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Annular shear of cohesionless granular materials:

from inertial to quasistatic regime

Georg Koval, Jean-Noël Roux, Alain Corfdir and François Chevoir∗

Université Paris-Est, Institut Navier, Champs sur Marne, France
(Dated: January 14, 2009)

Using discrete simulations, we investigate the behavior of a model granular material within an
annular shear cell. Specifically, two-dimensional assemblies of disks are placed between two circular
walls, the inner one rotating with prescribed angular velocity, while the outer one may expand or
shrink and maintains a constant radial pressure. Focusing on steady state flows, we delineate in
parameter space the range of applicability of the recently introduced constitutive laws for sheared
granular materials (based on the inertial number). We discuss the two origins of the stronger strain
rates observed near the inner boundary, the vicinity of the wall and the heteregeneous stress field
in a Couette cell. Above a certain velocity, an inertial region develops near the inner wall, to which
the known constitutive laws apply, with suitable corrections due to wall slip, for small enough stress
gradients. Away from the inner wall, slow, apparently unbounded creep takes place in the nominally
solid material, although its density and shear to normal stress ratio are on the jammed side of the
critical values. In addition to rheological characterizations, our simulations provide microscopic
information on the contact network and velocity fluctuations that is potentially useful to assess
theoretical approaches.

PACS numbers: 45.70.Mg, 81.05.Rm, 83.10-y, 83.80.Fg

I. INTRODUCTION

Significant progress in the modeling of dense granular
flow in the inertial regime has been brought about by the
recently introduced viscoplastic laws [1, 2, 3], as identi-
fied in experiments and discrete numerical simulations
in two-dimensional (2D) [4, 5, 6] and three-dimensional
(3D) [7, 8, 9] situations.

One typically considers homogeneous assemblies of
grains of size d and mass density ρp, under shear stress
σ and average pressure P . Denoting the shear rate as
γ̇, constitutive laws are conveniently expressed as rela-
tions between dimensionless quantities: effective friction
µ∗ (= σ/P ), solid fraction ν, and most noticeably iner-

tial number I = γ̇d
√

ρp/P , thus rescaling various exper-
imental data into a consistent picture. As the ratio of
the inertial to shear times, the latter parameter quanti-
fies the inertial effects. For a frictional material, a small
value of I (≤ 10−2) corresponds to the quasistatic crit-
ical state regime, while a large value of I (≥ 10−1) cor-
responds to the collisional regime [10]. As I increases,
solid fraction ν decreases approximately linearly starting
from a maximum value νmax = νc (dynamic dilatancy

law), while the effective friction coefficient µ∗ increases
approximately linearly starting from a minimum value
µ∗

min = tanφ (dynamic friction law). This yields a vis-
coplastic constitutive law, with a Coulomb frictional term
and a Bagnold viscous term.

In the quasistatic regime (I → 0) this approach in-
dicates µ∗ → µ∗

min constant, independently on the
strain, in steady shear flow. Below this minimum
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stress ratio, quasistatic strains are possible that are de-
scribed by elastoplastic models. For large enough shear
strains [11, 12], a solidlike material approaches the so-
called critical state, which coincides with the state of
steady shear flow in the limit of I → 0.

Once constitutive laws are obtained on dealing with
homogeneous systems, they should be locally applica-
ble to all possible flow geometries. Of course, they are
quite unlikely to provide a proper description of some
strongly heterogeneous situations occurring when strain
is localized near boundaries, in thin layers, on a scale
of a few grains. Yet, for smoothly varying stress fields,
they might prove sucessful, as was shown e.g., with flows
down inclined planes. Those were studied in the absence
of lateral walls both experimentally and through discrete
simulations (see [2] for a review). Then the stress distri-
bution becomes heterogeneous but the effective friction
remains constant, so that the situation is comparable to
homogeneous flows. More remarkably, a three dimen-
sional version of the constitutive law [7, 13] was found to
model similar flows between lateral walls, which induce
truly three-dimensional stress distributions and velocity
profiles [14].

Other simple geometries are the vertical chute and the
annular shear [2]. The present paper investigates the ma-
terial behavior in the annular (Couette) shear geometry,
for which the sample is confined between two rough cylin-
ders and sheared by the rotation of the inner one. The
annular shear cell is a classical experimental device to
measure the rheological properties of complex fluids, and
has been used for granular materials, both in two dimen-
sions [15, 16, 17, 18, 19] and in three dimensions [20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In this
geometry, the stress distribution is well known, as will
be detailed in the following: the normal stress is approx-
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imately constant while the shear stress strongly decreases
away from the inner wall. The decrease of µ∗ away from
the inner wall then explains the localization of the shear.
We may even expect a transition between an inertial flow
near the inner wall, where µ∗ ≥ µ∗

min, and a quasistatic
regime further, which analysis would help understand-
ing shear localization near a wall (influence of shear rate
and confining pressure on the width and dilation of shear
bands), of interest in industrial conducts [35], geotechni-
cal situations [36] and tectonophysics [37].

Following previous discrete simulations [38, 39, 40, 41],
we investigate the rheology and the microstructure of
granular materials in this geometry. We consider two-
dimensional, slightly polydisperse assemblies of cohesion-
less frictional disks. This allows to vary the shear state
and provides access to microscopic information at the
scale of the grains and of the contact network, hardly
measurable experimentally. We prescribe the shear rate
and the pressure, allowing global dilation of the shear
cell. To save computation time, we implement periodic
boundary conditions. All along this paper, we shall com-
pare our results with the homogeneous shear case [4].

Sec. II is devoted to the description of the simulated
system, its preparation and the definition of dimension-
less control parameters. Sec. III describes the influence
of the shear velocity and of the system scale on the shear
localization near the inner wall through the radial profiles
of various quantities. Sec. IV shows the validity of the
previous constitutive law for inertial regime, and analyzes
its limit in quasistatic regime. Sec. V then explains how
the constitutive law is able to predict various quantities
measured in Sec. III.

Preliminary and complementary results are presented
in [42].

II. SIMULATED SYSTEMS

A. Annular shear

The simulated systems are two dimensional (2D) as
indicated in Fig. 1. The granular material is a dense as-
sembly of n dissipative disks of average diameter d and
average mass m. A small polydispersity of ±20% pre-
vents crystallization.

The granular material is subjected to annular shear
between two circular rough walls. The outer wall (ra-
dius Ro) does not rotate, while the inner wall (radius
Ri) moves at the prescribed rotation rate Ω. The wall
roughness, which reduces sliding, is made of contiguous
glued grains with the same characteristics as the flowing
grains (polydispersity and mechanical properties). We
call r and θ the radial and orthoradial directions. r = Ri

and r = Ro respectively correspond to the centers of the
grains which compose the inner and outer walls . As the
grains of the inner wall form one rigid body, the motion
of each of them combines a translation of its center with
velocity ΩRi~eθ and a rotation rate Ω.
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FIG. 1: Annular shear geometry (black grains constitute the
rough walls).

Since we have not observed any influence of the outer
wall on the behavior of the sheared material close to the
inner wall for Ro ≥ 2Ri, we have set Ro = 2Ri, in the
results presented in this paper. The geometry is then
defined by the sole value of Ri/d.

