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SOME DIFFERENTIAL SYSTEMS DRIVEN BY A FBM WITH
HURST PARAMETER GREATER THAN 1/4

SAMY TINDEL AND IVÁN TORRECILLA

Abstract. This note is devoted to show how to push forward the algebraic integration
setting in order to treat differential systems driven by a noisy input with Hölder regularity
greater than 1/4. After recalling how to treat the case of ordinary stochastic differential
equations, we mainly focus on the case of delay equations. A careful analysis is then
performed in order to show that a fractional Brownian motion with Hurst parameter
H > 1/4 fulfills the assumptions of our abstract theorems.

1. Introduction

A differential equation driven by a d-dimensional fractional Brownian motion B =
(B1, . . . , Bd) is generically written as:

yt = a+

∫ t

0

σ(ys) dBs, t ∈ [0, T ], (1)

where a is an initial condition in R
n, σ : R

n → R
n,d is a smooth enough function, and T is

an arbitrary positive constant. The recent developments in rough paths analysis [4, 13, 8]
have allowed to solve this kind of differential equation when the Hurst parameter H of
the fractional Brownian motion is greater than 1/4, by first giving a natural meaning

to the integral
∫ t

0
σ(ys) dBs above. It should also be stressed that a great amount of

information has been obtained about these systems, ranging from support theorems [7]
to the existence of a density for the law of yt at a fixed instant t (see [2, 3]).

In a parallel but somewhat different direction, the algebraic integration theory (in-
troduced in [9]), is meant as an alternative and complementary method of generalized
integration with respect to a rough path. It relies on some more elementary and explicit
formulae, and its main advantage is that it allows to develop rather easily an intuition
about the way to handle differential systems beyond the diffusion case given by (1). This
fact is illustrated by the study of delay [16] and Volterra [5] type equations, as well as
an attempt to handle partial differential equations driven by a rough path [11]. In each
of those cases, the main underlying idea consists in changing slightly the basic structures
allowing a generalized integration theory (discrete differential operator δ, sewing map Λ,
controlled processes) in order to adapt them to the context under consideration. While
the technical details might be long and tedious, let us insist on the fact that the changes in
the structures we have alluded to are always natural and (almost) straightforward. Some
twisted Lévy areas also enter into the game in a natural manner.

However, all the results contained in the references mentioned above concern a fractional
Brownian motion B with Hurst parameter H > 1/3, while the usual rough path theory
enables to handle any H > 1/4 (see [4] for the explicit application to fBm). The current
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paper can then be seen as a step in order to fill this gap, and we shall deal mainly with two
kind of systems: first of all, we will show how to solve equation (1) when 1/4 < H ≤ 1/3,
thanks to the algebraic integration theory. The results we will obtain are not new, and
the algebraic integration formalism has been extended to a much broader context in [10]
by means of a tree-based expansion (let us mention again that the case H > 1/4 is also
covered by the usual rough path theory). This study is thus included here as a preliminary
step, where the changes in the structures (new definition of a controlled path, introduction
of a Lévy volume) can be exhibited in a simple enough manner.

Then, in a second part of the paper, we show how to adapt our formalism in order to
deal with delay equations of the form:

{
dyt = σ(yt, yt−r1, . . . , yt−rq

) dBt t ∈ [0, T ],
yt = ξt, t ∈ [−rq, 0],

(2)

where y is a R
n-valued continuous process, q is a positive integer, σ : R

n,q+1 → R
n,d is

a smooth enough function, B is a d-dimensional fractional Brownian motion with Hurst
parameter H > 1/4 and T is an arbitrary positive constant. The delay in our equation
is represented by the family 0 < r1 < . . . < rq < ∞, and the initial condition ξ is taken
as a regular enough deterministic function on [−rq, 0]. Though this kind of system is
implicitly considered in [12] in the usual Brownian case, and in [6] for a Hurst parameter
H > 1/2, the rough paths techniques have only been used in this context (to the best of
our knowledge) in [16], where a delay equation driven by a fractional Brownian motion
with Hurst parameter H > 1/3 is considered. Our paper is thus an extension of this last
result, and we shall obtain an existence and uniqueness theorem for equation (2) in the
case H > 1/4, under reasonable regularity conditions on σ and ξ.

From our point of view the example of delay equations, which is interesting in its own
right because of its potential physical applications, is also worth studying in order to see
the kind of algebraical structures which pop out when changing the type of rough differen-
tial system we are trying to handle. In case of a delay equation driven by a rough path of
order 3 like ours, we shall introduce the notion of doubly delayed controlled processes, and
have to assume a priori the existence of some doubly delayed elements of area and volume
associated to B. This rich structure induces some cumbersome computations when one
decides to expand all the calculations explicitly like we did. However, in the end, one also
gets the satisfaction to see that the algebraic integration setting is flexible enough to be
adapted naturally to many situations. Let us also mention that the infinite dimensional
setting of [14] is avoided here, and that all our considerations only involve paths taking
values in a finite dimensional space.

Let us also mention that, as in other examples of fractional differential systems, an
important part of our work consists in verifying that the fractional Brownian motion
satisfies the assumptions of our abstract theorems. The main available tools we are
aware of for this kind of task are based on Russo-Vallois approximations [19], analytic
approximations of the fBm (like we did in [5]) or Malliavin calculus. We have chosen
here to work under this latter framework, since it leads to reasonably short calculations,
and also because it allows us to build on the previous results obtained in [16], where this
formalism was also adopted.

Here is how our article is structured: Section 2 is devoted to recall the basic ingredients
of the algebraic integration setting. The diffusion case is treated at Section 3, and the
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bulk of the computations concerning delay systems can be found at Section 4. Finally,
the application to fractional Brownian motion is given at Section 5.

2. Increments

To begin with, let us present the very basic algebraic structures which will allow to
define a pathwise integral with respect to irregular functions.

2.1. Basic notions of algebraic integration. For an arbitrary real number T > 0, a
vector space V and an integer k ≥ 1 we denote by Ck(V ) the set of functions g : [0, T ]k →
V , g(t1, . . . , tk) = gt1...tk such that gt1···tk = 0 whenever ti = ti+1 for some 1 ≤ i ≤ k − 1.
Such a function will be called a (k − 1)-increment, and we will set C∗(V ) = ∪k≥1Ck(V ).

On Ck(V ) we introduce the operator δ defined as follows:

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1
=

k+1∑

i=1

(−1)k−igt1···t̂i···tk+1
, (3)

where t̂i means that this particular argument is omitted. A fundamental property of δ,
which is easily verified, is that δ ◦ δ = 0. We will denote ZCk(V ) = Ck(V ) ∩ Kerδ and
BCk(V ) = Ck(V ) ∩ Imδ.

Throughout the paper we will mainly deal with actions of δ on Ci, i = 1, 2. That is,
consider g ∈ C1 and h ∈ C2. Then, for any s, u, t ∈ [0, T ], we have

(δg)st = gt − gs, and (δh)sut = hst − hsu − hut. (4)

Furthermore, it is easily checked that ZCk+1(V ) = BCk(V ) for any k ≥ 1. In particular,
we have the following property:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1(V ). There exists a (non unique) f ∈ Ck(V ) such
that h = δf .

Lemma 2.1 implies that all the elements h ∈ C2(V ) such that δh = 0 can be written
as h = δf for some (non unique) f ∈ C1(V ). Thus we have a heuristic interpretation of
δ|C2(V ) as a measure of how much a given 1-increment is far from being an exact increment
of a function, i.e., a finite difference.

Remark 2.1. Here is a first elementary but important link between these algebraic struc-
tures and integration theory. Let f and g be two smooth real valued functions on [0, T ].
Define I ∈ C2 by

Ist =

∫ t

s

(∫ v

s

dgw

)
dfv, for s, t ∈ [0, T ].

Then, (δI)sut = [gu − gs][ft − fu] = (δg)su(δf)ut. Hence we see that the operator δ
transforms iterated integrals into products of increments, and we will be able to take
advantage of both regularities of f and g in these products of the form δg δf .

Let us concentrate now on the case V = R
d, and notice that our future discussions

will mainly rely on k-increments with k ≤ 2, for which we will use some analytical
assumptions. Namely, we measure the size of these increments by Hölder-type norms
defined in the following way. For f ∈ C2(V ) and µ ∈ (0,∞), let

‖f‖µ = sup
s,t∈[0,T ]

|fst|

|t− s|µ
, (5)
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and set Cµ
2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞}.

The usual Hölder spaces Cµ
1 (V ) will be determined in the following way. For a continuous

function g ∈ C1(V ), we simply set

‖g‖µ = ‖δg‖µ, (6)

where the right-hand side of this equality is defined after (5); we will say that g ∈ Cµ
1 (V )

iff ‖g‖µ is finite. Notice that ‖·‖µ is only a semi-norm on C1(V ). However we will generally
work on spaces of the type

Cµ
1,a(V ) = {g : [0, T ] → V ; g0 = a, ‖g‖µ <∞} ,

for a given a ∈ V , on which ‖g‖µ then becomes a norm. For h ∈ C3(V ) we set

‖h‖γ,ρ = sup
s,u,t∈[0,T ]

|hsut|

|u− s|γ|t− u|ρ

‖h‖µ = inf

{
∑

i

‖hi‖ρi,µ−ρi
; h =

∑

i

hi, 0 < ρi < µ

}
,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi.
Then ‖ · ‖µ is easily seen to be a norm on C3(V ), and we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞} .

Eventually, let C1+
j (V ) = ∪µ>1C

µ
j (V ), j = 1, 2, 3, and remark that the same kind of norms

can be considered on the spaces ZC3(V ), leading to the definition of some spaces ZCµ
3 (V )

and ZC1+
3 (V ).

With these notations in mind, the crucial point in our approach to pathwise integration
of irregular processes is that, under mild smoothness conditions, the operator δ can be
inverted. This inverse is called Λ, and is defined in the following proposition, whose proof
can be found in [9, 11]:

Proposition 2.2. There exists a unique linear map Λ : ZC1+
3 (V ) → C1+

2 (V ) such that

δΛ = IdZC1+
3 (V ) and Λδ = IdC1+

2 (V ).

In other words, for any h ∈ C1+
3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈

C1+
2 (V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from

ZCµ
3 (V ) to Cµ

2 (V ) and we have

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 (V ).

It is worth mentioning at this point that Λ gives raise to a kind of generalized Young
integral, which is a second link between the algebraic structures introduced so far and a
theory of generalized integration:

Corollary 2.3. For any 1-increment g ∈ C2(V ) such that δg ∈ C1+
3 ,

(Id − Λδ)g = lim
|Πst|→0

n∑

i=0

gti ti+1
,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose mesh tends
to zero. Thus by setting δf = (Id − Λδ)g, the 1-increment δf is the indefinite integral of
the 1-increment g.
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We can now explain heuristically how our generalized integral will be defined.

Remark 2.2. Let f and g be two real valued smooth functions, and define I ∈ C2 like in
Remark 2.1. Thanks to this remark and Proposition 2.2, the following decomposition-
recomposition for I =

∫
df
∫
dg holds true:

∫
dg
∫
df

δ
−→ (δg) (δf)

Λ
−→

∫
dg
∫
df ,

where for the second step of this construction, we have only used the fact that the product
of increments (δg) (δf), considered as an element of ZC3, is smooth enough. This simple
procedure allows then to extend the notion of iterated integral to a non-smooth situation,
by just applying the operator Λ to (δg) (δf) whenever we are allowed to do it.

2.2. Some further notations. We summarize in this section some of the notation which
will be used throughout the paper.

A multilinear operator A of order l, from R
d1 × . . .×R

dl to R
n, is denoted as an element

A ∈ R
n,d1,...,dl. In order to avoid tricky matrix notations, we have decided to expand all our

computations in coordinates, and use Einstein’s convention on summations over repeated
indices. Notice that we will also use the notation A ∈ R

d1,d2,d3,d4 for a linear operator
from R

d3,d4 to R
d1,d2 . We hope that this convention won’t lead to any ambiguity. The

transposed of a matrix M ∈ R
d1,d2 is written as M∗.

For a function ϕ : (Rn)q+1 → R, we denote by ∂j
iϕ(w0, w1, . . . , wq) the derivative of ϕ

with respect to the ith component of wj, for i ≤ n and j = 0, . . . , q.

We shall meet two kind of products of increments: first, for g ∈ Cn(Rl,d) and h ∈ Cm(Rd)
we set gh for the element of Cn+m−1(R

l) defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 , t1, . . . , tm+n−1 ∈ [0, T ]. (7)

If now g ∈ Cn(Rl,d) and h ∈ Cn(Rd) we set g · h for the element of Cn(Rl) defined by

(g · h)t1,...,tn = gt1,...,tnht1,...,tn , t1, . . . , tn ∈ [0, T ]. (8)

In order to avoid ambiguities, we shall denote by N [f ; Cκ
j ] the κ-Hölder norm on the

space Cj , for j = 1, 2, 3. For ζ ∈ C1(V ), we also set N [ζ ; C∞
1 (V )] = sup0≤s≤T |ζ i|V .

