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69622 Villeurbanne, France
b Institute of Fundamental Technological Research of PAS
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Abstract. Atherosclerosis begins as an inflammation in blood vessels walls (intima). Anti-

inflammatory response of the organism leads to the recruitment of monocytes. Trapped in the

intima, they differentiate into macrophages and foam cells leading to the production of inflamma-

tory cytokines and further recruitment of white blood cells. This self-accelerating process, strongly

influenced by low-density lipoproteins (cholesterol), results in a dramatic increase of the width of

blood vessel walls, formation of an atherosclerotic plaque and, possibly, of its rupture. We sug-

gest a 2D mathematical model of the initiation and development of atherosclerosis which takes

into account the concentration of blood cells inside the intima and of pro- and anti-inflammatory

cytokines. The model represents a reaction-diffusion system in a strip with nonlinear boundary

conditions which describe the recruitment of monocytes as a function of the concentration of in-

flammatory cytokines. We prove the existence of travelling waves described by this system and

confirm our previous results which show that atherosclerosis develops as a reaction-diffusion wave.

The theoretical results are confirmed by the results of numerical simulations.

Key words: atherosclerosis, reaction-diffusion waves, nonlinear boundary conditions, existence,

numerical simulations

AMS subject classification: 35K57, 92C50

1. Introduction

1.1. Biological background

High plasma concentration of low density lipoprotein (LDL) cholesterol is one of the principal

risk factors for atherosclerosis. Its mechanism can be sketched as follows [2, 3]: the process
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of atherosclerosis begins when LDLs penetrate into the intima of the arterial wall where they

are oxidized. Oxidized LDL (ox-LDL) in the intima is considered by the immune system as a

dangerous substance, hence an immune response is launched: chemoattractants, which mediate

the adhesion of the monocytes to the endothelium and the penetration of the monocytes through

the endothelium, are released and endothelial cells are activated. As a result, monocytes circulating

in the blood adhere to the endothelium and then they penetrate to the arterial intima. Once in the

intima, these monocytes are converted into macrophages.

The macrophages phagocytose the ox-LDL but this eventually transforms them into foam cells

(lipid-ladden cells) which in turn have to be removed by the immune system. In the same time

they set up a chronic inflammatory reaction (auto-amplification phenomenon): they secrete pro-

inflammatory cytokines (e.g., TNF-α, IL-1) which increase endothelial cells activation, promote

the recruitment of new monocytes and support the production of new pro-inflammatory cytokines.

This auto-amplification phenomenon is compensated by an anti-inflammatory phenomenon

mediated by the anti-inflammatory cytokines (e.g., IL-10) which inhibit the production of pro-

inflammatory cytokines (biochemical anti-inflammation). Next, the inflammation process involves

the proliferation and the migration of smooth muscle cells to create a fibrous cap over the lipid

deposit which isolates this deposit center from the blood flow (mechanical anti-inflammation).

This mechanical inhibition of the inflammation may become a part of the disease process.

Indeed the fibrous cap changes the geometry of the vasculature and modifies the blood flow. The

interaction between the flow and the cap may lead to a thrombus, or to the degradation and rupture

of the plaque liberating dangerous solid parts in the flow [5, 6].

In this study we do not address the fluid-structure interaction between the blood flow and the

plaque, and only consider the set up of the chronic inflammatory reaction with its biochemical

and mechanical inhibitions. In our previous work, we have developed a simplified model of the

reactions arising in the arterial intima [4]. The model represents a reaction-diffusion system in one

space dimension:
∂M

∂t
= dM

∂2M

∂x2
+ g(A) − βM, (1.1)

∂A

∂t
= dA

∂2A

∂x2
+ f(A)M − γA + b, (1.2)

where M is the concentration of monocytes, macrophages and foam cells in the intima, A is the

concentration of cytokines. The function g(A) describes the recruitment of monocytes from the

blood flow, f(A)M is the rate of production of the cytokines which depends on their concentration

and on the concentration of the blood cells. The negative terms correspond to the natural death

of the blood cells and of the chemical substances, while the last term in the right-hand side of

equation (1.2) describes the ground level of the cytokines in the intima.

This model allows us to give the following biological interpretation: at low LDL concentrations

the auto-amplification phenomenon does not set up and no chronic inflammatory reaction occurs.

At intermediate concentrations a perturbation of the non inflammatory state may lead to the chronic

inflammation, but it has to overcome a threshold for that. Otherwise the system returns to the

disease free state. At large LDL concentrations, even a small perturbation of the non inflammatory

state leads to the chronic inflammatory reaction.
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We show that inflammation propagates in the intima as a reaction-diffusion wave. In the case

of intermediate LDL concentrations, where a threshold occurs, there are two stable equilibria.

One of them is disease free, another one corresponds to the inflammatory state. The travelling

waves connects these two states and corresponds to the transition from one to another. The second

situation, where the concentration of LDL is high, corresponds to the monostable case where the

disease free equilibrium is unstable.

Though this model captures some essential features of atherosclerosis development, it does not

take into account a finite width of the blood vessel wall. This approximation signifies that the vessel

wall is very narrow and the concentrations across it are practically constant. In a more realistic

situation, we should consider a multi-dimensional model and take into account the recruitment of

monocytes from the blood flow. The flux of monocytes depends on the concentration of cytokines

at the surface of endothelial cells which separate the blood flow and the intima. This should be

described by nonlinear boundary conditions which change the mathematical nature of the problem.

We will study it in this work. We present the mathematical model in the next section. Section 2 is

devoted to positiveness and comparison theorems which appear to be valid for the problem under

consideration. We take into account here the particular form of the system and of the boundary

conditions. In the general case these results are not applicable. In Section 3, we use them to study

the existence of travelling waves in the monostable case. The results concerning wave existence

are confirmed by the numerical simulations (Section 4).