An important feature of our discrete simulations is the
control of the normal stress exerted by the outer wall on
the grains, as done in [41]. We prescribe σrr(Ro) = P ,
through the radial motion of the outer wall, given by:
Ṙo = (P − σrr(Ro))/gp, where gp is a viscous damping
parameter. In steady state, the motion of the outer wall
oscillates around a mean value (〈Ṙo〉 = 0) corresponding
to a prescribed value of the normal stress at this point
(〈σrr(Ro)〉 = P ). Such control of the radial stress is
applied in cylinder shear apparatus aimed at studying
the behavior of soils near an interface [43]. It differs
from most experiments and discrete simulations, where
the volume is fixed in two dimensions [16, 18, 31, 38, 40,
44], or dilatancy is possible through the free surface in
three dimensions [20, 22, 24, 25, 26, 28, 30, 32, 33, 34].

We use the standard spring-dashpot contact law de-
scribed in [4], which introduces the coefficients of resti-
tution e and friction µ, and the elastic stiffness pa-
rameters kn and kt. Discrete simulations are car-
ried out with standard molecular dynamics method, as
in [4, 9, 45, 46, 47, 48]. The equations of motion are
discretized using Gear’s order three predictor-corrector
algorithm [49].

To decrease the computation time, we have introduced
periodic boundary condition along θ, exploiting the an-
gular invariance [50]. This reduces the representation of
the annular shear cell to an angular sector 0 ≤ θ ≤ Θ
(θ < π) instead of the whole system 0 ≤ θ ≤ 2π.
Θ = 2π/N , where N is an integer. The description of
this method, together with the analysis used to choose
the values of Θ according to the size of the systems, is
presented in App. A. The list of simulated geometries is
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given in Tab. I. We notice that the studied systems are
much larger than in previous discrete simulations.

TABLE I: List of simulated geometries.

n Ri/d Θ/2π
R25 1500 25 1/4
R50 3100 50 1/8
R100 8000 100 1/12
R200 15700 200 1/24

B. Dimensional analysis

In our discrete simulations, the system is completely
described by a list of independent parameters associated
to the grains and to the shear state. As a way to reduce
the number of parameters, it is convenient to use dimen-
sional analysis, which guarantees that all the results can
be expressed as relations between dimensionless quanti-
ties.

The grains are described by their size d and mass m,
their coefficients of restitution e and friction µ, and their
elastic stiffness parameters kn and kt. It was shown in
previous discrete simulations [4, 46, 51], that kt/kn and
e have nearly no influence on dense granular flows. Con-
sequently, kt/kn was fixed to 0.5 and e was fixed to 0.1.
The influence of µ, especially near µ = 0, has been shown
in [4]. In this paper, we restrict our analysis to the value
µ = 0.4, except for the discussion of the constitutive law
where the case of frictionless grains (µ = 0) will be also
analyzed. Results for other values of µ may be found
in [42].

The shear state is described by the prescribed normal
stress on the outer wall P , the rotation rate of the inner
wall Ω, the radius Ri and Ro of the two walls, and the
viscous damping parameter gp. We have not observed
any influence of gp, once the shear zone is localized near
the inner wall and separated by a relatively thick layer of
material from the outer wall. The dimensionless number
gp/

√
mkn remains of order 0.1 in all our simulations, so

that the time scale of the fluctuations of Ro is imposed
by the material rather than the wall, and that the wall
sticks to the material. Consequently, the shear state is
described by the geometric parameters Ri/d (Ro = 2Ri),
and by the dimensionless tangential velocity of the inner
wall (also called shear velocity):

Vθ =
ΩRi

d

√

m

P
, (1)

which is similar to the notion of inertial number, but
at the scale of the whole system. A small value of Vθ

corresponds to the quasistatic regime, while a large value
corresponds to the collisional regime. Seven values of Vθ

have been studied systematically for all systems: 0.0025,
0.025, 0.25, 0.5, 1.0, 1.5 and 2.5. The value 0.00025 was
also considered in a few cases.

Moreover the stress scales kn and P may be compared
through the dimensionless number κ = kn/P . Let us
call h the normal deflection of the contact (or apparent
interpenetration of undeformed disks). Being inversely
proportional to the relative deflection h/d of the con-
tacts for a confining stress P , κ is called contact stiffness

number [4]. A large value corresponds to rigid grains,
while a small value corresponds to soft grains. It was
shown [4] that it has no influence on the results once it
exceeds 104, which is the value chosen in all our discrete
simulations (rigid grain limit).

In the following (both text and figures), the length,
mass, time and stress are made dimensionless by d, m,
√

m/P and P , respectively.
Table II gives the list of material parameters.

TABLE II: List of material parameters.

polydispersity µ e kt/kn κ
±20% 0.4 0.1 0.5 104

C. Steady shear states

For a given sample, the first step consists in depositing
the grains without contact and at rest between the two
distant walls. Applying a normal stress at the outer wall,
we compress the assembly of grains, considering first that
they are frictionless (µ = 0), so as to get a very dense ini-
tial state. Except near the walls, its solid fraction is close
to 0.85, near the random close packing of slightly poly-
dispersed disks [52]. When the granular material sup-
ports completely the applied normal stress, the grains
are at rest and the dense system is ready to be sheared.
We start to shear the material (now considering that the
grains are frictional) imposing the rotation of the inner
disk. After a transient, the system reaches a steady state,
characterized by constant time-averaged profiles of solid
fraction, velocity and stress. In practice, the stabiliza-
tion of the profiles depends on the considered variable.
If we take the inner wall displacement Vθ∆t (where ∆t
is the simulation time) as a shear length parameter, the
stresses usually present a short transient on a distance
around Vθ∆t ≤ 5. However, the stabilization of the solid
fraction rather requires Vθ∆t ≈ 50, mostly because of the
very dense initial state. Consequently we consider that
the condition to reach a steady state is Vθ∆t ≥ 100. This
procedure provides an initial state with a shear velocity
Vθ. As a way to guarantee an initial state consistent for
the comparisons between discrete simulations with dif-
ferent Vθ, the procedure is first applied with the highest
value of Vθ, and then Vθ is progressively decreased.

In steady state, we consider that the statistical distri-
bution of the quantities of interest (structure, velocities,
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forces. . . ) are independent of t and θ, so that we average
both in space (along θ) and in time (considering 200 time
steps distributed over the distance Vθ∆t ≥ 200). Then
we calculate the profiles of solid fraction, velocity and
stress components according to the averaging procedure
described in App. B.

Beyond the number of acquisition points, the consis-
tency of the averaged values depends on the shear strain
accumulated during the acquisition of data. We concen-
trate our interest on the region where the system may be
considered in a steady state, which occurs at large enough
shear strain. Based on the observation of the transients,
we consider that this is true when γ̇∆t ≥ 10. Because
of the strain localization, the region of interest is located
near the inner wall and limited to Ri → Ri + Rsteady

where the value of Rsteady is given in Tab. III.

TABLE III: Limit of the steady state region. Minimum and
maximum values correspond to global quasistatic regime and
to Vθ = 2.5 respectively.

