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Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise

Introduction

Our aim is to describe the dynamics of a soliton solution of the Korteweg-de Vries equation in the presence of a random potential, depending both on space and time and which is white in time. After the first paper [START_REF] Wadati | Stochastic Korteweg-de Vries equations[END_REF] showing "superdiffusion" of the soliton of the KdV equation in the presence of an external force which is a white noise in time (see also [START_REF] Bass | Dynamics of solitons under random perturbations[END_REF], [START_REF] Herman | The stochastic, damped Korteweg-de Vries equation[END_REF]), the interest in such questions of soliton dynamics in the presence of either deterministic or random perturbations has recently increased in the mathematical community. In [START_REF] Garnier | Long-time dynamics of Korteweg-de Vries solitons driven by random perturbations[END_REF], e.g. the question is investigated with the help of inverse scattering methods, for different types of time-white noise perturbations, still for the KdV equation, while in [START_REF] Fröhlich | Solitary wave dynamics in an external potential[END_REF], [START_REF] Fröhlich | Long time motion of NLS solitary waves in a confining potential[END_REF], the case of a soliton of the NLS equation is studied, with the presence of a slowly varying deterministic external potential. Random potential perturbations for NLS equations have also been considered in [START_REF] Garnier | Asymptotic transmission of solitons through random media[END_REF] and [START_REF] De Bouard | Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation[END_REF]. The diffusion of solitons of the KdV equation in the presence of additive noise was numerically investigated in [START_REF] Printems | Aspects Théoriques et numériques de l'équation de Korteweg-de Vries stochastique[END_REF]. Also, in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF], we studied the soliton dynamics for a KdV equation with an additive space-time noise. Our aim here is to reproduce the analysis of [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] in the case of a random potential, which is stationary in space : the solution of the stochastic equation starting from a soliton at initial time will then stay close to a modulated soliton up to times small compared to ε -2 where ε is the amplitude of the random perturbation (see below). In the present case, where the noise is multiplicative (the random potential) we are then able to analyze more precisely the modulation equations for the soliton parameters and the linearized equation for the remaining (dispersive) part of the solution, and especially its asymptotic behavior in time.

We consider a stochastic KdV equation which may be written in Itô form as

(1.1) du + (∂ 3 x u + 1 2 ∂ x (u 2 ))dt = εudW
where ε > 0 is a small parameter, u is a random process defined on (t, x) ∈ R + × R, W is a Wiener process on L 2 (R) whose covariance operator φφ * is such that φ is a convolution operator on L 2 (R) defined by

φf (x) = R k(x -y)f (y)dy, for f ∈ L 2 (R).
The convolution kernel k satisfies (1.2)

k 1 := R (k 2 + (k ′ ) 2 )dx < +∞.
Considering a complete orthonormal system (e i ) i∈N in L 2 (R), we may alternatively write W as

(1.3) W (t, x) = i∈N β i (t)φe i (x),
(β i ) i∈N being an independent family of real valued Brownian motions. The correlation function of the process W is then given by

E(W (t, x)W (s, y)) = c(x -y)(s ∧ t), x, y ∈ R, s, t > 0,
where

c(z) = R k(z + u)k(u)du.
The existence and uniqueness of solutions for stochastic KdV equations of the type (1.1) but with an additive noise have been studied in [START_REF] De Bouard | On the stochastic Korteweg-de Vries equation[END_REF], [START_REF] De Bouard | White noise driven Korteweg-de Vries equation[END_REF], [START_REF] De Bouard | Periodic solutions of the Korteweg-de Vries equation driven by white noise[END_REF]. The multiplicative case with homogeneous noise as described above was considered in [START_REF] De Bouard | The Korteweg-de Vries equation with multiplicative homogeneous noise[END_REF]: assuming, together with the above condition, that k is an integrable function of x ∈ R allowed us to prove the global existence and uniqueness of solutions to equation (1.1) in the energy space H 1 (R), that is in the space where both the mass

(1.4) m(u) = 1 2 R u 2 (x)dx
and the energy

(1.5) H(u) = 1 2 R (∂ x u) 2 dx - 1 6 R u 3 dx
are well defined. Note that m and H are conserved for the equation without noise, that is

(1.6) ∂ t u + ∂ 3 x u + 1 2 ∂ x (u 2 ) = 0.
Under the above conditions on k, it was then proved in [START_REF] De Bouard | The Korteweg-de Vries equation with multiplicative homogeneous noise[END_REF] that for any given initial data u 0 ∈ H 1 (R), there is a unique solution u of (1.1) with paths a.s. continuous for t ∈ R + with values in H 1 (R).