1.2. Mathematical model

We consider the system of equations

∂M

∂t
= dM∆M − βM, (1.3)

∂A

∂t
= dA∆A + f(A)M − γA + b, (1.4)

in the two-dimensional strip Ω ⊂ R
2,

Ω = {(x, y),−∞ < x < ∞, 0 ≤ y ≤ h}

with the boundary conditions

y = 0 :
∂M

∂y
= 0,

∂A

∂y
= 0, y = h :

∂M

∂y
= g(A),

∂A

∂y
= 0 (1.5)

and the initial conditions

M(x, y, 0) = M0(x, y), A(x, y, 0) = A0(x, y). (1.6)

Here M is the concentration of white blood cells inside the intima, A is the concentration of

cytokines, dM , dA, β, γ, and b are positive constants, the constant b describes a constant source
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of the activator in the intima. It can be oxidized LDL coming from the blood. Assuming that its

diffusion into the vessel wall is sufficiently fast we can describe it by means of the additional term

in the equation and not as a flux through the boundary as in the case of monocytes. The functions

f and g are sufficiently smooth and satisfy the following conditions:

f(A) > 0 for A > 0, f(0) = 0, f(A) → f+ as A → ∞,

g(A) > 0 for A > A0, g(A0) = 0, g(A) → g+ as A → ∞,

and g′(A) > 0. We put A0 = b
γ

. This is a constant level of cytokines in the intima such that

the corresponding concentration of the monocytes is zero, and they are not recruited through the

boundary. The values A = A0,M = 0 is a stationary solution of problem (1.3)-(1.5). The matching

condition for the initial and boundary conditions is satisfied, that is the functions M0(x, y) and

A0(x, y) satisfy (1.5). These conditions provide the existence of a unique solution of problem

(1.3)-(1.6) in the space C2+α,1+α/2(Ω̄), 0 < α < 1 of Hölder continuous functions with respect to

x and t (Section 2.1).

2. Positiveness and comparison of solutions

2.1. Existence of solutions

We begin with the result on global existence of solution of problem (1.3)-(1.6). We note that it is

considered in an unbounded domain and has nonlinear boundary conditions. Therefore, we cannot

directly apply the classical results for semi-linear parabolic problems.

Theorem 2.1. Suppose that f(A) ∈ C1+α(R), g(A) ∈ C2+α(R) for some α, 0 < α < 1, the

initial condition (M0(x, y), A0(x, y)) of problem (1.3)-(1.6) belongs to (C2+α(Ω̄))2 and satisfies

boundary conditions (1.5). Then this problem has a unique global solution (M(x, y, t), A(x, y, t))
with the C2+α,1+α/2(Ω̄ × [0, T ])-norm bounded independently of T .

The proof of this theorem is given in the Appendix. We first prove the existence of solutions

in bounded rectangles and then pass to the limit as the length of the rectangle increases. A priori

estimates of solutions independent of the length of the rectangles allow us to conclude about the

existence of solution in the unbounded domain.

2.2. Positiveness for linear problems

Consider the linear parabolic problem

∂u

∂t
= d1

∂2u

∂y2
− βu, (2.1)

∂v

∂t
= d2

∂2v

∂y2
+ a(y, t)u + b(y, t)v − γv, (2.2)
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y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = h :

∂u

∂y
= c(y, t)v,

∂v

∂y
= 0, (2.3)

in the interval 0 ≤ y ≤ h with the initial conditions u(0, y, v(0, y). The coefficients a(y, t), b(y, t)
belong to Cα,α/2(Ω̄T ), and c(y, t) to C1+α,(1+α)/2(S̄T ), a(y, t) and c(y, t) are non-negative. We

assume the matching conditions between the boundary and the initial conditions. This means that

u(y, 0), v(y, 0) satisfies the boundary conditions (2.3). Then there exists a unique solution of this

problem, and it is continuous for t ≥ 0, 0 ≤ x ≤ h.

Proposition 2.2. Let the initial condition of problem (2.1)-(2.3) be non-negative functions,

u(y, 0) ≥ 0, v(y, 0) ≥ 0.

Then the solution u(y, t), v(y, t) of problem (2.1)-(2.3) is nonnegative for all y and t. If moreover

u(y, 0) 6≡ 0, v(y, 0) 6≡ 0, then the solution is strictly positive.

Proof. Consider first the Dirichlet problem

∂u1

∂t
= d1

∂2u1

∂y2
− βu1, (2.4)

∂v1

∂t
= d2

∂2v1

∂y2
+ a(y, t)u1 + b(y, t)v1 − γv1, (2.5)

y = 0, h : u = v = 0. (2.6)

From the positiveness theorem for monotone systems [10], it follows that if the initial condition

(u0
1(y), v0

1(y)) is non-negative, then the solution is non-negative. If moreover the initial condition

is not identically zero, then the solution is strictly positive. In this case for t > 0

y = 0 :
∂u1

∂y
> 0,

∂v1

∂y
> 0, y = h :

∂u1

∂y
< 0,

∂v1

∂y
< 0. (2.7)

We compare next the solution (u, v) of problem (2.1)-(2.3) with the solution (u1, v1) of problem

(2.4)-(2.6). Denote by (u0(y), v0(y)) the initial condition of this problem. Let

u0(y) = u0
1(y) + ǫ, v0(y) = v0

1(y) + ǫ

for some small ǫ > 0. We will prove that the solution of problem (2.1)-(2.3) is greater than the

solution of problem (2.4)-(2.6). After that, we can pass to the limit as ǫ → 0. Therefore, we will

obtain that the solution of problem (2.1)-(2.3) with non-negative initial conditions is positive if it

is not identically zero.

However, the initial condition (u0(y), v0(y)) introduced above may not satisfy the boundary

conditions. In this case, we can introduce a modified initial condition (û0(y), v̂0(y)) such that it

satisfies the boundary condition and

max
y

|û0(y) − u0(y)| ≤ ǫ

2
, max

y
|v̂0(y) − v0(y)| ≤ ǫ

2
.
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Hence

û0(y) > u0
1(y), v̂0(y) > v0

1(y), 0 ≤ y ≤ h.