Rsteady

R25 7 − 17
R50 9 − 25
R100 13 − 35
R200 18 − 52

III. LOCALIZED SHEAR STATES

In this section, we show the shear localization near the
inner wall through the radial profiles of different quanti-
ties. In App. C we focus on internal variables associated
to the contact network [53, 54] (coordination number Z
and mobilization of friction M) and to the fluctuations
of the motion of the grains, translational or rotational.
We systematically discuss the influence of Vθ.

A. Stress field

In steady ( ∂
∂t

= 0) annular shear flows ( ∂
∂θ

= 0),
without radial flow (vr = 0), continuum mechanics pre-
dicts [55] a variation of normal stress σrr related to the
velocity profile, and a 1/r2 decrease of the shear stress
σrθ associated to the conservation of the torque:

4ν

π

v2
θ

r
=

∂σrr

∂r
+
σrr − σθθ

r
, (2)

σrθ = S(
Ri

r
)2, (3)

where ν(r) and vθ(r) are the solid fraction and orthora-
dial velocity profiles, S is the shear stress at the inner
wall (S = σrθ(Ri)) and σii are positive for compression.

Fig. 2a shows the coarse-grained profiles of the nor-
mal stress component σrr in geometry R50 for different
wall velocities Vθ, while Fig. 2b shows the ratio between
the orthonormal and the normal stresses σrr

σθθ
. The nor-

mal stress σrr is nearly constant and equal to the con-
fining pressure P . The ∂σrr/∂r term in the momentum
equation (2) smoothes the σrr profile, which might ex-
plain the absence of fluctuations of σrr. A crude es-
timate of the centrifugal effects may be given, if the
last term of equation (2) is neglected, and, anticipat-
ing on Sec. III B and Sec. III C, a constant solid fraction
ν ≃ 0.8 is assumed and an exponential velocity profile
vθ(r) = Vθ exp (−(r −Ri)/ℓ), with ℓ between 2 and 6:

| σrr(Ri) − 1 |≤ 2πνRi

ℓ
V 2

θ . (4)

Consequently, for Ri = 50, | σrr(Ri)− 1 |≤ 0.05 for Vθ =
1 and ℓ = 5. For Vθ = 2.5, the centrifugal effects might
become significant, however it has not been observed.

The radial σrr and orthoradial σθθ stresses are nearly
equal for r − Ri . 10. This has already been observed
in other configurations (plane shear [4, 5, 9] within less
than 5%, inclined plane [5, 32, 46]), and was previously
reported in annular shear [40, 44]. This very small nor-
mal stress difference is not explained yet. The fluctua-
tions of σθθ for r − Ri & 15 probably reflect the frozen
disorder beyond the steady zone, where the material is
much less deformed than closer to the inner wall, so that
the time averaging is unsufficient. Consequently these
fluctuations increase as Vθ decreases.

The shear stress profiles σrθ(r) shown in Fig. 3a (for
different shear velocity Vθ) are consistent with the 1/r2

decrease of (3). The oscillations about the mean value
are due to the material structuration near the inner wall
(see Sec. III C) and to the frozen disorder in the very
slowly sheared regions, which is beyond the steady zone.

Fig. 3b shows the dependence of the shear stress at the
inner wall S on shear velocity Vθ. Below a certain value
(Vθ . 0.025), S tends to a finite limit. Consequently, the
shear stress profiles σrθ(r) become independent of Vθ.
This behavior characterizes the global (that is to say, in
the whole system) quasistatic regime, where the stresses
(and other state variables) do not depend on the velocity.
However, for Vθ & 0.025, inertial effects become signifi-
cant and S increases with Vθ. Previous works reported
a similar dependence of the shear stress on the shear ve-
locity in other configurations (see [2] for a review). More
specifically, the experimental measurement of the torque
as a function of the rotation rate in the annular shear ge-
ometry indicates a transition from a rate independent to
a rate dependent regime [20, 23, 27, 33, 56]. Our results

can be approximated by a function like S = Sqs + αV β
θ ,

where Sqs is the global quasistatic limit value, α and β
are two constants. We notice that β is close to 1/2 rather
than 2 as might be näıvely expected from Bagnold’s rhe-
ology. We notice that in the experiment of [20], the tran-
sition occurs for Vθ ≃ 0.3 (after appropriate rescaling),
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FIG. 2: (Color online) (a) Normal stress σrr(r) and (b) ratio
between the normal and the orthonormal stresses σθθ/σrr(r)
profiles for different shear velocities. (H) Vθ = 0.0025, (•)
Vθ = 0.025, (�) Vθ = 0.25, (◮) Vθ = 0.5, (�) Vθ = 1.0, (◭)
Vθ = 1.5, (N) Vθ = 2.5. Geometry R50.

which is not far from what is observed in Fig. 3b. How-
ever, we also point out that the S(Vθ) curve, here shown
for geometry R50, in fact depends on the geometry.

B. Velocity field

The shear localization near the inner wall is revealed
by the strong decrease of velocity profiles vθ(r) shown on
Fig. 4. The decay appears to be nicely approximated by
a Gaussian function vθ/Vθ = exp[−a(r−Ri)−b(r−Ri)

2],
as shown on Fig. 4. We notice however that there is a
sliding velocity for the higher value of Vθ (2.5), which is
apparent in Fig. 5a. Previous studies in 2D systems [21,
25, 39, 40, 44, 57] found an exponential shape, while a
gaussian decay was observed in three dimensional (3D)
systems for non spherical or polydispersed grains [22].
The agreement between the measurement of the velocity
profiles in 3D experiment (using 3D MRI velocimetry in
the bulk or CIV at the free surface) [2] and 2D discrete
simulations is satisfactory [32].
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FIG. 3: (Color online) (a) Shear stress profiles σrθ(r) (solid
lines) and fit according to Eq. (3) (dashed lines) for different
wall velocities Vθ. (b) Shear stress at the inner wall S as func-
tion of Vθ (semi-logarithmic scale). The solid line represents
the function: S = 0.26 + 0.13V 0.57

θ . Geometry R50.

The normalization of vθ(r) by shear velocity Vθ allows
to clearly visualize the influence of this latter parameter
on the velocity profiles. In the global quasistatic regime
(Vθ ≤ 0.025), there is no influence, while for increasing Vθ

above 0.025, an increase of the localization width is ob-
served, consistently with experimental observations [25].

The shear rate is equal to γ̇(r) = −r ∂
∂r

(vθ(r)
r

). We
denote ω(r) the profile of the average angular velocity of
the grains. As previously reported in discrete simulations
of granular flows [4], the average angular velocity is equal
to half the local shear rate (or vorticity) ω(r) = −γ̇(r)/2.
Oscillations of the average angular velocity are observed
in the 3 or 4 first grain layers near the inner wall (Fig. 5),
as previously noticed by [40]. They may be due to the
frustration of the rotation of the flowing grains in contact
with the glued grains of the walls (which rotate with
angular velocity Ω).
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FIG. 4: (Color online) Influence of the shear velocity Vθ

on the velocity profiles vθ(r) (semi-logarithmic scale). (H)
Vθ = 0.0025, (�) Vθ = 0.25, (◮) Vθ = 0.5, (�) Vθ = 1.0, (◭)
Vθ = 1.5, (N) Vθ = 2.5. The solid line indicates the function
vθ/Vθ = exp[−0.34(r−Ri)−0.0015(r−Ri)

2], and the dashed
one the function vθ/Vθ = exp[−0.21(r−Ri)−0.002(r−Ri)

2].
Geometry R50.
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FIG. 5: (Color online) Influence of the inner wall on the col-
lapse between the average angular velocity ω(r) (hollow sym-
bols) and the shear rate γ̇(r) (full symbols) (a) Vθ = 2.5 and
(b) Vθ = 0.025. Geometry R50.