The integral of a real valued function f with respect to another real valued function g,
when properly defined, is written indistinctly as

∫
fdg or J (fdg).

3. The diffusion case

In this section, we will recall the basic steps which allow to define rigorously and solve
an equation of the form:

yt = a+

∫ t

0

σ(ys) dxs, t ∈ [0, T ], (9)

where a is an initial condition in R
n, σ : R

n → R
n,d is a smooth enough function, T is

an arbitrary positive constant, and x is a generic d-dimensional noisy input with Hölder
regularity γ > 1/4. In the algebraic integration setting [9, 10], this task amounts to
perform the following steps:

(1) Definition of an incremental operator δ and its inverse Λ.
(2) Definition of a suitable notion of controlled processes, and integration of those

processes with respect to x.
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(3) Resolution of the equation thanks to a fixed point procedure in the space of con-
trolled processes.

Having dealt with the first of those points at Section 2.1, we turn now to the second one,
that is a definition of a useful notion of controlled processes.

3.1. Weakly controlled processes. Before giving the formal definition of a weakly
controlled process in the context of equation (9), let us recall that when the regularity
of the noise is γ > 1/4, the rough path setting relies on the a priori existence of an area
(resp. volume) element x2 (resp. x3) satisfying the so-called Chen’s relations:

Hypothesis 3.1. The path R
d-valued x is γ-Hölder continuous with γ > 1/4, and admits

a Lévy area and a volume element, that is two increments x2 ∈ C2γ
2 (Rd,d) and x3 ∈

C3γ
2 (Rd,d,d) (which represent respectively J (dxdx) and J (dxdxdx), with the conventions

of Section 2.2) satisfying:

δx2 = δx⊗ δx, i.e. (δ(x2)ij)sut = (δxi)su(δx
j)ut

δx3 = x2 ⊗ δx+ δx⊗ x2, i.e. (δ(x3)ijk)sut = (x2

su)
ij(δxk)ut + (δxi)su(x

2

ut)
jk,

for any s, u, t ∈ [0, T ], and any i, j, k ∈ {1, . . . , d}.

The geometrical assumption for rough paths (which is satisfied by the fractional Brow-
nian motion in the Stratonovich setting) also states that products of increments should
be expressed in terms of iterated integrals:

Hypothesis 3.2. Let x2 be the area process defined at Hypothesis 3.1, and denote by
x2,s the symmetric part of x2, i.e. x2,s = 1

2
(x2 + (x2)∗). Then we suppose that for

0 ≤ s < t ≤ T we have:

x2,s
st =

1

2
(δx)st ⊗ (δx)st.

With these hypotheses in mind, the natural class of processes which will be integrated
against x are processes whose increments can be expressed simply enough in terms of the
increments of x:

Definition 3.1. Let z be a process in Cκ
1 (Rl) with κ ≤ γ and 3κ + γ > 1, such that

z0 = a ∈ R
l. We say that z is a weakly controlled path based on x if δz ∈ Cκ

2 (Rl) can be
decomposed into

δzi = (ζ1)ijδxj +(ζ2)ijk(x2)kj +ri, i.e. (δzi)st = (ζ1
s )ij(δxj)st +(ζ2

s )
ijk(x2

st)
kj +ri

st, (10)

for any 1 ≤ i ≤ l, 1 ≤ j, k ≤ d. In the previous decomposition, we further assume that
ζ1 ∈ Cκ

1 (Rl,d) is a path with a given initial condition ζ1
0 = b ∈ R

l,d, such that δζ1 ∈ Cκ
2 (Rl,d)

can be decomposed itself into:

δ(ζ1)ij = (ζ2)ijkδxk + ρij, i.e. (δ(ζ1)ij)st = (ζ2
s )

ijk(δxk)st + ρij
st,

for all s, t ∈ [0, T ], where ζ2 is a given path in Cκ
1 (Rl,d,d). Notice also that in the previous

equations, r and ρ are understood as regular remainders, such that r ∈ C3κ
2 (Rl) and

ρ ∈ C2κ
2 (Rl,d).

The space of weakly controlled paths will be denoted by Qκ,a,b(R
l), and a process z ∈

Qκ,a,b(R
l) can be considered in fact as a triple (z, ζ1, ζ2). The natural semi-norm on
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Qκ,a,b(R
l) is given by

N [z;Qκ,a,b(R
l)] = N [z; Cκ

1 (Rl)] + N [ζ1; C∞
1 (Rl,d)] + N [ζ1; Cκ

1 (Rl,d)]

+ N [ζ2; C∞
1 (Rl,d,d)] + N [ζ2; Cκ

1 (Rl,d,d)]

+ N [ρ; C2κ
2 (Rl,d)] + N [r; C3κ

2 (Rl)],

where the notations N [g; Cκ
1 (V )] and N [ζ ; C∞

1 (V )] have been introduced at Section 2.2.

Remark 3.1. With respect to the case γ > 1/3, the link between ζ1 and ζ2 in the definition
of controlled processes is new. This cascade relation between z, ζ1 and ζ2 is reminiscent of
the Heinsenberg group structure of Lyons’ theory, and is really natural for computational
purposes.

We can now study the stability of controlled processes by composition with a regular
function.

3.2. Composition of controlled processes. The results of this section can be summa-
rized into the following:

Proposition 3.1. Assume Hypothesis 3.2 holds true. Let z ∈ Qκ,a,b(R
l) with decom-

position (10), consider a regular function ϕ ∈ C3
b (R

l; R) and set ẑ = ϕ(z), â = ϕ(a),

b̂ = ∂iϕ(a)bi. Then ẑ ∈ Qκ,â,b̂(R), and this latter path admits the decomposition

δẑ = (ζ̂1)jδxj + (ζ̂2)jk(x2)kj + r̂, (11)

with

(ζ̂1)j = [∂iϕ(z) · (ζ1)ij], (ζ̂2)jk = [∂iϕ(z) · (ζ2)ijk] + [∂i1i2ϕ(z) · (ζ1)i1j · (ζ1)i2k],

and where r̂ can be further decomposed into r̂ = r̂1 + r̂2 + r̂3, with:

r̂1 = ∂iϕ(z)ri,

r̂2 =
1

2
[∂i1i2ϕ(z) · (ζ2)i1j1k1 · (ζ2)i2j2k2][(x2)k1j1 · (x2)k2j2] +

1

2
∂i1i2ϕ(z)[ri1 · ri2 ]

+ [∂i1i2ϕ(z) · (ζ1)i1j1 · (ζ2)i2jk][δxj1 · (x2)kj]

+ [∂i1i2ϕ(z) · (ζ1)i1j][δxj · ri2 ] + [∂i1i2ϕ(z) · (ζ2)i1jk][(x2)kj · ri2],

r̂3 = δϕ(z) − ∂iϕ(z)δzi −
1

2
∂ijϕ(z)[δzi · δzj ].

As far as (ζ̂1)j is concerned, for 1 ≤ j ≤ d, it can be decomposed into

δ(ζ̂1)j = (ζ̂2)jkδxk + ρ̂j (12)

where the remainder ρ̂j can be expressed as ρ̂j = (ρ̂1)j + (ρ̂2)j, with:

(ρ̂1)j = ∂iϕ(z)ρij + [δ[∂iϕ(z)] · δ(ζ1)ij ]

+ [∂i1i2ϕ(z) · (ζ1)i1j · (ζ2)i2j2k2 ](x2)k2j2 + [∂i1i2ϕ(z) · (ζ1)i1j]ri2 ,

(ρ̂2)j = (ζ1)i1jδ[∂i1ϕ(z)] − [(ζ1)i1j · ∂i1i2ϕ(z)]δzi2 .

Finally, the following cubical bound holds true for the norm of ẑ:

N [ẑ;Qκ,â,b̂(R)] ≤ cϕ,x,T (1 + N 3[z;Qκ,a,b(R
l)]). (13)
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Proof. This proof is a matter of long and tedious Taylor expansions, and we shall omit
most of the details. Let us just mention that we start from the relation:

(δẑ)st = ϕ(zt) − ϕ(zs) = ∂iϕ(zs)(δz
i)st +

1

2
∂i1i2ϕ(zs)(δz

i1)st(δz
i2)st

+ ϕ(zt) − ϕ(zs) − ∂iϕ(zs)(δz
i)st −

1

2
∂i1i2ϕ(zs)(δz

i1)st(δz
i2)st.

The desired decomposition (11) is then obtained by plugging relation (10) into the last
identity, and expanding further. It should also be noticed that some cancellations occur
due to Hypothesis 3.2. Relation (12) is obtained in the same manner, and our bound (13)
is a matter of standard computations once the expressions (11) and (12) are known.

�

3.3. Integration of controlled paths. It is of course of fundamental importance for
our purposes to be able to integrate a controlled process with respect to the driving signal
x. This is achieved in the following proposition:

Proposition 3.2. For a given γ > 1/4 and κ ≤ γ, let x be a process satisfying Hypothesis
3.1. Let also m ∈ Qκ,b,c(R

1,d) with decomposition m0 = b ∈ R
1,d and

(δmi)st = (µ1
s)

ij(δxj)st + (µ2
s)

ijk(x2

st)
kj + ri

st, 1 ≤ i ≤ d, (14)

where µ1 ∈ Cκ
1 (Rd,d), µ1

0 = c ∈ R
d,d, and where δµ1 ∈ Cκ

2 (Rd,d) can be decomposed into

(δ(µ1)ij)st = (µ2
s)

ijk(δxk)st + ρij
st, (15)

with µ2 ∈ Cκ
1 (Rd,d,d), ρ ∈ C2κ

2 (Rd,d), r ∈ C3κ
2 (R1,d). Define then z by z0 = a ∈ R and

δz = miδxi + (µ1)ij(x2)ji + (µ2)ijk(x3)kji + Λ
(
riδxi + ρij(x2)ji + δ(µ2)ijk(x3)kji

)
. (16)

Finally, set

J (midxi) = δz. (17)

Then,

(i) z is well-defined as an element of Qκ,a,b(R), and J (midxi) coincides with a Rie-
mann integral in case of some smooth processes m and x.

(ii) The semi-norm of z in Qκ,a,b(R) can be estimated as

N [z;Qκ,a,b(R)] ≤ cx,T{1 + |b|R1,d + T γ−κ(|b|R1,d + N [m;Qκ,b,c(R
1,d)])}. (18)

Furthermore, we obtain

‖δz‖κ ≤ cT,xT
γ−κ(|b|R1,d + N [m;Qκ,b,c(R

1,d)]). (19)

(iii) It holds

Jst(m
idxi)

= lim
|Πst→0|

n∑

q=0

[mi
tq (δx

i)tq ,tq+1 + (µ1
tq)

ij(x2

tq ,tq+1
)ji + (µ2

tq)
ijk(x3

tq ,tq+1
)kji] (20)

for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {t0 =
s, . . . , tn = t} of [s, t], as the mesh of the partition goes to zero.
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Proof. Here again, the proof is long and cumbersome, and we prefer to avoid most of the
technical details for sake of conciseness. Let us just try to justify the second part of the
first assertion (about Riemann integrals).

Let us suppose then that x is a smooth function and that m ∈ C∞
1 (R1,d) admits the

decomposition (14) with µ1 ∈ C∞
1 (Rd,d), µ2 ∈ C∞

1 (Rd,d,d), ρ ∈ C∞
2 (Rd,d) and r ∈ C∞

2 (R1,d).
Then J (midxi) is well-defined, and we have

∫ t

s

mi
udx

i
u = mi

s[x
i
t − xi

s] +

∫ t

s

[mi
u −mi

s]dx
i
u

for s < t, which can also be read as:

J (midxi) = miδxi + J (δmidxi). (21)

Let us now plug the decomposition (14) into the expression (21). This yields

J (midxi) = miδxi + J ([(µ1)ijδxj ]dxi) + J ([(µ2)ijk(x2)kj]dxi) + J (ridxi)

= miδxi + (µ1)ij(x2)ji + (µ2)ijk(x3)kji + J (ridxi), (22)

and observe that the terms miδxi, (µ1)ij(x2)ji and (µ2)ijk(x3)kji in (22) are well-defined
provided that x, x2 and x3 are defined themselves. To push forward our analysis to the
rough case, we still need to handle the term J (ridxi). Owing to (22) we can write

J (ridxi) = J (midxi) −miδxi − (µ1)ij(x2)ji − (µ2)ijk(x3)kji, (23)

and let us analyze this relation by applying δ to both sides of the last identity. Invoking
standard rules on the operator δ, and the fact that x satisfies Hypothesis 3.1, we end up
with:

δ[J (ridxi)] = δ(µ1)ij(x2)ji + δ(µ2)ijk(x3)kji − (µ2)ijkδxk(x2)ji + riδxi,

and thanks to the fact that δ(µ1)ij = (µ2)ijkδxk + ρij , we obtain:

δ[J (ridxi)] = ρij(x2)ji + δ(µ2)ijk(x3)kji + riδxi. (24)

Assuming now that ρij(x2)ji, δ(µ2)ijk(x3)kji, riδxi ∈ Cν
3 with ν > 1, then ρij(x2)ji +

δ(µ2)ijk(x3)kji + riδxi becomes an element of Dom(Λ). Thus, applying Λ to both sides of
(24) and inserting the result into (21) we get the expression (16) of Proposition 3.2. This
justifies the fact that (16) is a natural expression for J (midxi).