The solution of problem (2.1)-(2.3) with the initial condition (û0(y), v̂0(y)) exists and it is

continuous for t ≥ 0, 0 ≤ y ≤ h. Therefore

u(y, t) > u1(y, t), v(y, t) > v1(y, t), 0 ≤ y ≤ h

at least for some small positive t. Suppose that this inequality holds for 0 < t < t0 and that it is

not valid for t = t0. Hence at least one of the following equalities hold:

u(y1, t0) = u1(y1, t0), v(y1, t0) = v1(y1, t0) (2.8)

for some y0 and y1. If these points are inside the interval (0, h), that is

u(0, t0) > 0, u(h, t0) > 0, v(0, t0) > 0, v(h, t0) > 0,

then (2.8) cannot hold because of the comparison theorem. Consequently, one of the functions

u(y, t0), v(y, t0) equals zero at the boundary of the interval. Suppose that u(0, t0) = 0. Since

∂u(0, t0)/∂y = 0 and u(y, t0) ≥ u1(y, t0), then ∂u1(0, t0)/∂y = 0. This contradicts (2.7).

If u(h, t0) = 0, then ∂u(h, t0)/∂y ≤ 0 since u(y, t0) ≥ 0. On the other hand, from the

boundary condition (2.3) it follows that ∂u(h, t0)/∂y ≥ 0. Hence ∂u(h, t0)/∂y = 0. Since

u(y, t0) ≥ u1(y, t0) ≥ 0 and u1(h, t0) = 0, then ∂u1(h, t0)/∂y = 0. This contradicts (2.7).

Other cases, v(0, t0) = 0, v(h, t0) = 0 can be considered similarly. The proposition is proved.

A similar proposition holds for the two-dimensional problem

∂u

∂t
= d1∆u − βu, (2.9)

∂v

∂t
= d2∆v + a(y, t)u + b(y, t)v − γv, (2.10)

y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = h :

∂u

∂y
= c(y, t)v,

∂v

∂y
= 0 (2.11)

in the domain Ω.

Proposition 2.2’. Let the initial condition of problem (2.9)-(2.11) be non-negative functions,

u(x, y, 0) ≥ 0, v(x, y, 0) ≥ 0. Then the solution u(y, t), v(y, t) of problem (2.9)-(2.11) is non-

negative for all y and t. If moreover u(x, y, 0) 6≡ 0, v(x, y, 0) 6≡ 0, then the solution is strictly

positive.
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2.3. Comparison of solutions

Let (M1, A1) and (M2, A2) be two solutions of problem (1.3)-(1.5) from C2+α,1+α/2(Q̄T ). We

assume that all conditions of Section 1.2 are satisfied. Moreover, we will impose some additional

conditions in the propositions below. Put

u = M1 − M2, v = A1 − A2.

Then
∂u

∂t
= dM∆u − βu, (2.12)

∂v

∂t
= dA∆v + a(x, t)u + b(x, t)v − γv, (2.13)

y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = h :

∂u

∂y
= c(x, t)v,

∂v

∂y
= 0, (2.14)

where

a(x, t) = f(A1(x, t)), b(x, t) =
f(A1(x, t)) − f2(A(x, t))

A1(x, t) − A2(x, t)
M2(x, t) ,

c(x, t) =
g(A1(x, t)) − g2(A(x, t))

A1(x, t) − A2(x, t)
.

From Proposition 2.2 we immediately obtain the result about comparison of solutions.

Proposition 2.3. In addition to conditions of Section 1.2, suppose that f ′(A) and g′′(A) satisfy the

Lipschitz condition. Let (M1, A1) and (M2, A2) be two solutions of problem (1.3)-(1.5). If

M1(x, 0) ≥ M2(x, 0), A1(x, 0) ≥ A2(x, 0), x ∈ Ω,

then the same inequalities are valid for the solutions. If moreover

M1(x, 0) 6≡ M2(x, 0), A1(x, 0) 6≡ A2(x, 0), x ∈ Ω,

then the inequalities for the solutions are strict for t > 0.

Proof. It is sufficient to verify that the coefficients of problem (2.12)-(2.14) satisfy required regu-

larity conditions. We have

f(A1(x, t)) − f2(A(x, t))

A1(x, t) − A2(x, t)
=

∫ 1

0

f ′ (sA1(x, t) + (1 − s)A2(x, t)) ds.

If the derivative f ′(A) satisfies the Lipschitz condition, then b(x, t) ∈ Cα,α/2(Q̄T ). Similarly, if

the derivative g′′(A) satisfies the Lipschitz condition, then c(x, t) ∈ C1+α,(1+α)/2(S̄T ). Finally, if

Mi, Ai satisfy the matching conditions, then u and v also satisfy them. The proposition is proved.

Proposition 2.4. Suppose that the initial condition of problem (1.3)-(1.5) is such that

dM∆M − βM > 0, dA∆A + f(A)M − γA + b > 0.

7
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Then the solution is strictly increasing with respect to t for each x ∈ Ω.

Proof. Denote

u =
∂M

∂t
, v =

∂A

∂t
.

Differentiating problem (1.3)-(1.5) with respect to t, we obtain

∂u

∂t
= dM∆u − βu, (2.15)

∂v

∂t
= dA∆v + f(A)u + f ′(A)Mv − γv, (2.16)

y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = h :

∂u

∂y
= g′(A)v,

∂v

∂y
= 0. (2.17)

Since M, A ∈ C2+α,1+α/2(Q̄T ) and the derivatives f ′(A), g′′(A) satisfy the Lipschitz condition,

then f(A), f ′(A)M ∈ Cα,α/2(Q̄T ) and g′(A) ∈ C1+α,(1+α)/2(Q̄T ). Moreover, the derivatives

∂M/∂t and ∂A/∂t belong to C2+α,α/2(Q̄T ). Hence u, v satisfy the matching conditions and

u(x, y, 0) = dM∆M − βM > 0, v(x, y, 0) = dA∆A + f(A)M − γA + b > 0.

Since f(A) ≥ 0, g′(A) > 0, then u and v are positive for t > 0. The proposition is proved.