C. Solid fraction

Fig. 6 shows the solid fraction profiles ν(r) for Vθ =
0.025 and 2.5. In the global quasistatic regime (Vθ ≤
0.025), the profile becomes independent of Vθ, while a
decrease of the solid fraction is observed for increasing
Vθ. The material is significantly dilated near the inner
wall [17, 39, 40], and is structured in about 5 layers close
to the inner wall, with a higher amplitude for low Vθ.
This was previously observed in various shear geome-
tries [22, 39, 58, 59, 60]. This structuration of the granu-
lar material certainly affects the sliding of layers of grains,
with significant consequences on the mechanical behavior
near the wall. As previously reported [40, 44], indepen-
dently of the influence of Vθ, solid fraction ν increases
toward a value νmax (close to 0.82, the solid fraction in
the critical state for frictional disks with a similar poly-
dispersity [53]) away from the inner wall, and remains
close to its larger initial value 0.85 in the region where
the material has not been sheared enough.
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FIG. 6: (Color online) Influence of shear velocity Vθ on the
structuration near the inner wall. Solid fraction profiles ν(r)
(a) in the whole system and (b) in the region close to the inner
wall. The solid line is an average over 3d, while the dotted
line is an average over 0.5d. Geometry R50.
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IV. CONSTITUTIVE RELATIONS

In Sec. III and App. C, it has been shown that shear
velocity Vθ, if small enough, no longer influences the
radial profiles of various quantities (see Fig. 3, 4, 24
and 25). Then, the whole system is in the quasistatic
regime. When Vθ increases, the shear rate γ̇ increases in
the whole sample. Above a certain level of shear rate, in-
ertial effects have significant effect on the material behav-
ior, which characterizes the inertial regime. Considering
the shear stress distribution in the annular geometry and
the decay of the velocity away from the inner wall, we
expect that the inertial zone begins at the inner wall and
that its thickness increases when Vθ increases (Fig. 7).

  function  
of  and P

quasistatic 
   regime

inertial
regime

P

FIG. 7: Inertial and quasistatic zones.

In this section, we analyze the relations between dif-
ferent dimensionless quantities in the inertial regime and
how they are affected by the transition to the quasistatic
regime. We restrict our analysis to large enough shear ve-
locity (Vθ > 0.025), so that a wide enough inertial zone
exists close to the inner wall.

A. Inertial number and mechanical behavior

Discrete simulations of homogeneous plane shear flows
[4] have revealed that the constitutive law of dense gran-
ular flows may be described through the dependency
of the effective friction µ∗ (ratio of shear σ to normal
P stresses) and of the solid fraction ν on the inertial

number I = γ̇
√

m/P (a 2D equivalent of the definition
given in Sec. I), where all the quantities are measured
locally. The annular shear flows being heterogeneous, we
measure the relations between the local quantities, ν(r),

µ∗(r) = σrθ(r)/σrr(r) and I(r) = γ̇(r)
√

m/σrr(r) (or

γ̇(r)/
√

σrr(r) in dimensionless unit). Each simulation
provides dynamic dilatancy and friction laws in a range
of inertial number. In the following, we try to analyze
the granular material as a continuum, consequently we
do not take into account the five first layers where wall
structuration effects are significant (see Fig. 5 and Fig. 6).

1. Dynamic friction law

In the inertial regime, for I & 0.02, µ∗ increases ap-
proximately linearly with I and nearly independently of
the geometry (Fig. 8a):

µ∗(I) ≃ µ∗
min + bI, (5)

with µ∗
min ≃ 0.26 and b ≃ 1. The agreement with the dy-

namic friction law measured in the homogeneous plane
shear geometry is excellent [4, 6, 48]. In contrast, for
lower values of I, a deviation from this linear relation is
observed, depending on the geometry (Fig. 8b). The ef-
fective friction becomes smaller than µ∗

min, and this devi-
ation increases as Ri decreases, that is to say as the stress
gradient increases. Reciprocally, as Ri increases, that is
to say as the stress distribution becomes more homoge-
neous, the results of the annular geometry tend to the
ones of the plane shear geometry. This reveals that the
simple relation between effective friction µ∗ and inertial
number I does not depend on the stress distribution in
the inertial regime, and is then quite general (see [5, 32]
for flows down an inclined plane), while it fails in the qua-
sistatic regime. In plane shear, µ∗

min may be considered
as the internal friction in the critical state [9, 53]. This
is the maximum value of µ∗ supported by the granular
material, before it starts to flow quasistatically. With a
heterogeneous stress distribution, the granular material
is able to flow below this level.

We call λin the width of the inertial zone. Using
Eqn. (3) and (5), we deduce that:

λin(Vθ, Ri) =

(

√

S(Vθ, Ri)/µ∗
min − 1

)

Ri. (6)

We also conventionally define the width of the shear
zone λloc through vθ(Ri + λloc) = Vθ/10. Fig. 9a and
b shows λin(Vθ) and λloc(Vθ) in geometry R50. We no-
tice that λin smoothly increases from zero with Vθ, while
λloc seems to saturate at a low value for low Vθ (global
quasistatic regime) and at a high value for high Vθ (this
is related to an apparent velocity discontinuity near the
wall, suggesting increasing collisional effects in the first
layers), with a sudden increase for Vθ between 0.3 and 1.
We notice that in the experiment of [25], the shear zone
invades the whole gap for high enough Vθ.

In a given geometry, for a small enough shear velocity
Vθ, the inertial zone disappears, and the whole system is
in the quasistatic regime. Fig. 10 then shows again that
the effective friction µ∗ is no more a function of I.