�

As in [15], the previous proposition has a straightforward multidimensional extension,
which we state in the following corollary:

Corollary 3.3. Let x be a process satisfying Hypothesis 3.1 and let m ∈ Qκ,b,c(R
l,d) with

decomposition m0 = b ∈ R
l,d and

(δmij)st = (µ1
s)

ijk(δxk)st+(µ2
s)

ijk1k2(x2

st)
k2k1+rij

st ; δ(µ1
s)

ijk1 = (µ2
s)

ijk1k2δxk2+ρijk1, (25)

where (µ1)ijk1 ∈ Cκ
1 (R), (µ2)ijk1k2 ∈ Cκ

1 (R), ρijk1 ∈ C2κ
1 (R) and rij ∈ C3κ

2 (R), for i =
1, . . . , l and j, k1, k2 = 1, . . . , d. Define z by z0 = a ∈ R

l and

δzi = J (mijdxj) ≡ mijδxj + (µ1)ijk(x2)kj

+ (µ2)ijk1k2(x3)k2k1j + Λ
(
rijδxj + ρijk(x2)kj + δ(µ2)ijk1k2(x3)k2k1j

)
. (26)

Then the conclusions of Proposition 3.2 still hold in this context.
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We also observe that our extended pathwise integral has a nice continuity property with
respect to the driving path x, whose proof is also skipped here for sake of conciseness (see
also [9, Proposition 4], and [15, Proposition 3.12]).

Proposition 3.4. Let x be a function satisfying Hypotheses 3.1 and 3.2. Suppose that
there exists a sequence {xn; n ≥ 1} of piecewise C1-functions from [0,T] to R

d such that

lim
n→∞

N [xn − x; Cγ
1 (Rd)] = 0, lim

n→∞
N [x2,n − x2; C2γ

2 (Rd,d)] = 0,

and limn→∞N [x3,n − x3; C3γ
2 (Rd,d,d)] = 0. For n ≥ 1, define zn ∈ Cκ

1 (Rl) in the following
way: set zn

0 = b ∈ R
l and assume that δzn can be decomposed into:

δ(zn)i = (ζ1,n)ijδxj + (ζ2,n)ijk(x2)kj + (rn)i, δ(ζ1,n)ij = (ζ2,n)ijkδxk + (ρn)ij,

for 1 ≤ i ≤ l and 1 ≤ j, k ≤ d, where ζ1,n ∈ Cκ
1 (Rl,d) satisfies ζ1,n

0 = c ∈ R
l,d, and

ζ2,n ∈ Cκ
1 (Rl,d,d), ρn ∈ C2κ

2 (Rl,d) and rn ∈ C3κ
2 (Rl). Let also z be a weakly controlled

process with decomposition (10), such that z0 = b, ζ1
0 = c, and suppose that

lim
n→∞

{
N [zn − z; Cκ

1 (Rl)] + N [ζ1,n − ζ1; C∞
1 (Rl,d)] + N [ζ1,n − ζ1; Cκ

1 (Rl,d)]

+ N [ζ2,n − ζ2; C∞
1 (Rl,d,d)] + N [ζ2,n − ζ2; Cκ

1 (Rl,d,d)]

+ N [ρn − ρ; C2κ
2 (Rl,d)] + N [rn − r; C3κ

2 (Rl)]
}

= 0.

Finally, let ϕ : R
l → R

l′,d be a C4
b -function. Then

lim
n→∞

N [J (ϕ(zn)dxn) −J (ϕ(z)dx); Cκ
2 (Rl′)] = 0.

3.4. Rough diffusions equations. In this section, we shall apply the previous consid-
erations to study differential equations driven by a rough signal, and recall that we first
wish to solve simple equations of the form

dyt = σ(yt)dxt, y0 = a, (27)

where t ∈ [0, T ], y is a R
l-valued continuous process, σ : R

l → R
l,d is a smooth enough

function, x is a R
d-valued path and a ∈ R

l is a fixed initial condition.

In our algebraic setting, we rephrase equation (27) as follows: we shall say that y is a
solution to (27), if y0 = a, y ∈ Qκ,a,σ(a)(R

l) and for any 0 ≤ s ≤ t ≤ T we have

(δy)st = Jst(σ(y)dx), (28)

where the integral J (σ(y)dx) has to be understood in the sense of Corollary 3.3.

With these notations in mind, our existence and uniqueness result is the following:

Theorem 3.5. Let x be a process satisfying Hypotheses 3.1 and 3.2, and σ : R
l → R

l,d

be a C4
b -function. Then

(i) Equation (28) admits a unique solution y in Qκ,a,σ(a)(R
l) for any κ < γ such that

3κ+ γ > 1.
(ii) The mapping (a, x,x2,x3) 7→ y is continuous from

R
l × Cγ

1 (Rd) × C2γ
2 (Rd,d) × C3γ

2 (Rd,d,d) to Cκ
1 (Rl),

in the following sense: let z be the unique solution of (28) in Qκ,a,σ(a)(R
l) and z̃

the unique solution of (28) in Qκ,ã,σ(ã)(R
l), based on x, x̃, respectively. Then, there
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exists a positive constant ĉσ,x,x̃ depending only on σ, x, x̃ such that

N [z − z̃; Cκ
1 (Rl)] ≤ ĉx,x̃

{
|a− ã| + N [x− x̃; Cγ

1 (Rl)]

+ N [x2 − x̃2; C2γ
2 (Rd,d)] + N [x3 − x̃3; C3γ

2 (Rd,d,d)]
}
.

Proof. As in [9, 11], we first identify the solution on a small interval [0, τ ] as the fixed
point of the map Γ : Qκ,a,σ(a)(R

l) → Qκ,a,σ(a)(R
l) defined by Γ(z) = ẑ with ẑ0 = a and

δẑ = J (σ(z)dx). The first step in this direction is to show that the ball

BM = {z; z0 = a, N [z;Qκ,a,σ(a)([0, τ ]; R
l)] ≤M} (29)

is invariant under Γ if τ is small enough and M is large enough. However, due to Corollary
3.3 and Proposition 3.1, invoking the fact that σ is bounded together with its derivaties
and assuming τ ≤ 1, we obtain

N [Γ(z);Qκ,a,σ(a)(R
l)] ≤ cx{1 + |σ(a)|Rl,d + τγ−κ(|σ(a)|Rl,d + N [σ(z);Qκ,â,b̂(R

l,d)])}

≤ cx,σ{1 + τγ−κN [σ(z);Qκ,â,b̂(R
l,d)]}

≤ cx,σ{1 + τγ−κ(1 + N 3[z;Qκ,a,σ(a)(R
l)])}

≤ c̃x,σ{1 + τγ−κN 3[z;Qκ,a,σ(a)(R
l)]}, (30)

where â = σ(a) and b̂ = ∂iσ(a)σi·(a). Taking M > c̃x,σ and τ ≤ τ0 =
(

1
M2c̃x,σ

− 1
M3

) 1
γ−κ ∧1,

we obtain that c̃x,σ(1 + τγ−κM3) ≤ M . Therefore, the ball BM defined at (29) is left
invariant by Γ.

It is now a matter of standard considerations to settle a fixed point argument for Γ on
[0, τ ], and also to patch solutions on any interval of the form [kτ, (k+ 1)τ ] for k ≥ 1. The
details of this procedure are left to the reader.

�

4. The delay equation case

This section is devoted to show how to change the diffusion setting in order to cover
the case of delayed systems, having in mind to solve an equation of the form:

{
dyt = σ(yt, yt−r1, . . . , yt−rq

) dxt t ∈ [0, T ],
yt = ξt, t ∈ [−rq, 0],

(31)

where x is R
d-valued γ-Hölder continuous function with γ > 1/4, the function σ is smooth

enough, ξ is a R
n-valued 3γ-Hölder continuous function, and 0 < r1 < . . . < rq < ∞.

Notice that for notational convenience, we set r0 = 0 and we shall also use the notation

s(y)t = (yt−r1 , . . . , yt−rq
), t ∈ [0, T ], (32)

which means that equation (31) can be written as:
{
dyt = σ(yt−r0 , s(y)t) dxt t ∈ [0, T ],
yt = ξt, t ∈ [−rq, 0].

As in [16], the main ingredient in order to go from the diffusion to the delayed case will be
the introduction of a new class of processes, namely the class of delayed controlled paths,
which captures the structure of our equation. We shall thus first define this new class of
paths, and see how to integrate them with respect to the driving process x.
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4.1. Delayed controlled paths. As in the diffusion case, our analysis will rely on some
a priori increments based on our driving noise x. More specifically, we set δ(x(v))st ,
(δx)s−v,t−v for s, t, v ∈ [0, T ], and we assume the following:

Hypothesis 4.1. The path x is a R
d-valued γ-Hölder continuous function with γ >

1/4, and admits two doubly delayed Lévy areas and two doubly delayed volume elements.
Namely, for v, v′ ∈ {rq, . . . , r0}, we assume that there exist four paths

x2(v′, v),x2(v′ − v, v) ∈ C2γ
2 ([0, T ]; Rd,d), x3(v′, v),x3(v′ − v, v) ∈ C3γ

2 ([0, T ]; Rd,d,d),

satisfying the relations δx2(v′′, v) = δ(x(v + v′′)) ⊗ δ(x(v)) and

δx3(v′′, v) = x2(v′′, v) ⊗ δx+ δ(x(v + v′′)) ⊗ x2(v, r0),

which can also be written as:

(δ(x2(v′′, v))ij)sut = (δxi)s−v−v′′,u−v−v′′(δx
j)u−v,t−v

(δ(x3(v′′, v))ijk)sut = (x2

su(v
′′, v))ij(δxk)ut + (δxi)s−v−v′′,u−v−v′′(x

2

ut(v, r0))
jk,

for v′′ = v′ or v′ − v, for any s, u, t ∈ [0, T ], and any i, j, k ∈ {1, . . . , d}. The following
notational simplification will also be used in the sequel: we may set x2(v′′) := x2(v′′, v)
whenever v = r0.

Remark 4.1. This hypothesis takes a more complex form than in [16], where the case
γ > 1/3 was treated. However, in case of a regular process x, it should be noticed that
the increments x2(v1, v2) and x3(v1, v2) can be defined as:

x2

st(v1, v2) =

∫ t−v2

s−v2

(δx(v1))s−v2,w ⊗ dxw, and x3

st(v1, v2) =

∫ t

s

x2

sw(v1, v2) ⊗ dxw,

which means that x2 (resp. x3) takes the usual form of a double (resp. triple) iterated
integral.

As in Hypothesis 3.2, one should also express the fact that products of increments can
be expressed in terms of iterated integrals. The following hypothesis is then easily shown
to be a natural extension of what can be obtained in case of a smooth function x:

Hypothesis 4.2. For v, v′ ∈ {rq, . . . , r0}, let x2(v′, v) and x2(v′ − v, v) be the area pro-
cesses defined at Hypothesis 4.1. Then we suppose that for all 0 ≤ s < t ≤ T , we have
x2

st(v
′, v) = x2

s−v,t−v(v
′, r0) and

[δx(v)]st ⊗ [δx(v′)]st = x2

st(v − v′, v′) + (x2

st(v
′ − v, v))∗.

With these hypotheses in hand, the delay equation will be solved in the space of delayed
controlled processes, which can be defined as follows:

Definition 4.1. Let −∞ < a < b ≤ T , a given initial datum α ∈ R
n and z ∈ Cκ

1 ([a, b]; Rn)
with κ ≤ γ and 3κ+γ > 1. We say that z is a delayed controlled path based on x if za = α,
and if δz ∈ Cκ

2 ([a, b]; Rn) can be decomposed into

δzi = (ζ1)ijδxj + (ζ (2,i′))ijk(x2(ri′))
kj + Ri, (33)

for all 1 ≤ i ≤ n, and where the index i′ is summed over the set 0 ≤ i′ ≤ q. Just as in
Definition 3.1, the process ζ1 above has to admit the further decomposition: ζ1

a = β ∈ R
n,d,

where β has to be interpreted as another initial datum, and for 1 ≤ j, k ≤ d

δ(ζ1)ij = (ζ (2,i′))ijkδ(x(ri′))
k + ρij. (34)
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The regularity of the processes introduced above has to be the following: ζ1 is an element
of Cκ

1 ([a, b]; Rn,d), ζ (2,i′) ∈ Cκ
1 ([a, b]; Rn,d,d), and the remainders R, ρ must satisfy R ∈

C3κ
2 ([a, b]; Rn) and ρ ∈ C2κ

2 ([a, b]; Rn,d).