3. Existence of travelling waves

3.1. Stationary solutions in the interval

Consider the problem in the section of the strip:

∂M

∂t
= dMM

′′ − βM, (3.1)

∂A

∂t
= dAA

′′
+ f(A)M − γA + b, (3.2)

y = 0 : M
′
= A

′
= 0, y = h : M

′
= g(A), A

′
= 0, (3.3)

where prime denoted the derivative with respect to y. It has a constant stationary solution

M = 0, A = A0.

We linearize (3.1)-(3.3) about this solution and consider the corresponding eigenvalue problem:

dMM
′′ − βM = λM, (3.4)

dAA
′′

+ f(A0)M − γA = λA, (3.5)

y = 0 : M
′
= A

′
= 0, y = h : M

′
= g

′
(A0)A, A

′
= 0. (3.6)

8
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We consider the case λ = 0. From (3.4),

M(y) = c1e
σ1y + c2e

−σ1y,

where σ1 =
√

β/dM . From (3.5),

A(y) = c3e
σ2y + c4e

−σ2y + kc1e
σ1y + kc2e

−σ1y,

where σ2 =
√

γ/dA,

k = − f(A0)

dAσ2
1 − γ

=
f(A0)

dA(σ2
2 − σ2

1)
.

From the boundary conditions at y = 0:

c1σ1 − c2σ1 = 0, c3σ2 − c4σ2 + k(c1σ1 − c2σ1) = 0.

Therefore c1 = c2, c3 = c4. From the boundary condition at y = h,

c1σ1(e
σ1h − e−σ1h) = g′(A0)

(
c3(e

σ2h + e−σ2h) + kc1(e
σ1h + e−σ1h)

)
,

c3σ2(e
σ2h − e−σ2h) + kc1σ1(e

σ1h − e−σ1h) = 0.

We express c3 from the second equation and substitute into the first equation:

σ1 sinh(σ1h) − kg
′
(A0) cosh(σ1h) = −kσ1g

′
(A0)

σ2

cosh(σ2h)

sinh(σ2h)
sinh(σ1h)

or

µ1 coth(σ1h) = 1 + µ2 coth(σ2h), (3.7)

where

µi =
kg′(A0)

σi

=
f(A0)g

′(A0)

dAσi(σ2
2 − σ2

1)
, i = 1, 2.

Solutions of equation (3.7) give zero eigenvalues of problem (3.4)-(3.6). Denote the left-hand

side of equation (3.7) by s1(h). Then it is a decreasing function for h > 0,

s1(h) ∼ f(A0)g
′(A0)

dAσ2
1(σ

2
2 − σ2

1)

1

h
, h → 0, s1(h) → f(A0)g

′(A0)

dAσ1(σ2
2 − σ2

1)
, h → ∞. (3.8)

The right-hand side s2(h):

s2(h) ∼ f(A0)g
′(A0)

dAσ2
2(σ

2
2 − σ2

1)

1

h
, h → 0, s1(h) → 1 +

f(A0)g
′(A0)

dAσ2(σ2
2 − σ2

1)
, h → ∞. (3.9)

Proposition 3.1. Suppose that µi 6= 0, σi 6= 0, i = 1, 2, σ1 6= σ2. For all h sufficiently small,

the principal eigenvalue of problem (3.4)-(3.6) is in the right-half plane. If f(A0) or g′(A0) are

sufficiently small and h sufficiently large, then the principal eigenvalue is in the left-half plane.

9
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Proof. Denote by λ0 the principal eigenvalue of problem (3.4)-(3.6), that is the eigenvalue with

the maximal real part. Clearly, if we increase β and γ by the same value, then λ0 is decreased by

the same value. Therefore, for any h fixed and σ1, σ2 sufficiently large, λ0 becomes negative (or

with the negative real part). On the other hand, by virtue of (3.8), (3.9), in this case, s2(h) > s1(h).
Hence, if this inequality is satisfied, then λ0 is in the left-half plane.

It can be easily verified that s1(h) > s2(h) for h small enough and σ1 6= σ2. Therefore, when

we decrease h, the principal eigenvalue crosses the imaginary axes and passes in the right-half

plane.

If f(A0) or g′(A0) are sufficiently small, then s2(h) > s1(h) for h large enough. The proposi-

tion is proved.

Remark 3.2. From the Krein-Rutman theorem it follows that the principal eigenvalue is simple,

real and the corresponding eigenfunction is positive. Contrary to the Dirichlet boundary conditions

for which the principal eigenvalue growth with the length of the interval being negative for small

h, in the problem under consideration it is positive for small h. It is related to the singular character

of this problem as h → 0.

Proposition 3.3. If the principal eigenvalue of problem (3.4)-(3.6) crosses the origin from negative

to positive values, then the stationary solution M = 0, A = A0 of problem (3.1)-(3.3) becomes

unstable and two other stable stationary solutions bifurcate from it. For one of these solutions,

Ms(y), As(y), the inequality

Ms(y) > 0, As(y) > A0, 0 < y < h (3.10)

holds.

The existence and stability of a bifurcating solution follows from the standard arguments re-

lated to the topological degree. Inequality (3.10) follows from the positiveness of the eigenfunction

corresponding to the zero eigenvalue.

At the end of this section, we will find explicitly stationary solutions of problem (3.1)-(3.3) in

the particular case where F (A) = f0 is a constant. From the first equation we have

M(y) =
g(A1)

2σ1 sinh(σ1h)

(
eσ1y + e−σ1y

)
,

where Ah = A(h). Substituting this expression into the second equation, we find

A(y) = − f0g(Ah)

2dA(σ2
1 − σ2

2)
×

(
1

σ1 sinh(σ1h)

(
eσ1y + e−σ1y

)
− 1

σ2 sinh(σ2h)

(
eσ2y + e−σ2y

))
+

b

dAσ2
2

.

10
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We obtain the following equation with respect to Ah:

Ah = − f0g(Ah)

dA(σ2
1 − σ2

2)

(
cosh(σ1y)

σ1 sinh(σ1h)
− cosh(σ2y)

σ2 sinh(σ2h)

)
+

b

dAσ2
2

.