2. Dynamic dilatancy law

We observe a linear decrease of solid fraction ν as a
function of inertial number I, independently of the ge-
ometry in the inertial regime (Fig. 11 and 12), and ν
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FIG. 8: (Color online) Dynamic friction law (a) in linear
scale (the solid line indicates a slope ≈ 1) for particle co-
efficient of friction µ = 0 and µ = 0.4. Dynamic friction
law in semi-logarithmic scale for (b) µ = 0.4 and (c) µ = 0.
Different geometries: (�) R25, (•) R50, (N) R100, (H) R200.
Vθ = 2.5. Comparison with plane shear [4] (�).

tends to a maximum value νmax, which identifies to the
solid fraction in the critical state. We can then write the
dynamic dilatancy law:

ν(I) ≃ νmax − aI, (7)

with νmax ≃ 0.82 and a ≃ 0.37. The agreement with
the dynamic dilatancy law measured in the homogeneous
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FIG. 9: (a) Width of the inertial zone λin as a function of
Vθ, as deduced from Eqn. (6) and Fig. 3a. The solid line rep-

resents the function: λin = 50(
p

1 + 0.5V 0.57
θ −1). (b) Width

of the localization zone λloc as a function of Vθ. Geometry
R50.
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FIG. 10: (Color online) Effective friction µ∗ as a function
of the inertial number I (⋆) Vθ = 0.00025, (H) Vθ = 0.0025,
(•) Vθ = 0.025, (�) Vθ = 0.25, (◮) Vθ = 0.5, (�) Vθ = 1.0,
(◭) Vθ = 1.5, (N) Vθ = 2.5. The solid line corresponds to
µ∗ = 0.26. Geometry R50.

plane shear geometry is excellent [4, 48]. However, far
from the walls, in the region where the material is less
deformed and so remains in its initial dense state, higher
values of ν are observed. Fig. 12 also indicates that the
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inner wall induces further dilation.
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FIG. 11: (Color online) Dynamic dilatancy law (the solid
line indicate a slope ≈ −0.37) for different geometries: (�)
R25, (•) R50, (N) R100, (H) R200. Comparison with plane
shear [4] (�).
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FIG. 12: (Color online) Dynamic dilatancy law in semi-
logarithmic scale. Different geometries: (�) R25, (•) R50,
(N) R100, (H) R200. Comparison with plane shear [4] (�).
The dashed line corresponds to νmax = 0.82.

3. Frictionless grains

As shown in Fig. 8a and Fig. 11, the microscopic fric-
tion coefficient µ has a significant influence on the con-
stitutive law parameters. Those figures also reveal good
agreement with homogeneous shear simulations [4]. The
solid fraction remains a linearly decreasing function of I
(with a fast change in the quasistatic limit). The slope a
is not affected, while νmax increases to ≃ 0.85. The dy-
namic friction law keeps the same tendency but is shifted
toward smaller values of friction. The linear approxima-
tion with µ∗

min ≃ 0.11 (Eqn. (5)) fails for I ≤ 0.01. We
notice that the range of validity of the dynamic friction
law is much larger than for frictional grains, and that it
does not seem to depend on the geometry.

Those differences are likely related to some peculiar-
ities of assemblies of frictionless grains [9]. The qua-
sistatic limit, in such materials, is only approached for
much smaller values of I than in the frictional case, and
µ∗

min is itself considerably lower. As a consequence on
may expect a wider inertial zone. Moreover, as the criti-
cal solid fraction coincides with the random close packing
value [9], no solid-like region of the system can be pre-
vented from flowing because of its density.

4. Comparison with previous studies

The validity of the constitutive law, once suitably gen-
eralized to three dimensions, was successfully tested in
flows down a heap between lateral walls [7, 14]. In
that case the velocity field, as deduced from numeri-
cal computations in which the viscoplastic law was im-
plemented, exhibits a more complex three-dimensional
structure. Predicted velocities at the free surface agreed
closely with experimental results.

Thus, the applicability of the constitutive law as a re-
lation between local values of non-uniform strain rate
and stress fields, which we just established in 2D annu-
lar shear flow, was previously checked in the 3D case of
a laterally confined gravity-driven flow. The validity of
such an approach should be restricted to situations in
which the characteristic length for stress or strain rate
variations, say l, is significantly larger than the grain
size. In annular shear, one has l = Ri, whereas the finite
width w of the channel was found in [7, 14] to control
the gradients, l = w. As Ri, in units of grain diameters,
varies between 25 and 200 here, while the interval of w
extends between 16.5 and 500 in [7, 14], similar levels of
heterogeneity are explored.

B. Internal variables

We now discuss how internal variables, which profiles
are discussed in App. C, scale with the inertial number I,
revealing local state laws, consistent with the one mea-
sured in homogeneous shear flows.

We observe a relation like Z = Zmax − eIf (with
Zmax ≈ 3) between coordination number Z and I on
Fig. 13, nearly independent of the geometry.

We do not observe a general relation between the mo-
bilization of friction M and I, but an asymptotic con-
vergence for growing Ri toward a relation M ≈ gIh

(Fig. 14). For this quantity, there is no satisfactory agree-
ment with the homogeneous shear case.

We analyse the fluctuations of orthoradial velocity δvθ

normalized by the natural scale γ̇ as a function of I
(Fig. 15). In the quasistatic regime, the development
of collective and intermittent motions (see [28, 29] in an-
nular shear and [61] for a recent review) explain the
increase of these relative fluctuations. For higher values
of the inertial number I, we observe that δvθ/γ̇ → 1. On
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FIG. 13: (Color online) Coordination number Z as a function
of the inertial number I (the solid line represents the function
Z = 2.95 − 7.65I0.65) for different geometries. (�) R25, (•)
R50, (N) R100, (H) R200, (�) plane shear [4]. Vθ = 2.5.
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FIG. 14: (Color online) Mobilization of friction M as a func-
tion of the inertial number I (the solid line represents the
function M = 0.73I0.29 for different geometries: (�) R25,
(•) R50, (N) R100, (H) R200. Vθ = 2.5.

the whole, we propose to describe the dependency by the
equation δvθ/γ̇ = 1 + cI−d (Fig. 15). Experimental re-
sults [22, 26] show that δv ∝ γ̇0.4. Dividing this relation
by γ̇, we get an exponent equal to −0.6, close to exponent
d = −0.7, deduced from the previous fit.

V. CONSEQUENCES FOR THE SHEAR

LOCALIZATION AND THE MACROSCOPIC

BEHAVIOR

Using the constitutive law established in Sec. IV, we
now show that it is possible to understand some obser-
vations described in Sec. III.

Still using dimensionless units, since the pressure P is
constant in the system and the shear stress is given by
Eqn. (3), the dynamic friction law Eqn. (5) provides the
following equation for the velocity profile vθ(r):
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FIG. 15: (Color online) Relative fluctuations as a function
of the inertial number I (the solid line represents the function
δvθ/(γ̇d) = 1 + 0.07I−0.7). (�) R25, (•) R50, (N) R100, (H)
R200, � plane shear [4]. Vθ = 2.5.

∂

∂r
(
vθ(r)

r
) =

µ∗
min

br
− SR2

i

br3
, (8)

where the shear stress at the inner wall S depends both
on Vθ and on Ri (see Sec. III A). As shown from the
measurements drawn in Fig. 16b, for a large value of Vθ,
S is high in small geometries and strongly decreases as Ri

increases. We now integrate this relation over the range
of validity of the dynamic friction law, this is to say in
the inertial zone Ri → Rin = Ri + λin, from which we
get:

vθ(r) =
SR2

i

2br
+
µ∗

min

b
r ln(r) + cr. (9)

The constant c is determined by the value of the velocity
at the inner wall, called V +

θ , which is smaller than Vθ,
revealing some sliding at the wall as previously noticed
(see Sec. III B).

V +
θ =

SRi

2b
+
µ∗

min

b
Ri ln(Ri) + cRi. (10)

On the whole, the velocity profile is equal to:

vθ(r) = V +
θ

r

Ri

+r

[

S

2b

(

(

Ri

r

)2

− 1

)

+
µ∗

min

b
ln

(

r

Ri

)

]

.