The space of delayed controlled paths on [a, b] will be denoted by Dκ,α,β([a, b]; R
n), and

a path z ∈ Dκ,α,β([a, b]; R
n) should be considered in fact as a (q+3)-tuple (z, ζ1, ζ (2,0), . . . ,

ζ (2,q)). The natural semi-norm on Dκ,α,β([a, b]; R
n) is then given by

N [z;Dκ,α,β([a, b]; R
n)]

= N [z; Cκ
1 ([a, b]; Rn)] + N [ζ1; C∞

1 ([a, b]; Rn,d)] + N [ζ1; Cκ
1 ([a, b]; Rn,d)]

+

q∑

i′=0

N [ζ (2,i′); C∞
1 ([a, b]; Rn,d,d)] +

q∑

i′=0

N [ζ (2,i′); Cκ
1 ([a, b]; Rn,d,d)]

+ N [ρ; C2κ
2 ([a, b]; Rn,d)] + N [R; C3κ

2 ([a, b]; Rn)],

where we recall that the notations N [g; Cκ
1 ([a, b];V )] and N [g; C∞

1 ([a, b];V )] have been in-
troduced at Section 2.2.

Unfortunately, the structure above is not sufficient in order to solve the fractional delay
equation for γ ≤ 1/3, and an additional notion of doubly delayed controlled processes has
to be introduced.

Definition 4.2. Let −∞ < a < b ≤ T , a given initial datum α̂ ∈ R
n and z ∈ Cκ

1 ([a, b]; Rn)
with κ ≤ γ and 3κ+ γ > 1. We say that z is a doubly delayed controlled path based on x,
if za = α̂ and if δz ∈ Cκ

2 ([a, b]; Rn) can be decomposed into

δzi = (ζ (1,i′′))ijδ(x(ri′′))
j + (ζ (2,i′,j′))ijk(x2(rj′, ri′))

kj

+ (ζ (3,i′′,j′′))ijk(x2(rj′′ − ri′′, ri′′))
kj + Ri, (35)

for all 1 ≤ i ≤ n, 1 ≤ j, k ≤ d, and where the indices i′, j′ and i′′, j′′ are summed over
the set {1, . . . , q} and {0, 1, . . . , q}, respectively. As in Definition 4.1, the processes ζ (1,i′′)

above have to admit the further decomposition: ζ
(1,i′′)
a = β̂(i′′), where β̂(i′′) ∈ R

n,d has to be
interpreted as another initial datum, and

δ(ζ (1,0))ij = (ζ (3,0,j′′))ijkδ(x(rj′′))
k + (ρ(0))ij ,

δ(ζ (1,i′))ij = (ζ (2,i′,j′))ijkδ(x(ri′ + rj′))
k + (ζ (3,i′,j′′))ijkδ(x(rj′′))

k + (ρ(i′))ij.
(36)

The regularity we ask for the processes introduced above is the following: ζ (1,i′′) is an
element of Cκ

1 ([a, b]; Rn,d), we have ζ (2,i′,j′), ζ (3,i′′,j′′) ∈ Cκ
1 ([a, b]; Rn,d,d), and the remainders

R, ρ(i′′) satisfy R ∈ C3κ
2 ([a, b]; Rn) and ρ(i′′) ∈ C2κ

2 ([a, b]; Rn,d).

The space of doubly delayed controlled paths on the interval [a, b] will be denoted by

D̂κ,α̂,β̂([a, b]; Rn), and a path z ∈ D̂κ,α̂,β̂([a, b]; R
n) should be considered in fact as a (2q2 +

3q+3)-tuple (z, {ζ (1,i′′)}, {ζ (2,i′,j′)}, {ζ (3,i′′,j′′)}). The natural semi-norm on D̂κ,α̂,β̂([a, b]; Rn)
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is given by

N [z; D̂κ,α̂,β̂([a, b]; Rn)]

= N [z; Cκ
1 ([a, b]; Rn)] +

q∑

i′=0

N [ζ (1,i′); C∞
1 ([a, b]; Rn,d)] +

q∑

i′=0

N [ζ (1,i′); Cκ
1 ([a, b]; Rn,d)]

+

q∑

i′,j′=1

N [ζ (2,i′,j′); C∞
1 ([a, b]; Rn,d,d)] +

q∑

i′,j′=1

N [ζ (2,i′,j′); Cκ
1 ([a, b]; Rn,d,d)]

+

q∑

i′,j′=0

N [ζ (3,i′,j′); C∞
1 ([a, b]; Rn,d,d)] +

q∑

i′,j′=0

N [ζ (3,i′,j′); Cκ
1 ([a, b]; Rn,d,d)]

+ N [ρ; C2κ
2 ([a, b]; Rn,d)] + N [R; C3κ

2 ([a, b]; Rn)].

As in Section 3, we shall now see how delayed controlled paths behave under composition
with a smooth map, and also how to integrate them with respect to the driving process
x.

4.2. Composition of delayed controlled processes. The composition of a delayed
process with a smooth map like the function σ appearing in equation (31) gives raise
to a doubly delayed controlled process. This fact is detailed in the following proposi-
tion, for which we recall a notation: for a function ϕ : (Rn)q+1 → R, we denote by
∂j

iϕ(w0, w1, . . . , wq) the derivative of ϕ with respect to the ith component of wj, for i ≤ n
and j = 0, . . . , q.

Proposition 4.1. Assume Hypothesis 4.2 holds true. Consider 0 ≤ a < b ≤ T , let α, α̃
and β, β̃ be two initial conditions, respectively in R

n and R
n,d, and let also ϕ be a function

in C3
b (Rn,q+1; R). Define a map Tϕ on Dκ,α,β([a, b]; R

n) × Dκ,α̃,β̃([a − rq, b − r1]; R
n) by

Tϕ(z, z̃) = ẑ, with ẑt = ϕ(zt, s(z̃)t), for all t ∈ [a, b]. Then, setting

α̂ = ϕ(α, s(z̃)a), β̂(0) = ∂0
i ϕ(α, s(z̃)a)β

i, β̂(i′) = ∂i′

i ϕ(α, s(z̃)a)(ζ̃
1
a−ri′

)i,

for all 1 ≤ i′ ≤ q, we have that Tϕ(z, z̃) ∈ D̂κ,α̂,β̂([a, b]; R). Moreover, the following cubic
bound holds true:

N [ẑ; D̂κ,α̂,β̂([a, b]; R)]

≤ cϕ,x,T (1 + N 3[z;Dκ,α,β([a, b]; Rn)] + N 3[z̃;Dκ,α̃,β̃([a− rq, b− r1]; R
n)]). (37)

Proof. As in Proposition 3.1, the proof of this result is based on some cumbersome Taylor
expansions which won’t be detailed here. Let us just mention briefly the decomposition
we obtain for ẑ: observe that δẑ can be decomposed into

(δẑ)st = (ζ̂ (1,i′)
s )j(δxj)s−ri′ ,t−ri′

+ (ζ̂ (2,i′,j′)
s )jk(x2

st(rj′, ri′))
kj l1{i′,j′ 6=0}

+ (ζ̂ (3,i′,j′)
s )jk(x2

st(rj′ − ri′, ri′))
kj + R̂st, (38)

where we recall that Einstein’s convention on repeated indices is used, and where j, k
are summed over the set {1, . . . , d}, and i′, j′ over the set {0, 1, . . . , q}. Furthermore, the

expression for the coefficients ζ̂ is given by:

(ζ̂ (1,i′)
s )j = [∂i′

i ϕ(z, s(z̃)) · (ζ̃1(ri′))
ij]s,

(ζ̂ (2,i′,j′)
s )jk = [∂i′

i ϕ(z, s(z̃)) · (ζ̃ (2,j′)(ri′))
ijk]s,
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and

(ζ̂ (3,i′,j′)
s )jk = [∂i′j′

i1i2
ϕ(z, s(z̃)) · (ζ̃1(ri′))

i1j · (ζ̃1(rj′))
i2k]s

+ [∂i′

i ϕ(z, s(z̃))(ζ̃ (2,0)(ri′))
ijk]s l1{i′=j′} + [∂0

i ϕ(z, s(z̃))(ζ (2,j′))ijk]s l1{i′=0,j′ 6=0},

with the convention that ζ̃1(r0) , ζ1 and ζ̃ (2,j′)(r0) , ζ (2,j′), respectively.

As far as the decomposition of (ζ̂ (1,i′))j is concerned, we obtain, for 1 ≤ j ≤ d:

(δ(ζ̂ (1,i′))j)st = l1{i′,j′ 6=0}(ζ̂
(2,i′,j′)
s )jk(δxk)s−ri′−rj′ ,t−ri′−rj′

+ (ζ̂ (3,i′,j′)
s )jk(δxk)s−rj′ ,t−rj′

+ (ρ̂
(i′)
st )j. (39)

For sake of conciseness, we don’t include the (long) expressions we have obtained for the

remainders R̂st, (ρ̂
(i′)
st )j here. They are also obtained via a Taylor type expansion, and the

relation x2

st(v
′, v) = x2

s−v,t−v(v
′, r0) (imposed by Hypothesis 4.2) turns out to be useful at

some points of the computations.
�

It should also be mentioned that, for a fixed z̃, the map Tϕ(·, z̃) : Dκ,α,β([a, b]; Rn) →

D̂κ,α̂,β̂([a, b]; R) is locally Lipschitz continuous:

Proposition 4.2. Let the notation of Proposition 4.1 prevail, and suppose that ϕ is a
function in C4

b (R
n,q+1; R). Let 0 ≤ a < b ≤ T , let z(1), z(2) ∈ Dκ,α,β([a, b]; R

n) and let
z̃ ∈ Dκ,α̃,β̃([a− rk, b− r1]; R

n). Then,

N [Tϕ(z(1), z̃) − Tϕ(z(2), z̃); D̂κ,0,0([a, b]; R)]

≤ cx,ϕ,T (1 + C(z(1), z(2), z̃))3N [z(1) − z(2);Dκ,0,0([a, b]; R
n)], (40)

where

C(z(1), z(2), z̃) = N [z̃;Dκ,α̃,β̃([a− rk, b− r1]; R
n)]

+ N [z(1);Dκ,α,β([a, b]; R
n)] + N [z(2);Dκ,α,β([a, b]; R

n)] (41)

and the constant cx,ϕ,T depends only on x, ϕ and T .

4.3. Integration of delayed controlled paths. As we have seen in the previous section,
the composition with a smooth enough function ϕ transforms a delayed controlled path
into a doubly delayed controlled path. We shall see now that the integration with respect
to x is acting in the other direction:

Proposition 4.3. For a given γ > 1/4 and κ ≤ γ, let x be a path satisfying Hypothesis

4.1. Moreover, let m ∈ D̂κ,α̂,β̂([a, b]; R1,d) such that the increments of m are given by (35).
Define z by za = α ∈ R and

(δz)st = mi
s(δx

i)st + (ζ (1,i′′)
s )ij(x2

st(ri′′))
ji

+ (ζ (2,i′,j′)
s )ijk(x3

st(rj′, ri′))
kji + (ζ (3,i′′,j′′)

s )ijk(x3

st(rj′′ − ri′′ , ri′′))
kji + Λst(U),

for a ≤ s < t ≤ b, 1 ≤ i′, j′ ≤ q, 0 ≤ i′′, j′′ ≤ q, and where U is the increment defined by:

U = Riδxi + (ρ(i′′))ij(x2(ri′′))
ji + δ(ζ (2,i′,j′))ijk(x3(rj′, ri′))

kji

+ δ(ζ (3,i′′,j′′))ijk(x3(rj′′ − ri′′ , ri′′))
kji. (42)

Finally, set
J (midxi) = δz. (43)



16 SAMY TINDEL AND IVÁN TORRECILLA

Then,

(i) J (midxi) coincides with the usual Riemann integral, whenever m and x are smooth
functions.

(ii) The path z is well-defined as an element of Dκ,α,β([a, b]; R), with an initial condition
za = α, ma = β = α̂ and a decomposition of the form

(δz)st = miδxi + (ζ (1,i′′)
s )ij(x2

st(ri′′))
ji + R̂st,

(δmi)st = (ζ (1,i′′)
s )ij(δxj)s−ri′′ ,t−ri′′

+ ρ̂i
st,

where the remainders R̂ ∈ C3κ
2 ([a, b]; R) and ρ̂ ∈ C2κ

2 ([a, b]; R1,d) are given by

R̂st = (ζ (2,i′,j′)
s )ijk(x3

st(rj′, ri′))
kji + (ζ (3,i′′,j′′)

s )ijk(x3

st(rj′′ − ri′′, ri′′))
kji + Λst(U),

ρ̂i
st = (ζ (2,i′,j′)

s )ijk(x2

st(rj′, ri′))
kj + (ζ (3,i′′,j′′)

s )ijk(x2

st(rj′′ − ri′′, ri′′))
kj + Ri

st,

respectively.