The number of its solutions is determined by the function g(A). For small σ1 and σ2, using the

approximation exp(±σih) ≈ 1 ± σih, we obtain approximate equation

Ah =
f0g(Ah)

dAhσ2
1σ

2
2

+
b

dAσ2
2

.

We obtain the same equation if we integrate the equalities

dMM ′′ − βM = 0, dAA′′ + f0M − γA + b = 0

from 0 to h, use the boundary conditions (3.3) and suppose that M and A do not depend on y.

3.2. Existence of waves in the monostable case

We consider in this section problem (1.3)-(1.5) assuming that the stationary solution M = M0, A =
A0 is unstable and that there exists a stable stationary solution Ms(y), As(y) in the section of the

cylinder such that

M0 < Ms(y), A0 < As(y), 0 ≤ y ≤ h.

We will study here the existence of waves with the limits (M0, A0) at x = −∞ and (Ms, As) at

x = +∞. We assume that there are no other stationary solutions such that

M0 ≤ M(y) ≤ Ms(y), A0 ≤ A(y) ≤ As(y), 0 ≤ y ≤ h. (3.11)

Consider the problem

dM∆M − c
∂M

∂x
− βM = 0, (3.12)

dA∆A − c
∂A

∂x
+ f(A)M − γA + b = 0, (3.13)

y = 0 :
∂M

∂y
= 0,

∂A

∂y
= 0, y = h :

∂M

∂y
= g(A),

∂A

∂y
= 0. (3.14)

Here c is the wave velocity. We will look for its solution (M,A) such that

x = −∞ : M = M0, A = A0, x = +∞ : M = Ms, A = As. (3.15)

Let µ(x, y) and α(x, y) be some functions continuous together with their second derivatives

and such that
∂µ

∂x
> 0,

∂α

∂x
> 0, (x, y) ∈ Ω, (3.16)

y = 0 :
∂µ

∂y
= 0,

∂α

∂y
= 0, y = h :

∂µ

∂y
= g(α),

∂α

∂y
= 0. (3.17)

11
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Denote

S1(µ, α) = sup
(x,y)∈Ω

dM∆µ − βµ
∂µ
∂x

, S2(µ, α) = sup
(x,y)∈Ω

dA∆α + f(α)µ − γα + b
∂α
∂x

.

Proposition 3.4. Let functions µ(x, y), α(x, y) satisfy conditions (3.16), (3.17). If

c > max(S1(µ, α), S2(µ, α)) , (3.18)

then there exists a solution of problem (3.12)-(3.15).

Proof. From inequality (3.18) it follows that

dM∆µ − c
∂µ

∂x
− βµ < 0, (3.19)

dA∆α − c
∂α

∂x
+ f(α)µ − γα + b < 0. (3.20)

Denote

ΩN = {(x, y) : x > −N, 0 ≤ y ≤ h}
and consider the initial-boundary value problem for the system

∂M

∂t
= dM∆M − c

∂M

∂x
− βM, (3.21)

∂A

∂t
= dA∆A − c

∂A

∂x
+ f(A)M − γA + b (3.22)

in the domain ΩN , with the boundary conditions

y = 0 :
∂M

∂ν
= 0,

∂A

∂ν
= 0, y = h :

∂M

∂ν
= g(A),

∂A

∂ν
= 0. (3.23)

x = −N : M = MN(y), A = AN(y) (3.24)

and the initial conditions

M(x, y, 0) = MN(y), A(x, y, 0) = AN(y). (3.25)

We note that the boundary functions at the left boundary of the cylinder and the initials conditions

are the same functions which depend only on the y variable. Their choice depends on N . We

suppose that they satisfy the following conditions:

M0 ≤ MN(y) ≤ µ(−N, y), A0 ≤ AN(y) ≤ α(−N, y), (3.26)

dMM
′′

N − βMN ≥ 0, (3.27)

dAA
′′

N + f(AN)MN − γAN + b ≥ 0, (3.28)

12
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M
′

N(0) = A
′

N(0) = 0; M
′

N(h) = g(AN(h)), A
′

N(h) = 0. (3.29)

The existence of such functions follows from the instability of the solution M0, A0. Indeed, let

(µ0(y), α0(y)) be the eigenfunction corresponding to the principal (positive) eigenvalue of problem

(3.4)-(3.6). Then the functions

MN(y) = M0 + τNµ0(y), AN(y) = A0 + τNα0(y)

satisfy conditions (3.26)-(3.28) for τN sufficiently small.

We should note, however, that instead of the condition M
′

N(h) = g(AN(h)) we have M
′

N(h) =
g′(A0)AN(h). This is a minor technical detail which can be arranged by replacing the function

g(A) in (3.29) by g′(A0)A for A0 ≤ A ≤ A0 + ǫ, and then considering a limiting procedure as

ǫ → 0.

By virtue of conditions (3.26)-(3.29) and of Proposition 2.4 adapted for the problem under

consideration, the solution of problem (3.21)-(3.25) increases in time for each (x, y) ∈ ΩN . On

the other hand, from inequalities (3.19), (3.20) it follows that it is estimated from above:

M(x, y, t) ≤ µ(x, y), A(x, y, t) ≤ α(x, y), (x, y) ∈ ΩN , t > 0.

Therefore, it converges to a stationary solution (uN , vN) of problem (3.21)-(3.25). From Lemma

3.5 below it follows that the functions uN(x, y) and vN(x, y) are non-decreasing with respect to x.

Therefore there exists their limits as x → +∞. Since the limiting functions satisfy the problem in

the section of the cylinder, and there are no other solutions that satisfy inequality (3.11) except for

(M0, A0) and (Ms, As), then

lim
x→+∞

uN(x, y) = Ms(y), lim
x→+∞

vN(x, y) = As(y).