(11)
An absolute measurement of V +

θ happens to be diffi-
cult, considering the wall effect that disturbs the material
behavior in a layer of a few grains near the inner wall
(like in Fig. 5 for the shear rate γ̇). Consequently, we
obtain this quantity from a fit, and a comparison with
the measured velocity profiles is shown on Fig. 16b. The
agreement is excellent, suggesting once more the validity
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of the dynamic friction law. The sliding increases when
Vθ increases and, as shown in Fig. 16b, increases when
Ri decreases.
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FIG. 16: (Color online) (a) Influence of the geometry on (�)
V +

θ /Vθ (fit) and (�) S (measurement) (Vθ = 2.5). (b) Veloc-
ity profiles: comparison between the measurements (�) R25,
(•) R50, (N) R100, (H) R200 and the prediction of Eqn. (11)
(solid lines). The velocity profiles are limited to the steady
zone Ri → Ri + Rsteady (Vθ = 2.5).

We now try to predict the S(Vθ) relation, which was
measured and fitted in Fig. 3b. It is clear that in the
global quasistatic limit, as Vθ → 0, S → µ∗

min. We now
write a boundary condition at the limit of the inertial
zone Rin. Having used the dynamic friction law Eqn. (5),
we necessarily have γ̇(Rin) = 0, as appears in the fitted
curve in Fig 16b. Then, beyond Rin, if this dynamic
friction law was still valid , γ̇(r) would be strictly equal to
zero, so that vθ(r) would be equal to Cr, with a constant
C. The sole possibility is C = 0 since the velocity must
be equal to zero at the outer wall. We conclude that
vin = vθ(Rin) = 0. This conclusion is wrong, as it is
clear in Fig 16b, and has already been discussed: the
dynamic friction law fails in the quasistatic regime, and
we shall come back to this point just after the discussion
of the S(Vθ) relation. The previous assumption writes:

0 = V +
θ

Rin

Ri

+Rin

[

S

2b

(

(

Ri

Rin

)2

− 1

)

+
µ∗

min

b
ln

(

Rin

Ri

)

]

.

(12)

Since Eqn. (6) is equivalent to Rin/Ri =
√

S/µ∗
min, we

get the following implicit S(V +
θ ) relation:

S

µ∗
min

− 1 − ln

(

S

µ∗
min

)

=
2bV +

θ

µ∗
minRi

. (13)

For simplicity, we take V +
θ = Vθ in the comparison with

the measurements, drawn in Fig 17 for two geometries.
The agreement is very satisfactory considering the previ-
ous simplifying assumptions. With the increase of Ri,
the difference between V +

θ and Vθ decreases, explain-
ing the better results for R200. For small Vθ, we write
S(Vθ) = µ∗

min(1 + f(Vθ)). A simple development gives

f ≃
√

2b
µ∗

min
Ri

√
Vθ. For Ri = 50, f ≃ 0.55

√
Vθ, which is

close to the fit f ≃ 0.5V 0.57
θ used in Fig. 3b. According

to this analysis, S becomes proportional to Vθ for much
larger values, not usually accessible.
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FIG. 17: (Color online) Shear stress at the wall S as a func-
tion of the wall velocity Vθ. Comparison between the measure-
ments: (•) R50 and (H) R200 and the predictions of Eqn. (13).
The solid and dashed line respectively indicate the results for
R50 and R200.

We now come back to the limit of the dynamic fric-
tion law, Eqn. (5), in the quasistatic limit, as shown in
Fig. 8b. A large portion of the velocity profile in the
steady quasistatic regime is shown in Fig. 16b. As a first
approximation, the velocity can be considered exponen-
tial in this region, so that we write:

vθ(r) = vin exp−
(

r −Rin

λqs

)

, (14)

with λqs the characteristic length in the quasistatic re-
gion, measured in Fig. 18 (which are slightly larger than



12

the one estimated for very small Vθ, that is to say when
the quasistatic zone invades the system), and vin is not
equal to zero contrarily to the previous simple approxi-
mation but, using Eqn. (11) to:

vin =

√

S

µ∗
min

(

V +
θ +

µ∗
minRi

2b

(

ln

(

S

µ∗
min

)

− S

µ∗
min

+ 1

))

.

(15)
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FIG. 18: (Color online) Characteristic length λqs obtained
from the velocity profiles in the quasistatic zone. Different
geometries: (�) R25, (•) R50, (N) R100, (H) R200. Vθ = 2.5.

Still using dimensionless units, since the pressure P is
constant in the system, we deduce that, for r ≥ Rin, the
inertial number is equal to:

I(r) =

(

1

λqs

+
1

r

)

vin exp−
(

r −Rin

λqs

)

. (16)

Since Rin ≫ λqs, we may write:

I(µ∗) ≃ vin

λqs

exp−Ri

√

S/µ∗
min

λqs

(

√

µ∗
min/µ

∗ − 1

)

.

(17)
from which we obtain:

µ∗(I) ≃ µ∗
min

(

1 − λqs

Ri

√

S/µ∗
min

ln

(

λqs

vin

I

)

)−2

. (18)

This prediction is in close agreement with the measure-
ments, as shown in Fig. 19.

VI. CONCLUSION

We first summarize the results presented in this paper,
before discussing the questions raised by those conclu-
sions.
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FIG. 19: Effective friction µ∗ as function of the inertial num-
ber I, in the quasistatic zone. Comparison between the mea-
surements: (�) R25, (•) R50, (N) R100, (H) R200, (�) plane
shear [4] and the prediction of Eqn. (18) (solid lines). The
dashed line indicates µ∗

min = 0.26. Vθ = 2.5.

As described in Sec. II, we have studied through dis-
crete simulations steady annular shear flows of a model
granular material, made of a slightly polydisperse assem-
bly of frictional dissipative disks, prescribing the rotation
rate of the inner wall and the pressure exerted by the
outer wall, and varying dimensionless shear velocity Vθ

and size Ri of the system.

The first step (Sec. III) has consisted in measuring var-
ious quantities, either global as the dimensionless shear
stress at the inner wall S as a function of Vθ, or local
as the profiles of stress components, velocity, solid frac-
tion and some internal variables (coordination number,
mobilization of friction, velocity fluctuations, shown in
App. C). This has allowed to distinguish, at the global
scale, that is to say as a function of Vθ, between rate
dependent and rate independent behaviors.

Inspired by our previous rheophysical analysis of ho-
mogenous shear flows of disks [4], the second step
(Sec. IV) has explored the validity of constitutive law
for inertial regime if applied locally in such an hetero-
geneously sheared material. We have shown that the
dynamic friction and dilatancy laws observed in homoge-
neous shear flows are exactly recovered, when using the
local state parameter I called inertial number. Scaling
laws for internal variables as function of I have also been
observed. This analysis has clearly distinguished an in-
ertial zone close to the inner wall where the constitutive
law is relevant and a quasistatic zone away from it, where
it fails.