(iii) The semi-norm of z in Dκ,α,β([a, b]; R) can be estimated as

N [z;Dκ,α,β([a, b]; R)]

≤ cx,T,κ,γ{1 + |α̂|R1,d + (b− a)γ−κ(|α̂|R1,d + N [m; D̂κ,α̂,β̂([a, b]; R1,d)])}. (44)

Furthermore, the following bound also holds true:

‖δz‖κ ≤ cx,T,κ,γ(b− a)γ−κ(|α̂|R1,d + N [m; D̂κ,α̂,β̂([a, b]; R
1,d)]). (45)

(iv) The Riemann type sums associated to our generalized integral are of the following
form:

Jst(m
idxi) = lim

|Πst|→0

N∑

k′=0

[
mi

tk′
(δxi)tk′ ,tk′+1

+ (ζ
(1,i′′)
tk′

)ij(x2

tk′ ,tk′+1
(ri′′))

ji

+ (ζ
(2,i′,j′)
tk′

)ijk(x3

tk′ ,tk′+1
(rj′, ri′))

kji + (ζ
(3,i′′,j′′)
tk′

)ijk(x3

tk′ ,tk′+1
(rj′′ − ri′′ , ri′′))

kji
]
, (46)

for any a ≤ s < t ≤ b, where the limit is taken over any partitions Πst = {t0 = s, . . . , tn =
t} of [s, t], as the mesh of the partition goes to zero.

Proof. As in the proof of Proposition 3.2, we shall mainly focus on the first of these
assertions, which justifies our definition of generalized integral. Let us thus suppose for the
moment that x is a smooth function and thatm ∈ C∞

1 (R1,d) admits the decomposition (35)
with ζ (1,i′′) ∈ C∞

1 (Rd,d), ζ (2,i′,j′), ζ (3,i′′,j′′) ∈ C∞
1 (Rd,d,d), for 1 ≤ i′, j′ ≤ q and 0 ≤ i′′, j′′ ≤ q.

We also assume that ρ(i′′) ∈ C∞
2 (Rd,d) and R ∈ C∞

2 (R1,d). Then J (midxi) is well-defined
as a Riemann integral, and as for relation (21), one can write

J (midxi) = miδxi + J (δmidxi). (47)

Let us now plug the decomposition (35) into the expression (47) in order to obtain

J (midxi) = miδxi + (ζ (1,i′′))ij(x2(ri′′))
ji + (ζ (2,i′,j′))ijk(x3(rj′, ri′))

kji

+ (ζ (3,i′′,j′′))ijk(x3(rj′′ − ri′′, ri′′))
kji + J (Ridxi), (48)

which can also be written as:

J (Ridxi) = J (midxi) −miδxi − (ζ (1,i′′))ij(x2(ri′′))
ji

− (ζ (2,i′,j′))ijk(x3(rj′, ri′))
kji − (ζ (3,i′′,j′′))ijk(x3(rj′′ − ri′′ , ri′′))

kji. (49)
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We now apply the operator δ to both sides of the previous equation in order to get a
suitable expression for a generalization to the rough case:

δ[J (Ridxi)] = δmiδxi + δ(ζ (1,i′′))ij(x2(ri′′))
ji − (ζ (1,i′′))ij[δ(x(ri′′))

jδxi]

+ δ(ζ (2,i′,j′))ijk(x3(rj′, ri′))
kji + δ(ζ (3,i′′,j′′))ijk(x3(rj′′ − ri′′ , ri′′))

kji

− (ζ (2,i′,j′))ijk[(x2(rj′, ri′))
kjδxi + δ(x(ri′ + rj′))

k(x2(ri′))
ji]

− (ζ (3,i′′,j′′))ijk[(x2(rj′′ − ri′′ , ri′′))
kjδxi + δ(x(rj′′))

k(x2(ri′′))
ji].

Taking now into account the decomposition (35) for m and (36) for ζ (1,i′′), we obtain:

δ[J (Ridxi)] = Riδxi + (ρ(i′′))ij(x2(ri′′))
ji + δ(ζ (2,i′,j′))ijk(x3(rj′, ri′))

kji

+ δ(ζ (3,i′′,j′′))ijk(x3(rj′′ − ri′′ , ri′′))
kji = U, (50)

where U is defined by equation (42). If we now only assume that U is an element of Cµ
3

with µ > 1, one gets that U ∈ Dom(Λ), which yields the decomposition (43) for J (midxi).
The remainder of the proof is then just made of tedious elementary estimations for the
regularity of all the terms involved in the decomposition (43). Finally, observe that the
Riemann sum limit is obtained by applying Corollary 2.3.

�

As in Corollary 3.3, the previous Proposition can be extended easily to the multidi-
mensional case:

Corollary 4.4. Let m ∈ D̂κ,α̂,β̂([a, b]; R
n,d) be a doubly delayed controlled path, and define

another path z by δzi = J (mijdxj) for i = 1, . . . , n. Then z is well-defined as an element
of Dκ,α,β([a, b]; R

n), and the following bound holds true:

N [z;Dκ,α,β([a, b]; R
n)]

≤ cx,T,κ,γ{1 + |α̂|Rn,d + (b− a)γ−κ(|α̂|Rn,d + N [m; D̂κ,α̂,β̂([a, b]; R
n,d)])}. (51)

Another useful feature of our generalized integral is a continuity property with respect
to the integrand m in J (z dx), whose proof is omitted again for sake of conciseness:

Proposition 4.5. Let m(1), m(2) ∈ D̂κ,α̂,β̂([a, b]; R
n,d) be two doubly delayed controlled

paths, and define z(1), z(2) ∈ Dκ,α,β([a, b]; R
n) by δz(l) = J (m(l) dx), for l = 1, 2. Assume

moreover that the paths ζ (1,i′′;1) and ζ (1,i′′;2) in the respective decompositions (35) of z(1)

and z(2) satisfy ζ
(1,i′′;1)
a = ζ

(1,i′′;2)
a , and that b− a < 1. Then we have:

N [z(1) − z(2);Dκ,0,0([a, b]; R
n)]

≤ cx,T,κ,γ(b− a)κ∧(γ−κ)N [m(1) −m(2); D̂κ,0,0([a, b]; R
n,d)]. (52)

4.4. Rough delay differential equations. We shall now turn to the main goal of this
section, namely the resolution of equation (31), which can be written now as:

(δy)st = Jst (σ(y, s(y)) dx) , s, t ∈ [0, T ], (53)

with initial condition yt = ξt for t ∈ [−r, 0], where we recall the convention (32) for s, and
where the integral J has to be interpreted according to Proposition 4.3.

Before stating our main result in this direction, let us introduce a natural map, called
Γ, associated to our delay equation. It is defined by Γ(z, z̃) := ẑ, where (recalling the
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notation Tσ introduced at Proposition 4.1) δẑ is given as δẑ = J (Tσ(z, z̃) dx), on the
following spaces:

Γ : Dκ,α,β([a, b]; Rn) ×Dκ,α̃,β̃([a− rq, b− r1]; R
n) → Dκ,α,β([a, b]; R

n)

for 0 ≤ a < b ≤ T . In the previous definition, α, α̃, β and β̃ stand for some initial
conditions, with the additional compatibility condition β = σ(α, z̃a−r1, . . . , z̃a−rq−1 , z̃a−rq

),
which shall be satisfied in our delay equation context. Notice also that, from now on,
we shall use the convention that zs = z̃s = ẑs = ξs for s ∈ [−rq, 0]. Since we have

assumed ξ ∈ C3γ
1 , this means in particular that, on [−rq, 0], the paths z, z̃, ẑ are still

controlled processes, whose degenerate decomposition is only given by a remainder term.
This allows to complete easily the definition of Γ on intervals of the form [a, b] with a < rq.

Remark 4.2. As in [16], we could have handled the case of a controlled initial condition
ξ. We did not consider this possibility here for sake of conciseness.

Let us gather now some useful relations concerning the operator Γ we have just defined:
first of all, by putting together inequalities (51) and (37), one obtains

N [Γ(z, z̃);Dκ,α,β([a, b]; R
n)] ≤ cσ,x,T,κ,γ

(
1 + N 3[z̃;Dκ,α̃,β̃([a− rq, b− r1]; R

n)]
)

×
(
1 + (b− a)γ−κN 3[z;Dκ,α,β([a, b]; Rn)]

)
, (54)

which means that the semi-norm of the mapping Γ is cubically bounded in terms of the
semi-norm of z and z̃.

Furthermore, let z(1), z(2) ∈ Dκ,α,β([a, b]; R
n) and z̃ ∈ Dκ,α̃,β̃([a− rq, b− r1]; R

n). Then,
if b− a < 1, applying successively the inequalities (52) and (40), we get that

N [Γ(z(1), z̃) − Γ(z(2), z̃);Dκ,0,0([a, b]; R
n)]

≤ c̃x,σ,T,κ,γ(1 + C(z(1), z(2), z̃))3(b− a)κ∧(γ−κ)N [z(1) − z(2);Dκ,0,0([a, b]; R
n)], (55)

where C(z(1), z(2), z̃) is defined at (41). Therefore, for fixed z̃ the mappings Γ(·, z̃) are
locally Lipschitz continuous with respect to the semi-norm N [·;Dκ,0,0([a, b]; R

n)].

With these preliminary results in hand, we can now prove our main theorem on delay
equations:

Theorem 4.6. Let x be a path satisfying Hypotheses 4.1 and 4.2, let σ : R
n,q+1 → R

n,d

be a C4
b -function and let ξ ∈ C3γ

1 ([−r, 0]; Rn). Then

(i) Equation (53) admits a unique solution y in Dκ,ξ0,σr(ξ0)([0, T ]; Rn), for any κ < γ such

that 3κ+ γ > 1 and any T > 0, where σr(ξ0) , σ(ξ0, ξ−r1, . . . , ξ−rq
).

(ii)The map
(
ξ, x, {x2(ri′′)}0≤i′′≤q, {x

3(rj′, ri′)}1≤i′,j′≤q, {x
3(rj′′ − ri′′, ri′′)}0≤i′′,j′′≤q

)
7→ y

is locally Lipschitz continuous from

C3γ
1 ([−r, 0]; Rn) × Cγ

1 ([0, T ]; Rd) ×
(
C2γ

2 ([0, T ]; Rd,d)
)q+1

×
(
C3γ

2 ([0, T ]; Rd,d,d)
)2q2+2q+1

to Cκ
1 ([0, T ]; Rn, in the following sense: let x̃ be another driving rough path with correspond-

ing delayed Lévy area and doubly delayed volume element x̃2(v), x̃3(v′′, v), respectively,
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where v′′ = v′ or v′ − v, with v, v′ ∈ {rq, . . . , r0}, and ξ̃ another initial condition. Then,
for every M > 0, there exists a constant KM > 0 such that the upper bound

N [y − ỹ; Cκ
1 ([0, T ]; Rn)] ≤ KM

{
N [ξ − ξ̃; C3γ

1 ([0, T ]; Rn)] + N [x− x̃; Cγ
1 ([0, T ]; Rn)]

+

q∑

i′′=0

N [x2(ri′′) − x̃2(ri′′); C
2γ
2 ([0, T ]; Rd,d)]

+

q∑

i′,j′=1

N [x3(rj′, ri′) − x̃3(rj′, ri′); C
3γ
2 ([0, T ]; Rd,d,d)]

+

q∑

i′′,j′′=0

N [x3(rj′′ − ri′′ , ri′′) − x̃3(rj′′ − ri′′ , ri′′); C
3γ
2 ([0, T ]; Rd,d,d)]

}
.

holds for all tuples
(
ξ, x, {x2(ri′′)}0≤i′′≤q, {x

3(rj′, ri′)}1≤i′,j′≤q, {x
3(rj′′ − ri′′ , ri′′)}0≤i′′,j′′≤q

)
,

(
ξ̃, x̃, {x̃2(ri′′)}0≤i′′≤q, {x̃

3(rj′, ri′)}1≤i′,j′≤q, {x̃
3(rj′′ − ri′′ , ri′′)}0≤i′′,j′′≤q

)
,

satisfying the boundedness condition

N [ξ; C3γ
1 ([0, T ]; Rn)] + N [ξ̃; C3γ

1 ([0, T ]; Rn)] + N [x; Cγ
1 ([0, T ]; Rn)] + N [x̃; Cγ

1 ([0, T ]; Rn)]

+

q∑

i′′=0

N [x2(ri′′); C
2γ
2 ([0, T ]; Rd,d)] +

q∑

i′′=0

N [x̃2(ri′′); C
2γ
2 ([0, T ]; Rd,d)]

+

q∑

i′,j′=1

N [x3(rj′, ri′); C
3γ
2 ([0, T ]; Rd,d,d)] +

q∑

i′,j′=1

N [x̃3(rj′, ri′); C
3γ
2 ([0, T ]; Rd,d,d)]

+

q∑

i′′,j′′=0

N [x3(rj′′ − ri′′ , ri′′); C
3γ
2 ([0, T ]; Rd,d,d)]

+

q∑

i′′,j′′=0

N [x̃3(rj′′ − ri′′ , ri′′); C
3γ
2 ([0, T ]; Rd,d,d)] ≤M.