Our aim in this article is to analyze the qualitative influence of a noise on a soliton solution of the deterministic equation. More precisely, we study the qualitative behavior of solutions of (1.1) in the limit ε tends to zero, assuming that the initial state of the solution is a soliton of equation (1.6). We recall indeed that equation (1.6) possesses a two-parameter family of solitary waves (or soliton) solutions, propagating with a constant velocity c > 0, with the expression

u c,x 0 (t, x) = ϕ c (x -ct + x 0 ), x 0 ∈ R, where (1.7) ϕ c (x) = 3c 2 cosh 2 ( √ c x 2 ) satisfies the equation (1.8) ϕ ′′ c -cϕ c + 1 2 ϕ 2 c = 0.
We do not recall here the well-known results concerning the stability of the soliton solutions u c,x 0 in equation (1.6), but we refer to [START_REF] Benjamin | The stability of solitary waves[END_REF], [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF], [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] or [START_REF] Pego | Asymptotic stability of solitary waves[END_REF] for a review of the stability questions using PDE methods, or to [START_REF] Gardner | Method for solving the Korteweg-de Vries equation[END_REF] and [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF] for a review of the stability of the solitons with the help of the inverse scattering transform.

Let us consider as in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] the solution u ε (t, x) of equation (1.1) which is such that u ε (0, x) = ϕ 0 (x) where c 0 > 0 is fixed. Then, in Section 2, we show, as we did in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] for the additive equation that up to times Cε -2 , where C is a constant, we may write the solution u ε as (1.9)

u ε (t, x) = ϕ c ε (t) (x -x ε (t)) + εη ε (x -x ε (t))
where the modulation parameters c ε (t) and x ε (t) satisfy a system of stochastic differential equations and the remaining term εη ε is small in H 1 (R). We then prove in Section 3 that the process η ε converges as ε goes to zero, in quadratic mean, to a centered Gaussian process η which satisfies an additively driven linear equation, with a conservative deterministic part; we also investigate the behavior of the process η as t goes to infinity and prove that η is in some sense a Ornstein-Uhlenbeck process, with a unique Gaussian invariant measure. In addition, the parameters x ε (t) and c ε (t) may be developed up to order one in ε and we get

dx ε = c 0 dt + εB 1 dt + εdB 2 + o(ε) dc ε = εdB 1 + o(ε),
where B 1 and B 2 are correlated real valued Brownian motions; keeping only the order one terms in those modulation parameters, we then obtain a diffusion result on the modulated soliton similar to the result obtained by Wadati in [START_REF] Wadati | Stochastic Korteweg-de Vries equations[END_REF], but with a different time exponent (see Section 4).

In all what follows, (., .) will denote the inner product in L 2 (R),

(u, v) = R u(x)v(x)dx
and we denote by T x 0 the translation operator defined for ϕ ∈ C(R) by (T x 0 ϕ)(x) = ϕ(x + x 0 ). Note that since the process W is stationary in space, for any x 0 ∈ R the process T x 0 W is still a Wiener process with covariance φφ * . Indeed by (1.3),

T x 0 W (t, x) = k∈N (φe k )(x + x 0 )β k (t) = k∈N (φẽ k )(x)β k (t),
with ẽk (x) = T x 0 e k .

Modulation and estimate on the exit time

In this section, we prove the following theorem.

Theorem 2.1. Assume that the kernel k of the noise satisfies (1.2) together with k ∈ L 1 (R) and let c 0 be fixed. For ε > 0, let u ε (t, x), as defined above, be the solution of (1.1) with u(0, x) = ϕ c 0 (x). Then there exists α 0 > 0 such that, for each α, 0 < α ≤ α 0 , there is a stopping time τ ε α > 0 a.s. and there are semi-martingale processes c ε (t) and x ε (t), defined a.s. for t ≤ τ ε α , with values respectively in R + * and R, so that if we set εη ε (t) = u ε (t, .+x ε (t))-ϕ c ε (t) , then a.s. for t ≤ τ ε α , εη ε (t) 1 ≤ α and |c ε (t)c 0 | ≤ α. In addition, for α 0 sufficiently small, and any α ≤ α 0 , there is a constant C > 0, depending only on α and c 0 , such that for any T > 0, there is an ε 0 > 0, with, for each ε < ε 0 , (2.1)

