properties

� Good diagnostic
� Good extrapolation to signals shape 

not used by training set

� The 4 NN outputs can be combined 

to correct the remaining errors



Summary

• Gross error detection for temperature measurements leads 
to good results but can be limited for on-line implementation

• A neural network based approach allows one to distinguish 
faults that affect similarly the final kappa #

• A neural network based approach allows the inference of 4 
among 8 unmeasured feedstock properties:
� Variation set design for the model based training set building has 

been presented
� Wider ranges of prediction

• Methods are under evaluation on-site at pulp mill





Unmeasured Variations in Feedstock

Chips Densities Kappa Number (open/closed loop)

3m
kg

Without 
Noise

With 
Noise



Neural Network Results

Hydrosulfide densityMoisture content (a) and carbohydrate 
density (b) (normalized variations)