Proof. With the previous algebraic structures and computations in hand, the proof of this
theorem follows the lines of [16, Theorem 4.2]. We shall give some hints for the proof of
the existence-uniqueness result, which is based on a fixed point argument for the map Γ
defined above, for sake of completeness.

Without loss of generality suppose that T = Nr1, where we recall that r1 is the smallest
delay in (53). We shall construct the solution of our delay equation by induction over the
intervals [0, r1], [0, 2r1], . . ., [0, Nr1].

Let us first show that equation (53) has a solution on the interval [0, r1]. To this
purpose, define

τ̃1 =
( 1

c1M
2
1

−
1

M3
1

) 1
γ−κ

∧ r1 ∧ 1

where M1 > c1 = cκ,γ,σ,T (1 + N 3[ξ; C3γ
1 ([−rq, 0]; Rn)]). In addition, choose τ1 ∈ [0, τ̃1] and

N1 ∈ N such that N1τ1 = r1, and define

Ik′,1 = [(k′ − 1)τ1, k
′τ1], k′ = 1, . . . , N1.



20 SAMY TINDEL AND IVÁN TORRECILLA

Finally, consider the following map: let Γ1,1 : Dκ,ξ0,σr(ξ0)(I1,1; R
n) → Dκ,ξ0,σr(ξ0)(I1,1; R

n)
be given by ẑ = Γ1,1(z), where

(δẑi)st = Jst(T
ij
σ (z, ξ)dxj)

for 0 ≤ s < t ≤ τ1. Notice then that if z(1,1) is a fixed point of the map Γ1,1, then z(1,1)

solves equation (53) on the interval I1,1. Therefore, we shall prove that such a fixed point
exists.

First, owing to (54) we get the estimate

N [Γ1,1(z);Dκ,ξ0,σr(ξ0)(I1,1; R
n)] ≤ c1

(
1 + τγ−κ

1 N 3[z;Dκ,ξ0,σr(ξ0)(I1,1; R
n)]
)
. (56)

Therefore, thanks to our previous choice of τ1, we obtain that the ball

BM1 = {z ∈ Dκ,ξ0,σr(ξ0)(I1,1; R
n); N [z;Dκ,ξ0,σr(ξ0)(I1,1; R

n)] ≤M1} (57)

is invariant under Γ1,1. On the other hand, by changing τ1 to a smaller value (and then N1

accordingly) if necessary, observe that Γ1,1 also is a contraction on BM1 , see (55). Thus,
applying the Fixed Point Theorem, it is easily shown that there exists a unique solution
z(1,1) to equation (53) on the interval I1,1.

If τ1 = r1, we have thus obtained the existence and uniqueness of a solution in the
interval [0, r1]. Otherwise, define the map

Γ2,1 : D
κ,z

(1,1)
r1

,σr(z
(1,1)
r1

)
(I2,1; R

n) −→ D
κ,z

(1,1)
r1

,σr(z
(1,1)
r1

)
(I2,1; R

n)

given by ẑ = Γ2,1(z), where σr(z
(1,1)
r1 ) , σ(z

(1,1)
r1 , ξ0, . . . , ξ−rq−1) and

(δẑi)st = Jst(T
ij
σ (z, ξ)dxj)

for τ1 ≤ s < t ≤ 2τ1. Since τ1 < r1, the following upper bound still holds true:

N [Γ2,1(z);Dκ,z
(1,1)
r1

,σr(z
(1,1)
r1

)
(I2,1; R

n)] ≤ c1
(
1 + τγ−κ

1 N 3[z;D
κ,z

(1,1)
r1

,σr(z
(1,1)
r1

)
(I2,1; R

n)]
)

(58)

and we obtain, resorting to the same fixed point argument as above, the existence of a
unique solution z(2,1) to equation (53) on the interval I2,1. Repeating this step as often
as necessary, which is possible since the estimates on the norms of the mappings Γl,1,
l = 1, . . . , N1 are of the same type as (54), that is, the constant c1 in (58) does not change

according to the iteration step, we obtain that z =
∑N1

l=1 z
(l,1) l1Il,1

is the unique solution
to the equation (53) on the interval [0, r1].

The patching of solutions defined on different intervals of the form Il,k is then a slight
elaboration of the computations corresponding to [16, Theorem 4.2], and this step is left
to the reader. The continuity of the Itô map is follows also the steps of [16], except for
the huge number of terms we have to deal with in the current situation. We prefer to
omit this step for sake of conciseness.

�

5. Application to the fractional Brownian motion

All the previous constructions rely on the specific assumptions that we have made on
the process x. In this section, we prove how our results can be applied to the fractional
Brownian motion. More specifically, we first recall some basic definitions about fBm, and
then define the delayed Lévy area B2. We shall then turn to the definition of the volume
B3, which is the main difficulty in order to go from the case H > 1/3 treated in [16] to
our rougher situation.
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5.1. Basic facts on fractional Brownian motion. Recall that a d-dimensional fBm
with Hurst parameter H ∈ (0, 1) defined on the real line is a centered Gaussian process

B = {Bt = (B1
t , . . . , B

d
t ); t ∈ R},

where B1, . . . , Bd are d independent 1-dimensional fBm, that is, each Bi is a centered
Gaussian process with continuous sample paths and covariance function

RH(t, s) = E(Bi
tB

i
s) =

1

2
(|t|2H + |s|2H − |t− s|2H), (59)

for all i ∈ {1, . . . , d}. In the sequel, all the random variables we deal with are defined on a
complete probability space (Ω,F ,P), and we assume that F is generated by the random
variables (Bt; t ∈ R). The fBm verifies the following two important properties:

• Scaling property: for any c > 0, B(c) = cHB·/c is a fBm,

• Stationarity property: for any h ∈ R, B·+h − Bh is a fBm.

Notice that we work with a fBm indexed by R for sake of simplicity as in [16], since this
allows some more elegant calculations for the definitions of the double delayed Lévy area
and volume, respectively. Furthermore, since the case H > 1/2 or the Brownian case
H = 1/2 are less demanding than the rougher case, we shall mainly focus in this section
on the range of parameter H < 1/2.

5.1.1. Gaussian structure of B. Let us give a few facts about the Gaussian structure of
fractional Brownian motion, following Chapter 5 of [17]. All the considerations in this
direction will concern a 1-dimensional fBm B, which will be enough for our applications.

Let E be the set of step-functions on R with values in R. Consider the Hilbert space
H defined as the closure of E with respect to the scalar product induced by

〈
l1[t,t′], l1[s,s′]

〉
H

= RH(t′, s′) −RH(t′, s) − RH(t, s′) +RH(t, s),

for any −∞ < s < s′ < +∞ and −∞ < t < t′ < +∞, and where RH(t, s) is given by
(59). The mapping

l1[t,t′] 7→ Bt′ −Bt

can be extended to an isometry between H and the Gaussian space H1(B) associated with
B. We denote this isometry by ϕ 7→ B(ϕ).

The spaces H and H1(B) can be characterized more precisely in the following way:
first, we notice that a 1-dimensional fBm defined on the real line, with H 6= 1/2, has the
following integral representation in terms of a Wiener process W defined on R (See [21,
Proposition 7.2.6] for details):

Bt =
1

C1(H)

∫

R

[
(t− s)

H−1/2
+ − (−s)H−1/2

+

]
dWs, t ∈ R, (60)

where

C1(H) =

(∫ ∞

0

[
(1 + s)H−1/2 − sH−1/2

]2
ds+

1

2H

)1/2

, (61)

and where a+ stands for the positive part of a real number a, namely a+ = l1R+(a) a.
Using the representation (60), the authors in [18] define the following stochastic integral
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of a deterministic function with respect to a 1-dimensional fBm B:

∫

R

f(u)dBu =
Γ (H + 1/2)

C1(H)






∫
R

(
D1/2−H

− f
)

(u)dWu, H < 1/2,

∫
R

(
IH−1/2
− f

)
(u)dWu, H > 1/2,

provided that the stochastic integral with respect to the Wiener process W makes sense,
and where

(
Dα

−f
)
(u) =

α

Γ(1 − α)

∫ ∞

0

f(r) − f(u+ r)

r1+α
dr, (62)

(
Iα
−f
)
(u) =

1

Γ(α)

∫ ∞

u

f(r)

(r − u)1−α
dr, (63)

for 0 < α < 1. The expressions (62) and (63) are respectively called right-sided fractional
derivative and right-sided fractional integral on the whole real line. We remark that, in
general,

(
Dα

−f
)
(u) ≡ lim

ε→0

α

Γ(1 − α)

∫ ∞

ε

f(r) − f(u+ r)

r1+α
dr.

We also notice that
(
Iα
−(
(
Dα

−f
))

(u) =
(
Dα

−

(
Iα
−f
))

(u) = f(u). (64)

When f is a function defined on an interval [a, b] with −∞ < a < b <∞, extend f by
setting f ⋆ = f l1[a,b]. Define then

(
Dα

−f
⋆
)
(u) =

(
Dα

−bf
)
(u) =

f(u)

Γ(1 − α)(b− u)α
+

α

Γ(1 − α)

∫ b

u

f(u) − f(r)

(r − u)1+α
dr, (65)

(
Iα
−f

⋆
)
(u) =

(
Iα
−bf
)
(u) =

1

Γ(α)

∫ b

u

f(r)

(r − u)1−α
dr, (66)

for 0 < α < 1, a < u < b. The expressions (65) and (66) are respectively called right-
sided fractional derivative and right-sided fractional integral on the interval [a, b]. In this
context, as in the case of the whole line (see [20] for details and also [22]), the following
relation holds true:

(
Dα

−bf
)
(u) ≡

f(u)

Γ(1 − α)(b− u)α
+ lim

ε→0

α

Γ(1 − α)

∫ b

u+ε

f(u) − f(r)

(r − u)1+α
dr.

With these notations in hand, it is proved in [18] that the operator

(Kf)(u) ≡
Γ (H + 1/2)

C1(H)






(
D1/2−H

− f
)

(u), H < 1/2,

(
IH−1/2
− f

)
(u), H > 1/2,

is an isometry between H and a closed subspace of L2(R). In fact,

〈φ, ψ〉H = 〈Kφ,Kψ〉L2(R),

for all φ, ψ ∈ H. This also allows to write B(ϕ) as W (Kϕ) for any ϕ ∈ H, where W (Kϕ)
has to be interpreted as a Wiener integral with respect to the Gaussian measure W . In
particular, we have:

E[|B(ϕ)|2] = ‖ϕ‖H = ‖Kϕ‖L2(R). (67)
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5.1.2. Malliavin calculus with respect to the fBm B. Let S be the set of smooth cylindrical
random variables of the form

F = f(B(ϕ1), . . . , B(ϕk)), ϕi ∈ H, i ∈ {1, . . . , k},

where f ∈ C∞(Rd,k,R) is bounded with bounded derivatives. The derivative operator
D of a smooth cylindrical random variable of the above form is defined as the H-valued
random variable

DF =

k∑

i=1

∂f

∂xi
(B(ϕ1), . . . , B(ϕk))ϕi.

This operator is closable from Lp(Ω) into Lp(Ω;H). As usual, D
1,2 denotes the closure of

the set of smooth random variables with respect to the norm

‖F‖2
1,2 = E|F |2 + E‖DF‖2

H.

In particular, considering a d-dimensional fBm (B1, . . . , Bd), if DBi

F denotes the Malli-
avin derivative of F ∈ D

1,2
Bi with respect to Bi, where D

1,2
Bi denotes the corresponding

Sobolev space, we have DBi

Bj
t = δi,j l1(−∞,t] for i, j = 1, . . . , d, where δi,j denotes the

Kronecker symbol.

The divergence operator I is the adjoint of the derivative operator. If a random variable
φ ∈ L2(Ω;H) belongs to dom(I), the domain of the divergence operator, then I(φ) is
defined by the duality relationship

E(FI(φ)) = E〈DF, φ〉H, (68)

for every F ∈ D
1,2. In additon, let us recall two useful properties verified by D and I:

• If φ ∈ dom(I) and F ∈ D
1,2 such that Fφ ∈ L2(Ω;H), then we have the following

integration by parts formula:

I(Fφ) = FI(φ) − 〈DF, φ〉H. (69)

• If φ ∈ D
1,2(H), Drφ ∈ dom(I) for all r ∈ R and {I(Drφ)}r∈R is an element of

L2(Ω;H), then

DrI(φ) = φr + I(Drφ). (70)

One can relate the Malliavin derivatives with respect to B and W through the operator
K defined above. Indeed, relation (64) shows that K is invertible. This allows to state,
as in the case of a 1-dimensional fBm B in an interval (see for example [17, Section 5.2]
and also [1]), the following relations for the Malliavin derivative and divergence operators
with respect to the processes B and W :

(i) For any F ∈ D
1,2
W = D

1,2, we have:

KDF = DWF,

where DW denotes the derivative operator with respect to the process W, and D
1,2
W

the corresponding Sobolev space.
(ii) Dom(I) = K−1(Dom(IW )), and for any H-valued random variable u in Dom(I)

we have I(u) = IW (Ku), where IW denotes the divergence operator with respect
to the process W .
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In addition, we have D
1,2(H) = (K−1)(L1,2), where L

1,2 = D
1,2(L2(R)), and this space

is included in dom(IW ). Making use of the notations IW (φ) =
∫

R
φu dWu for any φ ∈

dom(IW ), and I(φ) =
∫

R
φu dBu for any φ ∈ dom(I), we can write:

∫

R

φu dBu =

∫

R

(Kφ)(u) dWu.