We consider the sequence of solutions (uN , vN) as N → −∞ and choose a convergence subse-

quence in order to obtain a solution on the whole axis. For this we introduce the shifted functions

ũN(x, y) = uN(x + kN , y), ṽN(x, y) = vN(x + kN , y),

where kN is chosen in such a way that

uN(0, h/2) =
1

2
(M0 + Ms(h/2)).

Such values exists due the boundary conditions at x = −N and the limiting values of the solutions

at +∞. These new functions are defined for −N−kN ≤ x < +∞. Since uN(x, y) ≤ µ(x, y), x ≥
−N , then −N − kN → −∞ as N → ∞.

Thus, we can choose a subsequence of the sequence (uN , vN), for which we keep the same no-

tations, which converges locally to some limiting functions (u0, v0). They are defined in the whole

cylinder Ω and satisfy problem (3.12)-(3.14). Moreover, they are non-decreasing with respect to

x and u0(0, h/2) = 1
2
(M0 + Ms(h/2)). Hence the solution has limits (3.15) for x = ±∞. The

proposition is proved.

Lemma 3.5. The solution of problem (3.21)-(3.25) is monotonically increasing with respect to x
for each y, 0 < y < h and t > 0.

13
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Proof. To prove the lemma, we will write the problem for the new unknown functions

u(x, y, t) =
∂MN(x, y, t)

∂x
, v(x, y, t) =

∂AN(x, y, t)

∂x

and will show that its solution is positive. Differentiating problem (3.21)-(3.24) with respect to x,

we obtain
∂u

∂t
= dM∆u − c

∂u

∂x
− βu, (3.30)

∂v

∂t
= dA∆v − c

∂v

∂x
+ f(A)u + f ′(A)Mv − γv (3.31)

y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = h :

∂u

∂y
= g′(A)v,

∂v

∂y
= 0. (3.32)

For the solution of problem (3.10)-(3.13), the following estimate holds:

MN(x, y, t) ≥ Mb(y), AN(x, y, t) ≥ Ab(y), (x, y) ∈ ΩN , t > 0.

Therefore,

u(−N, y, t) ≥ 0, v(−N, y, t) ≥ 0, 0 ≤ y ≤ h, t > 0. (3.33)

If the boundary condition at x = −N was

u(−N, y, t) = 0, v(−N, y, t) = 0, 0 ≤ y ≤ h, t ≥ 0,

then the solution of this problem wouldbe identically zero. Since we have inequalities (3.33) at the

boundary, then the solution is non-negative. The lemma is proved.

The main result of this section is given by the following theorem.

Theorem 3.6. Problem (3.12)-(3.15) has a solution if and only if c satisfies the inequality

c ≥ c0 = inf
µ,α

max(S1(µ, α), S2(µ, α)),

where the infimum is taken with respect to all functions satisfying conditions (3.16), (3.17). These

solutions are strictly monotone with respect to x.

Proof. Existence of a solution (Mc, Ac) for c > c0 follows from Proposition 3.4. Since these

solutions are bounded in the C2+δ(Ω̄) norm for some δ ∈ (0, 1) independently of c for c close to

c0, then we can pass to the limit as c → c0 and obtain a solution (Mc0 , Ac0) for c = c0. If there

exists a solution (M∗, A∗) for some c∗ < c0, then

max(S1(M∗, A∗), S2(M∗, A∗)) = c∗ < c0 = inf
µ,α

max(S1(µ, α), S2(µ, α)).

This contradiction proves the theorem.
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4. Numerical simulations

In this section we present numerical simulations of problem (1.3)-(1.5) in the bounded domain

Ωs = (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with the additional boundary conditions at the sides of the

rectangle:

x = 0, 1 : A = M = 0.

The functions f(A) and g(A) are taken in the form

f(A) =
A

1 + 43A/42
, g(A) = ǫ

2 + 8A

1 + A
.

We carry out the simulations using the software Comsol c©MultiPhysics.

In the approximation of thin domain, for such functions f and g we obtain the one-dimensional

system (1.1), (1.2) in the monostable case [4]. Therefore we can expect the monostable behavior in

the two-dimensional case. This means the absence of the threshold where even small perturbation

of the disease free solution lead to the disease development. In this case, concentrations A and M
grow and spread in the form of travelling waves.

Figure 1: Left: beginning of the wave development. Right: the wave propagation.

Figure 1 (left) shows the set up of the wave front. At the fist stage of the development of inflamma-

tion, monocytes spread across the domain, that is in the y-direction (Figure 1, left) and then along

the intima, that is in the x-direction (Figure 1, right). The wave is essentially two-dimensional.

When the domain width is sufficiently large, the wave propagation occurs near the surface where

there is an excess of monocytes. Their concentration there becomes high leading to an essentially

higher speed of propagation. Their concentration inside the intima remains low.

Figure 2 (left) presents propagation of the travelling wave in both 1D and 2D models. The

comparison shows a good agreement between these two cases when the strip thickness is small.
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Figure 2: Left: comparison between the 2D-model with a small thickness (upper part) and the

1D-model (below). Right: dependence of the wave speed on the thickness of the strip.

The right figure demonstrates how the speed of propagation in the 2D case depends on the strip

thickness. The speed of the 2D wave converges to the speed of the 1D wave as the width of the

domain goes to zero. We recall that the 2D and 1D models are different. The former takes into

account the monocyte recruitment through nonlinear boundary conditions, the latter includes a

nonlinear production term in the equation. In some cases, the limiting passage from 2D to 1D as

the width goes to zero can be justified [4]. This is not proved for travelling waves. The results

presented here show this convergence numerically.

5. Discussion

Atherosclerosis and other inflammatory diseases develop as a self-accelerating process which can

be described with reaction-diffusion equations. In [4] we have developed a one-dimensional model

for the early stage of atherosclerosis. The model is applicable for the case of a small thickness of

the intima (blood vessel wall), which corresponds to the biological reality. We prove the existence

of travelling wave solution of the reaction-diffusion system and explain the chronic inflammatory

reaction as propagation of a travelling wave.