The last step (Sec. V) has explained how it is possible
to predict some observations presented in the first step,
when using the inertial constitutive law identified in the
second step. We have focused on two basic quantities,
which are most often discussed in the studies of annular
shear flows of granular materials, the macroscopic S(Vθ)
relation and the microscopic velocity profiles. The satis-
factory agreement between the prediction and the mea-
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surements should not be surprising, considering the sec-
ond step. However this analysis has precisely pointed out
two important issues, related to boundary conditions in
such a heterogeneously sheared system, one at the shear-
ing wall, and the other at the transition between inertial
and quasistatic zone.

Close to the inner wall, as previously shown in different
configurations, various quantities (solid fraction, ratio of
normal stresses, rotation velocity...) present singular be-
haviors. The translation velocity reveals significant slid-
ing for sufficiently high Vθ, even with the large roughness
used in this study. We have shown that the value V +

θ of
this sliding velocity is an important ingredient for a good
prediction. This means that a detailed understanding of
the rheophysics of the granular materials in the very first
layers near a rough wall is of great relevance. Apart from
the characteristics of the granular material itself, the rel-
ative influences of Vθ, Ri and the wall roughness must be
taken into account. Comparisons between physical ex-
periments and discrete simulations are described in [42].
Considering the frustration of the particle rotation im-
posed by the wall, Cosserat models might be adapted
to describe this interface zone [62], as done by [40, 63]
for annular shear. Another discussion of the boundary
condition at the wall is proposed in [64].

The transition between inertial and quasistatic zones
is a second puzzling issue. Considering the constitutive
law identified in homogeneous shear flows, the granular
material should reach the so-called critical state in the
quasistatic limit (when I → 0), in which it flows rate
independently with an effective friction tanφ and a solid
fraction νc. Beyond this limit (for S/P < tanφ and/or
ν > νc), the granular material, being in a solid-like state,
should not be able to flow. However (apparently un-
bounded) creep flows are observed in this nominally solid
regime. This creeping behavior is well known in free sur-
face flows, where an exponential velocity profile has been
clearly evidenced with a characteristic length of the or-
der of one grain diameter [65, 66, 67, 68]. In the annular
shear geometry, a similar behavior is observed but the
characteristic length increases as Ri increases, that is to
say as the stress gradient decreases, or as the stress field
becomes more homogeneous.

For a sufficiently small Vθ, there is no more inertial
zone, so that both boundary conditions occur at the same
place, the inner wall. Considering the typical values of
the parameters in the systems which have been studied
experimentally or through discrete simulations, we notice
that this corresponds to the usual case. The understand-
ing of such a situation merges the two previous problems:
the behavior of a granular material close to an interface
and in the quasistatic regime, together with the hetero-
geneity of the stress field.

The already noticed observation of collective and in-
termittent motions in this quasistatic regime has driven
the development of several rheological models (see [26,
30, 69, 70] and [61] for a recent review): diffusion equa-
tion for the fluctuations, transmission of forces at the

scale of correlated clusters, two-phase fluid model with
order parameter, activation of rearrangements through
the fluctuations of velocity or forces, occurring either at
the boundary of the inertial zone, or at the inner wall in
the global quasistatic limit.

Our understanding is far from complete and requires
further studies, merging physical experiments, discrete
simulations and theoretical developments. For instance,
we have not measured the fabric in the quasistatic zone,
although its importance has been clearly evidenced in
homogeneous shear [53, 54]. We have not discussed the
evolution of the internal variables in the transient regime
(evolution from initial to steady state), or in a shear re-
versal regime [25, 31], as should be qualitatively possible
using simplified microscopic description [71]. We have re-
stricted our attention to velocity controlled shear flows,
so that it was not possible to study the flow threshold. A
specific study of the jamming mechanisms should be per-
formed by controlling the shear stress [27]. We have not
discussed the influence of the roughness on the interface
behavior, for which we refer to [42]. We may also wonder
to what extent the conclusions drawn for granular mate-
rials differ for other complex fluids made of interacting
elements (dense suspensions, foam, emulsions...) [72, 73].

Appendix A : Periodic boundary condition

Each grain the center of which is in (r, θ) with 0 ≤ θ ≤
Θ is associated to a collection of copies with centers in
r, θ + kΘ where k is an integer. The corresponding ve-
locities, accelerations and forces are related by rotations
of angles kΘ.

Every time a grain moves out of the simulation cell,
one of its copies moves in by the opposite boundary, sim-
ilarly to the usual case of periodic boundary conditions
by translation. However the velocities, accelerations and
forces are affected by a rotation of ±Θ.

The situation of the contact of two grains i and j where
θi is close to Θ and θj is close to zero is described in
Fig. 20. More precisely, i is in contact with the copy
j′ of j, obtained by rotation of an angle Θ, while j is
in contact with i′ obtained by rotation of i of an angle
−Θ. To evaluate the forces acting over grain i we have to
use the normal and tangential unit vectors ~nij′ (pointing

from i to j′) and ~tij′ (such that (~nij′ ,~tij′ ) is positively
oriented), respectively, and the motion of the grain j′,
while for j we have to use corresponding ~nji′ and ~tji′

and the motion of i′. Vector ~nij′ is not, as usually, equal
to −~nji′ , but to its image obtained by rotation of an angle
−Θ.

We have measured the influence of the periodic bound-
ary condition comparing the radial profiles of various
quantities as a function of Θ (π/16, π/8, π/4, π/2, π
and the whole ring 2π) for the geometry Ri = 25 and
Ro = 50. As an example, we show on Fig. 21 the profiles
of the orthoradial velocity. As expected, the results are
all the more consistent as the value of Θ increases. In
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FIG. 20: Periodic boundary conditions.

this case, Θ = π/2 already gives a very good result.
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FIG. 21: (Color online) Velocity profiles vθ(r)/Vθ for dif-
ferent values of Θ (rad). (•) Θ = π/16, (N) Θ = π/8, (H)
Θ = π/2, (�) Θ = 2π. Ri = 25, Ro = 50, Vθ = 2.5.

We quantify the deviations of the velocity profiles vθ(r)
by means of an indicator of relative error. The velocity
tends to zero as the distance from the inner wall. To avoid
inconsistencies due to values close to zero in the frame
of the usual definition of relative error, and to give more
weight to the values close to the inner wall, we propose
to calculate the relative error over variable FΘ(r) = Vθ −
vθ(r,Θ) :

ε(Θ) =
1

Ro −Ri

∫ Ro

Ri

|FΘ(r) − F2Θ(r)

F2Θ(r)
|dr. (19)

ε(Θ) is simply the sum over the whole geometry of the
relative error of the variable F for a certain value of Θ
compared to the result for a system twice as large (2Θ).

On Fig. 22a, we observe a clear decrease of the error
indicator ε(Θ) as we increase the value of Θ for the small-
est geometry (Ri = 25 and Ro = 50). The same analysis

for a larger geometry (Ri = 100 and Ro = 200) shows
better results for smaller values of Θ. This shows that
the influence of Θ on the results depends on the size of
the system. We try to relate both parameters in Fig. 22b,
where we plot ε(Θ) as a function of the angular sector
length at the inner wall (ΘRi). We observe that a good
accuracy of the results can be achieved with a length
ΘRi ≥ 40 for geometries with Ri ≥ 25. Based on this
consideration, we have chosen the values of Θ for each of
our geometries (Tab. I).
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0.04
(a)

 

 

( rad)
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0.04
(b)

 

 

Ri

FIG. 22: (Color online) Relative error ε on the orthoradial
velocity vθ (Vθ = 2.5), (a) as function of Θ, (b) as function
of the inner wall length ΘRi. (�) Ri = 25 and Ro = 50, (•)
Ri = 100 and Ro = 200.