This kind of relation also holds when one considers functions defined on an interval.
Indeed, for some fixed −∞ < a < b <∞, and H < 1/2, relation (65) yields

∫ b

a

φu dBu =

∫

R

φu l1[a,b](u) dBu =

∫

R

(K[φ l1[a,b]])(u) dWu =

∫

R

(K[a,b]φ)(u) dWu,

where the operator K[a,b] is defined by:

(K[a,b]f)(u) ≡
Γ (H + 1/2)

C1(H)

(
D1/2−H

−b f
)

(u), for a < u < b,

with C1(H) defined by (61). In case of an interval [a, b], it should also be mentioned
that an important subspace of integrable processes is the following: let E [a,b] be the set of
step-functions on [a, b] with values in R. As in [17, Subsection 5.2.3], we consider on this
space the semi-norm

‖ϕ‖2
HK([a,b]) =

∫ b

a

ϕ2
u

(b− u)1−2H
du+

∫ b

a

(∫ b

u

|ϕr − ϕu|

(r − u)3/2−H
dr

)2

du.

Let HK([a, b]) be the Hilbert space defined as the closure of E [a,b] with respect to the
previous semi-norm. Then the space HK([a, b]) is continuously included in H, and if
φ ∈ D

1,2(HK([a, b])), then φ ∈ Dom(I).

5.1.3. Generalized stochastic integrals. The stochastic integrals we shall use in order to
define our doubly delayed Lévy area and volume are defined, in a natural way, by Russo-
Vallois’ symmetric approximations, that is, for a given process φ:

∫ b

a

φw d
◦Bi

w = L2 − lim
ε→0

1

2ε

∫ b

a

φw

(
Bi

w+ε − Bi
w−ε

)
dw,

provided the limit exists. It is well known that the Russo-Vallois symmetric integral
coincides with Young’s integral for H > 1/2, and with the classical Stratonovich integral
in the Brownian case H = 1/2. Since these two cases are not very demanding from a
technical point of view, we will focus our efforts on the case 1/4 < H < 1/2. This being
said, for v1 ∈ [−r, r], v2 ∈ [0, r], such that v1 +v2 ≥ 0, we will try to define the increments
B2 and B3 as

B2

st(v1, v2) =

∫ t−v2

s−v2

d◦Bu ⊗

∫ u−v1

s−v2−v1

d◦Bτ , i.e. (B2

st(v1, v2))
ij =

∫ t−v2

s−v2

d◦Bj
u

∫ u−v1

s−v2−v1

d◦Bi
τ

B3

st(v1, v2) =

∫ t

s

d◦Bw ⊗

∫ w−v2

s−v2

d◦Bu ⊗

∫ u−v1

s−v2−v1

d◦Bτ ,

i.e. (B3

st(v1, v2))
ijk =

∫ t

s

d◦Bk
w

∫ w−v2

s−v2

d◦Bj
u

∫ u−v1

s−v2−v1

d◦Bi
τ , (71)

for all i, j, k ∈ {1, . . . , d}, 0 ≤ s < t ≤ T <∞.

Interestingly enough, one can establish the existence of symmetric integrals thanks to
some Malliavin calculus criterions:
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Proposition 5.1. Let φ be a stochastic process such that φ l1[a,b] ∈ D
1,2(HK([a, b])), for

all −∞ < a < b <∞. Suppose also that

Tr[a,b]Dφ := L2 − lim
ε→0

1

2ε

∫ b

a

〈Dφu, l1[u−ε,u+ε]〉Hdu

is an almost surely finite random variable. Then
∫ b

a
φud

◦Bi
u exists, and verifies

∫ b

a

φud
◦Bi

u = I(φ l1[a,b]) + Tr[a,b]Dφ.

Furthermore, the following algebraic relation is trivially satisfied for this kind of inte-
grals:

Lemma 5.2. Let α = {αw, w ∈ [a, b]} be a stochastic process such that its symmet-
ric Russo-Vallois integral with respect to a 1-dimensional fractional Brownian motion B
exists, and let F be a random variable. Then Fα is integrable with respect to B in the

Russo-Vallois symmetric integral sense and
∫ b

a
Fαw d

◦Bw = F
∫ b

a
αw d

◦Bw.

We are now ready to show the existence of delayed areas and volumes with respect to
fBm.

5.2. Delayed Lévy areas. Before we turn to statements involving increments as func-
tions of two parameters, let us deal first with fixed times s, t:

Proposition 5.3. Let B be a d-dimensional fractional Brownian motion, with Hurst
parameter H > 1/4. Then, for s, t ∈ [0, T ], v1 ∈ [−r, r], v2 ∈ [0, r], such that v1 + v2 ≥ 0,
the doubly delayed Lévy area, denoted by B2

st(v1, v2) and defined by (71), is well defined.
In addition, we have E[|B2

st(v1, v2)|2] ≤ c|t − s|4H for a strictly positive constant c =
cH,v1,T independent of v2, exhibiting the following discontinuity phenomenon: we have
limv1→0 cH,v1,T = ∞, but cH,0,T is finnite.

Remark 5.1. The discontinuity result on cH,v1,T alluded to above is not a surprise, and
had already been observed in [16].

Proof. As mentioned before, the case H ≥ 1/2 is rather easy to handle, and we thus focus
on 1/4 < H < 1/2. It should also be mentioned that Lévy areas can be constructed
in a similar way to [16], though an extra attention has to be paid in order to treat
irregular cases, when H approaches 1/4. As a last preliminary remark, observe that, due
to the stationarity property of the fBm we shall work without loss of generality on the
interval [0, t − s] instead of [s − v2, t − v2] in the sequel, that is, B2

st(v1, v2) behaves as
B2

0,t−s(v1) = B2

0,t−s(v1, 0).

1) Case i = j and v1 ≥ 0. Consider the process φ = (Bi
·−v1

−Bi
−v1

) l1[0,t−s](·). When v1 ≥ 0,
the arguments in [16, Proposition 5.2] for 1/3 < H < 1/2 also hold for 1/4 < H ≤ 1/3.
Thus

(B2

0,t−s(v1))
ii = IBi

(φ) + Tr[0,t−s]D
Bi

φ,

where IBi

(φ) denotes the divergence integral of φ with respect to Bi and

Tr[0,t−s]D
Bi

φ =

{
1
2
(t− s)2H , if v1 = 0,

−Hv2H−1
1 (t− s) + 1

2

(
(t− s+ v1)

2H − v2H
1

)
, if v1 > 0.

In addition, one can also prove, as in [16], that

E
∣∣(B2

0,t−s(v1))
ii
∣∣2 ≤ cH,v1 |t− s|4H ,
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for any v1 ∈ (0, r], where limv1→0 cH,v1 = ∞. On the other hand, the computations above
also show that E|(B2

0,t−s(v1, 0))ii|2 ≤ cH,v1 |t− s|4H .

2) Case i = j and v1 < 0. When v1 < 0, we will show that

(B2

0,t−s(v1))
ii = IBi

(φ) + Tr[0,t−s]D
Bi

φ, (72)

where now

Tr[0,t−s]D
Bi

φ = H(−v1)
2H−1(t− s) +

1

2

(
|t− s+ v1|

2H − (−v1)
2H
)
. (73)

Indeed, notice that DBi

r φu = l1[−v1,u−v1](r) l1[0,t−s](u) and furthermore, for u ∈ [0, t− s] and
ε ∈ [0,−v1], one can write

〈 l1[−v1,u−v1], l1[u−ε,u+ε]〉H

=
1

2

(
| − v1 + ε|2H − | − v1 − ε|2H + | − v1 − u− ε|2H − | − v1 − u+ ε|2H

)

=
1

2

(
(−v1 + ε)2H − (−v1 − ε)2H + | − v1 − u− ε|2H − | − v1 − u+ ε|2H

)
.

Performing now a Taylor expansion in a neighbourhood of ε = 0, we get

(−v1 + ε)2H − (−v1 − ε)2H = 4H(−v1)
2H−1ε+ o

(
ε2
)
.

Thus, applying the dominated convergence theorem (details are left to the reader) we
obtain

lim
ε→0

∫ t−s

0

1

4ε

(
(−v1 + ε)2H − (−v1 − ε)2H

)
du = H(−v1)

2H−1(t− s). (74)

Along the same lines, by separating the cases −v1 ≥ t − s, 0 < u < −v1 < t − s and
−v1 ≤ u < t− s, it can also be proved that

lim
ε→0

∫ t−s

0

1

4ε

(
| − v1 −u− ε|2H − |− v1 −u+ ε|2H

)
du =

1

2

(
|t− s+ v1|

2H − (−v1)
2H
)
. (75)

We now obtain (73) by putting together (74) and (75).

Let us bound now Tr[0,t−s]D
Bi

φ from expression (73): in the case −v1 ≥ t− s, invoking
the fact that, for 0 < p < 1 and a ≥ b > 0, the inequality ap − bp ≤ (a − b)p holds true,
we obtain

∣∣Tr[0,t−s]D
Bi

φ
∣∣ = H(−v1)

2H−1(t− s) +
1

2

(
(−v1)

2H − (−v1 − (t− s))2H
)

≤ H(t− s)2H +
1

2

(
(−v1)

2H − ((−v1)
2H − (t− s)2H)

)
≤ (t− s)2H ,

and in the case −v1 < t− s, we also have
∣∣Tr[0,t−s]D

Bi

φ
∣∣ = H(−v1)

2H−1(t− s) +
1

2

∣∣(t− s+ v1)
2H − (−v1)

2H
∣∣

≤ H(−v1)
2H−1T 1−2H(t− s)2H +

1

2

(
(t− s)2H + (−v1)

2H + (−v1)
2H
)

≤

(
H(−v1)

2H−1T 1−2H +
3

2

)
(t− s)2H .

Thus, we have found

∣∣Tr[0,t−s]D
Bi

φ
∣∣ ≤

(
H(−v1)

2H−1T 1−2H +
3

2

)
(t− s)2H , for all v1 ∈ [−r, 0). (76)



FRACTIONAL DIFFERENTIAL SYSTEMS 27

We proceed now to bound the term IBi

(φ) in (72): owing to (70), we have

DBi

r IBi

(φ) = (Bi
r−v1

−Bi
−v1

) l1[0,t−s](r) + IBi(
l1[−v1,·−v1] l1[0,t−s](·)

)

= (Bi
r−v1

−Bi
−v1

) l1[0,t−s](r) + IBi(
l1[v1+r,t−s](·)

)
l1[−v1,t−s−v1](r)

= (Bi
r−v1

−Bi
−v1

) l1[0,t−s](r) + (Bi
t−s − Bi

v1+r) l1[−v1,t−s−v1](r). (77)

Hence, thanks to (77) and using the same arguments as in the proof of [16, Propositon
5.2], we obtain

E|IBi

(φ)|2 ≤ cH |t− s|4H , (78)

with a constant cH > 0 independent of v1.

Finally, (76) and (78) imply E|(B2

0,t−s(v1))
ii|2 ≤ cH,v1|t− s|4H for any v1 ∈ [−r, 0), and

thus, according to our stationarity argument:

E
∣∣(B2

st(v1, v2))
ii
∣∣2 ≤ cH,v1 |t− s|4H , (79)

for any v1 ∈ [−r, 0) and v2 ∈ [0, r].

3) Case i 6= j. This case can be treated similarly to [16, Proposition 5.2], and yields the
same kind of inequality as in equation (79).

Our claim E[|B2

st(v1, v2)|2] ≤ c|t− s|4H now stems easily from the inequalities we have
obtained for the 3 cases i = j and v1 ≥ 0, i = j and v1 < 0, and i 6= j.

�

We can go one step further, and state a result concerning B2 as an increment.

Proposition 5.4. Let B2 be the increment defined at Proposition 5.3. Then B2 satisfies
Hypothesis 4.1 and 4.2.