During atherosclerosis development, the intima thickness grows and we need to take it into

account. In this work we study the two-dimensional case where the second dimension corresponds

to the direction across intima. Essential difference with the previous model is not only space di-

mension but also nonlinear boundary conditions which describe recruitment of monocytes through

the epithelial layer of the intima. This is a new class of reaction-diffusion systems for which it

appears to be possible to study the existence of travelling waves.

Numerical simulations confirm the analytical results. They show wave propagation and allow
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us to analyze its speed as a function of the parameters of the model.

Further development of atherosclerosis results in remodelling of the vessel. This means that

the lumen (the channel where the blood flow takes place) can retract and the vessel wall takes the

specific bell shape. This can essentially modify the characteristics of the flow, and mechanical

interaction of the flow with the vessel walls becomes crucial because it can result in the plaque

rupture. There are numerous studies of these phenomena (see, e.g. [5, 6]). The blood flow influ-

ences the development of the plaque: the shear stress activates the receptors of the endothelial cells

and accelerates the recruitment of monocytes.

Another important question is related to risk factors like hypercholesterolemia, diabetes or

hypertension. They determine some parameters of the mathematical model. A more complete

description would consist in supposing that this influence increases slowly during the lifetime. The

parameters of the model would evolve then slowly, and the system would pass from the disease-

free case to the bistable state to reach finally the monostable state. In each state, the ignition itself

would be due to an accidental disturbance, such as an injury that can initiate infection.

The action of these risk factors, which can be taken into account in the mathematical model, is

as follows:

1. The influence of the hypertension: it changes the properties of the blood flow and creates

a higher pressure on the vessel wall which can activate the receptors and accelerate the

recruitment of monocytes. It can also provoke the plaque rupture,

2. The influence of diabetes II: the monocytes and the platelets can be already activated because

of the hyperglycemia. The active state of monocytes increases their recruitment and the

active state of platelets can cause spontaneous coagulation (thrombosis),

3. The influence of hypercholesterolemia: the cholesterol level in blood can slowly increase

during the lifetime. The parameter α1 of the model, which shows the level of bad cholesterol

in blood vessel walls, becomes time dependent. It increases slowly, and so the system passes

from the disease-free state to the bistable state and then to the monostable state. The other

risk factors can modify the speed of these transitions.

Influence of the risk factors can be studied in relation to medical treatment. In particular,

with statins, which are inhibitors of the low density lipoprotein cholesterol. Recent studies shows

a reduction of 28% reduction in LDL-C and 5% increase in high-density lipoprotein cholesterol

[13]. The inhibition of the LDL by statins “appears to be directly proportional to the degree to

which they lower lipids” [13]. Its action can be taken into account through the parameters of the

mathematical model.

Another approach to modelling atherosclerosis is based on cellular automata [11]. The authors

investigate “the hypothesis that plaque is the result of self-perpetuating propagating process driven

by macrophages”. The macrophage recruitment rate is considered as a steeply rising function of

the number of macrophages locally present in the intima. Smooth muscle cells dynamics also

depend on the macrophage number. Macrophages can die with certain probability resulting in

lipid accumulation. During the process, fatty streaks of macrophages set up at random sites, which
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may progress or regress. Some of them develop into progressive focal lesions, that is advanced

pieces of plaque which are macrophage-rich and have a central fibrous cap-like region of smooth

muscle cells. The main result of [11] confirm the conclusion of this work and of the previous work

[4] that atherosclerosis development can be viewed as a wave propagation.

6. Appendix. Existence of solutions of the evolution problem

We will prove here Theorem 2.1. The idea of the proof is quite standard. We first consider

smoothed bounded rectangles and prove the existence of solutions in the bounded domains. We use

here a priori estimates of solutions. Since they are independent on the length of the rectangle, we

can construct a sequence of uniformly bounded solutions in the increasing domains and choose a

convergent subsequence. The limiting function will be a solution of the problem in the unbounded

strip.

6.1. A priori estimates

In order to obtain a priori estimates of solutions of problem (1.3)-(1.6) we will construct an ap-

propriate supersolution. We consider the stationary equation (1.3) and look for its solution which

depends only on the y variable. It satisfies the problem

dM ′′ − βM = 0, M(h) = m > 0, M ′(h) = a , a > 0, (6.1)

where, for simplicity of notation, we replace dM by d. Its solution has the following form:

M(a; y) =
e

√
β√
d

(
−

(
a
√

d
)

+
√

β m
)

+ e
−
�√

β√
d

�
+ 2

√
β y√
d

(
a
√

d +
√

β m
)

2
√

βe
√

β y√
d

.

We note that for

m = coth(

√
β h√
d

)a
√

d/
√

β (6.2)

we obtain

M(a; y) =
a
√

d cosh(
√

β√
d
y)

√
β sinh(

√
β√
d
h)

= m
cosh(

√
β√
d
y)

cosh(
√

β√
d
h)

(6.3)

and both of the relations M(y) ≥ 0 and M ′(0) = 0 are satisfied.

Let us take a∗ = g(∞) + ρ with ρ > 0 arbitrarily small. Let M∗(y) := M(a∗, y). Obviously,

according to (6.3),

M(a∗, y)) > M(a, y) for a ∈ [0, g(∞)]. (6.4)
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Figure 3: Bounded domain and boundary conditions (see the explanation in the text).

We now construct a sequence of bounded domains. Let δ < h/4, where h is the height of the

domain Ω, and l > 0 be sufficiently large. Denote by Rl a rectangle-like set with the boundary of

C3 class symmetric with respect to the point (0, 0) and consisting of the sets B1,3 = {(x, y) : x ∈
[−l, l], y = 0, h}, B2,4 = {(x, y) : y ∈ [δ, h− δ], x = l + δ,−(l + δ)}, and the “monotone” curves

joining the boundary points of the straight boundaries (Figure 3).

Let G1, G2, G3, G4 denote the parts of the boundary joining B1 with B2, B2 with B3, B3 with

B4 and B4 with B1 respectively. We note that the outer normal vector ν to G1 and G4 has negative

y-component. Finally, let B1∗ = B1∩{(x, y) : x ∈ [l−2δ, l]}, B3∗ = B3∩{(x, y) : x ∈ [l−2δ, l]},

B2∗ = B2 ∩ {(x, y) : y ∈ [δ, h/2]}.