Appendix B : Averaging method

Considering the revolution symmetry of our system,
the radial profiles of different quantities (orthoradial ve-
locity vθ(r), coordination number Z(r), etc.) are ob-
tained by an averaging procedure over coordinate θ along
the coordinate r (Fig. 23). To each of the n grains i are
associated different scalar quantities Gi. We define a
weight function ψi(r) as the intercept angle defined on
Fig. 23 (cos(ψi(r)/2) = (r2 + r2i − d2

i /4)/(2rri) for a disk
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of diameter di). Some variables, like solid fraction ν, are
averaged over the whole space, while others, like the co-
ordination number Z, have no sense outside the grain
space. This leads to the two following definitions of the
average :

< G > (r) =
1

Θ

n
∑

i=1

Giψi(r), (20)

and :

< G >′ (r) =

∑n
i=1G

iψi(r)
∑n

i=1 ψi(r)
. (21)

r

i i

O

i

ri

FIG. 23: Various quantities associated to a grain i.

Applying this principle, we determine the solid fraction
profile ν(r) as follows

< ν > (r) =
1

Θ

n
∑

i=1

ψi(r), (22)

where the value of νi is naturally equal to 1. This means
that < G > and < G >′ are simply related by the solid
fraction: < G >=< ν >< G >′.

We take into account the variation of vectorial and
tensorial quantities inside the grains, when written in

the polar basis ~er(φ) =

(

cosφ
sinφ

)

and ~eθ =

(

− sinφ
cosφ

)

.

Hence, the radial profiles of the velocity components are
:

vα(r) =
1

∑n
i=1 ψi(r)

n
∑

i=1

∫ θi+
ψi
2

θi−
ψi
2

~vi · ~eα(φ)dφ. (23)

The stress tensor of each grain is defined according
to [74] (with Ai = πd2

i /4 the grain area) :

σi =
1

Ai





∑

j 6=i

~Fij ⊗ ~rij +miδ~vi ⊗ δ~vi



 . (24)

The first term is associated to the contact forces, and
the second one to the velocity fluctuations. The radial
profiles of the components of the stress tensor are :

σαβ(r) =
1

Θ

n
∑

i=1

∫ θi+
ψi
2

θi−
ψi
2

~eα(φ) · σi · ~eβ(φ)dφ. (25)

Since we try to analyze the granular material as a
continuum (except for the very first layers near the wall),
we consider the coarse-grained variations of the quan-
tities by smoothing the profiles through central moving
averages of 3d length (if not otherwise indicated). The re-
maining fluctuations would disappear with an increase of
the simulation time ∆t over which the data are averaged.

Appendix C : Internal variables

Coordination number Z is the average number of con-
tacts per grain. In the inertial regime, the general ten-
dency is a decrease of Z as the shear rate γ̇ increases
(that is to say for increasing Vθ in Fig. 24). For smaller
values of γ̇ (corresponding to smaller values of Vθ or to
a larger distance from the inner wall) the coordination
number Z approaches a limiting value, slightly above 3.
Such a limit is in rough agreement with other numeri-
cal observations of the critical state of frictional disks.
Ref. [53] thus reports Z ≃ 3.6. The somewhat lower val-
ues observed in our case are likely due to the larger strain
rates, and to the remaining influence, on the quasistatic
region of limited width, of the more agitated inner zone.

We define the mobilization of friction as ratio M =
Zs/Z, where Zs is the average number of sliding contacts
per grain [4, 75]. Fig. 25 shows that M increases as the
shear rate increases, whether through an increase of Vθ or
a decrease of the distance from the inner wall. We notice
that the stabilization of the M(r) profile occurs for Vθ ≤
0.0025, a value much smaller than the one required for the
stabilization of the other studied quantities (Vθ ≤ 0.025).

For any quantity q(r) averaged in space (along θ) and
in time, we may define its fluctuation:

δq(r)2 =
1

Θ

∫ Θ

0

q(r, θ)2dθ − q(r)2, (26)

where q(r, θ)2 is averaged in time. We measure the
fluctuations of the translational and rotational velocities
δvθ(r), δvr(r) and δω(r). Our analysis (long time scale)



16

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

Z

r-Ri

V   

FIG. 24: (Color online) Influence of shear velocity Vθ on
the coordination number profiles Z(r). (H) Vθ = 0.0025, (•)
Vθ = 0.025, (�) Vθ = 0.25, (◮) Vθ = 0.5, (�) Vθ = 1.0, (◭)
Vθ = 1.5, (N) Vθ = 2.5. Geometry R50.
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FIG. 25: (Color online) Influence of shear velocity Vθ on the
mobilization of friction profiles M(r). (⋆) Vθ = 0, 00025, (H)
Vθ = 0.0025, (•) Vθ = 0.025, (�) Vθ = 0.25, (N) Vθ = 2.5.
Geometry R50.

takes into account both the small fluctuations around the
mean motion (in the cage formed by the nearest neigh-
bors), and the large fluctuations associated to collective
motions [76].

Fig. 26 first shows that the general amplitude of the
fluctuations increases with Vθ. Then, for various Vθ, they
reveal a strong decay of the fluctuating quantities close
to the inner wall, comparable to that of the respective
average quantities, consistently with previous observa-
tions [4, 17, 22, 28, 39, 58]. This decay is still true at
larger distances for δvθ and δω (with an increase close to
the outer wall). We also notice a stabilization of δvr,
which occurs at r − Ri ≈ 10 for Vθ = 0.025 and at
r−Ri ≈ 20 for Vθ = 2.5, that is to say precisely when the
solid fraction ν reaches a value ≈ 0.82 (Fig. 6). Above
this critical value of ν, the material would be so com-

pact that the radial motions would take place as a block.
Fig. 26a shows the equality of δvθ and δvr before the sta-
bilization of δvr(r), while Fig. 26b shows the systematic
equality of δvθ and δω/2.
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FIG. 26: (Color online) (a) Comparison between the profiles
of the fluctuations of the radial velocity δvr (hollow symbols)
and of the orthoradial velocity δvθ (full symbols). (b) Com-
parison between the profiles of the fluctuations of the angular
velocity δω/2 (hollow symbols) and of the orthoradial veloc-
ity δvθ (full symbols) for different wall velocities Vθ: (▽, H)
Vθ = 0.0025, (◦, •) Vθ = 0.025, (�, �) Vθ = 0.25, (△, N)
Vθ = 2.5. Geometry R50.
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(2007).
[51] C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
[52] G. Combe, Microscopic origins of strain in granular ma-

terials, vol. SI8 (Collection Etudes et Recherches des Lab-
oratoires des Ponts et Chaussées, Paris, 2002), in French
(http://pastel.paristech.org/51/).
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