Proof. First, we have to ensure the almost sure existence of B2

st(v1, v2) for all s, t ∈ [0, T ].
This can be done by noticing that B2

st(v1, v2) is a random variable in the second chaos of
the fractional Brownian motion B, on which all Lp-norms are equivalent for p > 1. Hence
we can write:

E
∣∣(B2

st(v1, v2))
ij
∣∣p ≤ cH,v1,p|t− s|2pH, (80)

for any i, j ∈ {1, . . . , d} and p ≥ 2. With the same kind of calculations, one can also
obtain the inequality

E
∣∣(B2

s2t2(v1, v2))
ij − (B2

s1t1(v1, v2))
ij
∣∣p ≤ cH,v1,p

(
|t2 − t1|

pH + |s2 − s1|
pH
)
.

Then, a standard application of Kolmogorov’s criterion yields the almost sure definition
of the whole family {B2

st(v1, v2); s, t ∈ [0, T ]}, and its continuity as a function of s and t.

Moreover, a direct application of Lemma 5.2 gives

δB2(v1, v2) = δ(B(v2 + v1)) ⊗ δ(B(v2)), (81)

and Fubini’s theorem for Stratonovich integrals with respect to B also yield easily Hypoth-
esis 4.2. Finally, it is readily checked that B2(v1, v2) ∈ C2γ

2 (Rd,d) for any 1/4 < γ < H,
v1 ∈ [−r, r] (separating the case v1 = 0) and v2 ∈ [0, r]. Indeed, it is sufficient to apply
Corollary 4 in [9] (see also inequality (90) in [16]), having in mind the bound (80) and
expression (81).

�
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5.3. Delayed volumes. We study now the term B3(v1, v2), starting from a similar state-
ment as in Proposition 5.3:

Proposition 5.5. Let B be a d-dimensional fractional Brownian motion, with Hurst
parameter H > 1/4. Then, for s, t ∈ [0, T ], v1 ∈ [−r, r], v2 ∈ [0, r], such that v1 + v2 ≥ 0,
the doubly delayed volume, denoted by B3(v1, v2) and defined by (71), is well defined. In
addition, we have E[|B3(v1, v2)|2] ≤ c|t− s|6H for a strictly positive constant c = cH,T,v1,v2

such that it goes to ∞ if v1 → 0 or v2 → 0, but is also well defined if v1 = v2 = 0.

Proof. Here again, we focus on the case 1/4 < H < 1/2, and due tho the stationarity
property of the fBm, we shall work without loss of generality on the interval [0, t − s]
instead of [s, t] in the sequel. For notational sake, we will also set τ = t − s in the
remainder of the proof.

1) Case i = j = k. Consider the process ψ = (B2

0,·(v1, v2)
ii) l1[0,τ ](·). We will define

(B3(v1, v2))
iii as

∫ τ

0
ψud

◦Bi
u, which amounts to show that ψ ∈ D

1,2(HK([0, T ])) and to
compute the trace of the process ψ.

With this aim in mind, let us first compute the Malliavin derivative of ψ: it is easily
seen that

DBi

r ψu (82)

= (Bi
r−v1

− Bi
−v2−v1

) l1[−v2,u−v2](r) l1[0,τ ](u) + IBi(
l1[−v2−v1,·−v1](r) l1[−v2,u−v2](·)

)
l1[0,τ ](u)

= (Bi
r−v1

− Bi
−v2−v1

) l1[−v2,u−v2](r) l1[0,τ ](u) + (Bi
u−v2

−Bi
r+v1

) l1[−v2−v1,u−v2−v1](r) l1[0,τ ](u).

From this identity, one can check that ψ ∈ D
1,2(HK([0, T ])). We will now evaluate∫ τ

0
ψud

◦Bi
u by separating the Skorokhod and the trace term in the symmetric integral.

(i) Evaluation of the trace term. We start by observing that DBi

ψu can also be written
as:

DBi

r ψu = IBi(
l1[·+v1,u−v2](r) l1[−v2−v1,u−v2−v1](·)

)
l1[0,τ ](u)

+ IBi(
l1[−v2−v1,·−v1](r) l1[−v2,u−v2](·)

)
l1[0,τ ](u). (83)

Apply then Fubini’s Theorem in order to get

∫ τ

0

〈
DBi

ψu, l1[u−ε,u+ε]

〉
H
du

=

∫ τ−v2−v1

−v2−v1

(∫ τ

w+v2+v1

〈 l1[w+v1,u−v2], l1[u−ε,u+ε]〉H du

)
dBi

w (84)

+

∫ τ−v2

−v2

(∫ τ

w+v2

〈 l1[−v2−v1,w−v1], l1[u−ε,u+ε]〉H du

)
dBi

w, (85)

where the last two integrals have to be interpreted in the Wiener sense, and are well-
defined according to the criterions in [18].



FRACTIONAL DIFFERENTIAL SYSTEMS 29

Let us evaluate the scalar product in (84): for a fixed v2 > 0, u ∈ [w + v2 + v1, τ ],
w ∈ [−v2 − v1, τ − v2 − v1] and ε ∈ [0, v2], we can write

〈 l1[w+v1,u−v2], l1[u−ε,u+ε]〉H

=
1

2

(
| − v2 + ε|2H − | − v2 − ε|2H + |w + v1 − u− ε|2H − |w + v1 − u+ ε|2H

)

=
1

2

(
(v2 − ε)2H − (v2 + ε)2H + (u− w − v1 + ε)2H − (u− w − v1 − ε)2H

)

= 2H
(
− v2H−1

2 + (u− w − v1)
2H−1

)
ε+ o(ε2).

If v2 = 0, one can prove similarly that for ε small enough,

〈 l1[w+v1,u−v2], l1[u−ε,u+ε]〉H = 2H(u− w − v1)
2H−1ε+ o(ε2).

This yields easily the relation

lim
ε→0

1

2ε
〈 l1[w+v1,u−v2], l1[u−ε,u+ε]〉H =

{
H
(
− v2H−1

2 + (u− w − v1)
2H−1

)
if v2 > 0,

H(u− w − v1)
2H−1 if v2 = 0.

The same kind of elementary arguments work for the scalar product in expression (85),
and one obtains:

lim
ε→0

1

2ε
〈 l1[−v2−v1,w−v1], l1[u−ε,u+ε]〉H = H

(
− (u− w + v1)

2H−1 + (v2 + v1 + u)2H−1
)
.

Thus, by an application of the dominated convergence theorem (whose details are left to
the reader) we get, for a fixed v2 > 0,

Tr[0,τ ]D
Bi

ψ (86)

=

∫ τ−v2−v1

−v2−v1

(
−Hv2H−1

2 (τ − w − v2 − v1) +
1

2
[(τ − w − v1)

2H − v2H
2 ]
)
dBi

w

+
1

2

∫ τ−v2

−v2

(
(v2 + v1)

2H − (τ − w + v1)
2H + (τ + v2 + v1)

2H − (2v2 + v1 + w)2H
)
dBi

w,

and for v2 = 0, we end up with:

Tr[0,τ ]D
Bi

ψ =
1

2

∫ τ−v1

−v1

(τ − w − v1)
2HdBi

w

+
1

2

∫ τ

0

(
v2H
1 − (τ − w + v1)

2H + (τ + v1)
2H − (v1 + w)2H

)
dBi

w.

For the remainder of the paper, the relation a . b stands for a ≤ Cb with a universal
constant C. Starting from equation (86), let us evaluate Tr[0,τ ]D

Bi

ψ for v2 > 0. Observe

first that one can write E[|Tr[0,τ ]D
Bi

ψ|2] .
∑4

l=1 Jl, where Jl can be decomposed itself as
Jl = E[|

∫ τ

0
Fl(w)dBi

w|
2], with

F1(w) = (τ − w), F2(w) = (τ + v2 + v1)
2H − (v2 + v1 + w)2H

F3(w) = (v2 + v1)
2H − (τ − w + v2 + v1)

2H , F4(w) = (τ − w + v2)
2H − v2H

2 .

Thus, thanks to relation (67), we obtain:

Jl = ‖Fl‖
2
H([0,τ ]) = cH

∥∥∥D1/2−H
−τ Fl

∥∥∥
2

L2([0,τ ])
.
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Furthermore, each Fl is a power function, whose fractional derivative D1/2−H
−τ Fl can be

computed explicitly. It is then easily shown that E|Tr[0,τ ]D
Bi

ψ|2 ≤ cH,v2,T τ
6H , where

cH,v2,T = cH,Tv
2(2H−1)
2 + cH . Analogously, for v2 = 0, we get E|Tr[0,τ ]D

Bi

ψ|2 ≤ cHτ
6H .

(ii) Evaluation of the Skorokhod term. We shall prove that E|IBi

(ψ)|2 ≤ cH,v1,T τ
6H

and to this aim, let us decompose ψ into its Skorokhod and trace part. This gives
E|IBi

(ψ)|2 ≤ 2E|IBi

(ψ1)|2 + 2E|IBi

(ψ2)|2, where

ψ1(w) =

∫ w−v2

−v2

[Bi
u−v1

− Bi
−v2−v1

]dBi
u

ψ2(w) = Tr[0,w]D
Bi

φ, with φ = (Bi
·−v1

−Bi
−v2−v1

) l1[−v2,w−v2](·).

The proof that

E|IBi

(ψ2)|
2 ≤ cH,v1,T τ

6H ,

where cH,v1,T → ∞ if v1 → 0 but is also well defined if v1 = 0, can be obtained using the

same arguments as for Step (i), and we then concentrate on the Skorokhod term IBi

(ψ1).

To estimate E|IBi

(ψ1)|2, we use first identity (68), which can be read here as E|IBi

(ψ1)|2

= E[〈ψ1, D
Bi

IBi

(ψ1)〉H]. Taking into account relation (70), the expression (82) we have

obtained for DBi

ψ1, and the isomorphism (67), we end up with

E

[
|IBi

(ψ1)|
2
]

. Q1 +Q2 +Q3, (87)

where Q1, Q2, Q3 are respectively defined by:

Q1 = E

∥∥∥D1/2−H
−τ ψ1

∥∥∥
2

L2([0,τ ])

Q2 = E

∥∥∥∥D
1/2−H
−(τ−v2)

(∫ τ

·+v2

[Bi
·−v1

− Bi
−v2−v1

]dBi
w

)∥∥∥∥
2

L2([−v2,τ−v2])

Q3 = E

∥∥∥∥D
1/2−H
−(τ−v2−v1)

(∫ τ

·+v2+v1

[Bi
w−v2

−Bi
r+v1

]dBi
w

)∥∥∥∥
2

L2([−v2−v1,τ−v2−v1])

.

We now estimate those 3 terms separately, starting withQ1: invoking the very definition

(65) of the fractional derivative D1/2−H
−τ , it is easily seen that Q1 . A1 + A2, where

A1 = E

∫ τ

0

(∫ r−v2

−v2

[Bi
u−v1

−Bi
−v2−v1

]dBi
u

)2
1

(τ − r)1−2H
dr

A2 = E

∫ τ

0

(∫ τ

r

∫ w−v2

−v2
[Bi

u−v1
−Bi

−v2−v1
]dBi

u −
∫ r−v2

−v2
[Bi

u−v1
− Bi

−v2−v1
]dBi

u

(w − r)3/2−H
dw

)2

dr

The term A1 is easily bounded: according to Fubini’s theorem and to our previous bounds
on B2, we have

A1 =

∫ τ

0

E

(∫ r−v2

−v2

[Bi
u−v1

− Bi
−v2−v1

]dBi
u

)2
1

(τ − r)1−2H
dr

≤ cH

∫ τ

0

r4H 1

(τ − r)1−2H
dr ≤ cHτ

4H

∫ τ

0

1

(τ − r)1−2H
dr =

cH
2H

τ 6H .
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The term A2 is a little longer to treat. However, by resorting to the same kind of tools, one
is able to prove that A2 ≤ cHτ

6H , and gathering the estimates on A1 and A2, we obtain
Q1 ≤ cHτ

6H as well. Finally, after some tedious computations which will be spared to the
reader for sake of conciseness, we obtain the same kind of bound for Q2 and Q3.

Now one has to reverse our decomposition process: putting together our estimates on
Q1, Q2, Q3 and plugging them into (87), we get E[|IBi

(ψ1)|2] ≤ cHτ
6H , with a constant

cH > 0 independent of v1, v2. Finally, gathering the bounds on the Skorokhod and the
trace term, one obtains E[|(B3(v1, v2))

iii|2] ≤ c|t− s|6H .

2) Other cases. The previous arguments and computations can be simplified to obtain
the desired result for the case i = k 6= j and j = k 6= i. The cases i = j 6= k and i 6= j 6= k
can be treated by means of Wiener integrals estimations. This finishes the proof of our
claim E[|B3(v1, v2)|2] ≤ c|t− s|6H .

�

As in the case of delayed Lévy areas, and with exactly the same kind of arguments, one
can push forward the analysis in order to deal with B3 as an increment:

Theorem 5.6. Let B3 be the increment defined at Proposition 5.5. Then B3 satisfies
Hypothesis 4.1. Taking into account Proposition 5.4, Theorem 4.6 can thus be applied
almost surely to the paths of the d-dimensional fBm with Hurst parameter H > 1/4.
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