We consider system (1.3), (1.4) in the domains Rl

∂M

∂t
= dM∆M − βM, (6.5)

∂A

∂t
= dA∆A + f(A)M − γA + b (6.6)

and construct the boundary conditions

∂M

∂ν
= Ψ(z),

∂A

∂ν
= 0, z = (x, y) ∈ ∂Rl, (6.7)

in such a way that a) in the limit, as the length increases, we obtain the boundary condition (1.5), b)

the function (M∗(y), A∗(y)) is a supersolution for the auxiliary problems in the bounded domains
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(A∗(y) is defined below).

The boundary conditions can be defined in the following way. First of all, we can take them

symmetric with respect to x = 0, Ψ(x, y) = Ψ(−x, y). For x ≥ 0 the function Ψ(·) is defined as

follows:

z ∈ B1 \ B1∗ : Ψ(z) = 0, z ∈ B3 \ B3∗ : Ψ(z) = g(A(z)),

z ∈ B3∗ : Ψ(z) = (1 − s(x − (l − 2δ)))g(A(z)),

z ∈ G2 ∪ B2 \ B2∗ : Ψ(z) ≡ 0, z ∈ B2∗ : Ψ(z) = −qs (2yδ/(h/2 − δ)) ,

z ∈ G1 : Ψ(z) = −q, z ∈ B1∗ : Ψ(z) = −qs(x − (l − 2δ)).

Here s(τ) is C∞ function such that s(τ) ≡ 0 for τ ≤ 0 and s(τ) ≡ 1 for τ ≥ 1, q > 0 is a constant.

Now, let A∗ denote the solution of the boundary value problem:

dA∆A + f(A)M∗(y) − γA + b = 0, in Rl,

∂A

∂ν
= 0 on ∂Rl.

(6.8)

It is obvious that, given M∗(·), we can choose q > 0 sufficiently large, so that ∂M∗(y)/∂ν ≥ Ψ(z)
for z ∈ ∂Rl. Hence the following lemma holds.

Lemma 1. Suppose that a classical solution to system (6.5)-(6.7) of class C2+α,1+α/2 exists on

Ω × (0, T ). Let M(x, y, 0) ∈ [0,M∗(y)), A(x, y, 0) ∈ [0, A∗(y)). Then, for t ∈ [0, T ), 0 ≤
M(x, y, t) < M∗(y), 0 ≤ A(x, y, t) < A∗(y).

Taking into account the non-negativity of solution (proven above) the proof can be carried out

via the maximum principle. ✷

6.2. Existence of solutions

6.2.1. Local existence of solutions

The local existence of solutions follows from the application of the contraction mapping principle.

Let

L1 = ∂/∂t − dM∆, L2 = ∂/∂t − dA∆,

U = (U1, U2) = (M,A), Φ(U) = (−βU1, f(U2)U1 − γU2 + b).

Given Ũ = (Ũ1, Ũ2), let P (Ũ) denote the solution of the system

(L1U1,L2U2) = Φ(Ũ)
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with the above boundary conditions and initial conditions

U(x, y, 0) = U0(x, y) = (M0(x, y), A0(x, y)).

Let us assume that 0 ≤ U0(x, y) ≤ (M∗(y), A∗(y)). The local in time existence of such solution

is guaranteed by Theorem IV.5.3 in [8]. In the set ΩT = Ω × (0, T ) let us consider the mapping

U = P (Ũ). (6.9)

Let MT = C1+α,(1+α)/2(ΩT ) and B = {U ∈ M : ‖U − U0‖M ≤ 1}. From the Schauder

estimates (see Theorem IV.5.3 in [8]) it follows that for T sufficiently small, T ≤ T∗ with some T∗,

the mapping (6.9) acts from B into B and it is a contraction (see, e.g. [7]). Hence it has a unique

fixed point U in B. The function U is in fact of the class C2+α,1+α/2(ΩT ) and it is a solution of

system (1.3)-(1.6). Obviously

0 ≤ U(x, y) ≤ (M∗(y), A∗(y)). (6.10)

Knowing only L∞ norm of the solution, we can obtain an a priori estimate of the solution in

the C1+α,(1+α)/2(Rl) norm. First, from Theorem 6.49 of section VI in [9] we conclude that the

following estimate for A holds

‖A‖
C

1+β,(1+β)/2
x,t (Rl×(0,T ))

≤ W
[
‖F‖L∞(Rl×(0,T )) + ‖A0‖C1+β

x (Rl)

]
(6.11)

for some constant W , where

F = f(A)M − γA + b.

According to (6.10), f ∈ L∞(Rl×(0, T )). This estimate has a local character. Thus W can depend

on T , but does not depend on l. Having this estimate and using Theorem IV.5.3 in [8], we can also

estimate the C2+α,1+α/2(Rl × (0, T )) norm of the function M :

‖M‖C2+α,1+α/2(Rl×(0,T )) ≤ c3(T ). (6.12)

Finally, we can estimate the C2+α,1+α/2(Rl × (0, T )) norm of A:

‖A‖C2+α,1+α/2(Rl×(0,T )) ≤ c4(T ). (6.13)

6.2.2. Global existence of solutions

According to a priori estimates (6.12) and (6.13), the vector function U(x, y, T∗) has its C2+α(Rl)-
norm bounded by a finite constant. Using U(x, y, T∗) as a new initial condition and repeating the

procedure we obtain the solution of the considered system in ΩT∗+T0 with some T0 > 0. Continuing

in this way, we obtain a global in time solution in Rl × (0, T ) for any T > 0.

As we mentioned above, a priori estimates necessary for the global existence of solutions do

not depend on l. Hence, passing to the limit, we obtain a global in time solution to the problem

(1.3)-(1.6). The proof of uniqueness of solution is standard and it is left to the reader.
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