P(τ ε α ≤ T ) ≤ exp - C(α, c 0 ) ε 2 T k 2 H 1 .
It was noticed heuristically in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF], and proved in [START_REF] De Bouard | Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise[END_REF] that in the additive case, the use of the modulation parameters x ε (t) and c ε (t) was necessary in order to get the estimate (2.1). Indeed, it was proved in [START_REF] De Bouard | Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise[END_REF] that if we denote by τ ε,n α = inf{t > 0, u ε,n (t, .)ϕ c 0 1 > α}, where u ε,n is here the solution of equation (1.1), but with an additive noise that becomes stationary in space as n goes to infinity (see [START_REF] De Bouard | Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise[END_REF] for a precise statement) then there exists a constant C(α, c 0 ) which depends on α and c 0 but not on T such that

(2.2) lim n→∞ lim ε→0 ε 2 log P (τ n,ε α ≤ T ) ≥ - C(α, c 0 ) T 3 . It is not clear that (2.
2) is still true in the present multiplicative case, because the proof involves a controlability problem with a potential which -up to now -is open.

Note also that the decomposition given in Theorem 2.1 is not unique, and is determined by the choice of specific orthogonality conditions (see the proof below). In particular, contrary to the additive case, we will be able here to investigate the asymptotic behavior in time of the limit process by choosing one particular decomposition of the form given in Theorem 2.1. This is the object of Section 3.3. Proof of Theorem 2.1 The proof follows closely the proof of Theorem 2.1 in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] and we refer to [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] for more details. The parameters x ε (t) and c ε (t) are obtained thanks to the use of the implicit function Theorem. These are then local semi-martingales defined as long as

|c ε (t) -c 0 | < α and u ε (t, . + x ε (t)) -ϕ c 0 1 < α, and setting εη ε (t) = u ε (t, . + x ε (t)) -ϕ c ε (t) , one has for each ε > 0, almost surely, (2.3) (η ε , ϕ c 0 ) = (η ε , ∂ x ϕ c 0 ) = 0.
In order to estimate the exit time

τ ε α = inf{t ≥ 0, |c ε (t) -c 0 | > α or εη ε (t) 1 > α},
we make use , as in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF], of the functional defined for u ∈ H 1 (R),

(2.4)

Q c 0 (u) := H(u) + c 0 m(u)
where H and m are defined respectively in (1.4) and (1.5). Note that ϕ c 0 is a critical point of Q c 0 . We denote by L c 0 the linearized operator around ϕ c 0 , that is

(2.5) L c 0 = -∂ 2 x + c 0 -2ϕ c 0 .
The next lemma, which is proved with the use of the Itô Formula, using the same regularization procedure as in [START_REF] De Bouard | On the stochastic Korteweg-de Vries equation[END_REF], gives the evolution of H and m for the solution u ε of (1.1) with u ε (0) = ϕ c 0 :

Lemma 2.2. For any stopping time τ < +∞ a.s, one has

m(u ε (τ )) = m(ϕ c 0 ) -ε τ 0 ((u ε )(s), dW (s)) + ε 2 |k| 2 L 2 τ 0 m(u ε (s))ds and 
H(u ε (τ )) = H(ϕ c 0 ) + ε τ 0 (∂ x u ε , ∂ x (u ε dW (s))) - ε 2 τ 0 ((u ε ) 3 , dW (s)) (2.6) + ε 2 2 τ 0 |k| 2 L 2 |∂ x u ε | 2 L 2 + |k ′ | 2 L 2 |u ε | 2 L 2 ds (2.7) - ε 2 2 k τ 0 R (u ε ) 3 |φe k | 2 dxds. (2.8) Consider ν > 0 such that (Q ′′ c 0 (ϕ c 0 )v, v) ≥ ν v 2 1 for any v ∈ H 1 satisfying (v, ϕ c 0 ) = (v, ∂ x ϕ c 0 ) = 0.
The existence of such a constant is a classical result (see [START_REF] Benjamin | The stability of solitary waves[END_REF] or [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF]). Then it is easy to show (see [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF]) that there is a constant C(α 0 ) > 0 such that for any t < τ ε α , (2.9)

Q c 0 (u ε (t, . + x ε (t))) -Q c 0 (ϕ c ε (t) ) ≥ ν 4 εη ε (t) 2 1 -C|c ε (t) -c 0 | 2 .
Now, if τ = τ ε α ∧ t, then by (2.9), the translation invariance of Q c 0 , and Lemma 2.2

(2.10)

εη ε (τ ) 2 1 ≤ 4 ν Q c 0 (ϕ c 0 ) -Q c 0 (ϕ c ε (τ ) ) + ε τ 0 (∂ x u ε (s), ∂ x (u ε dW (s))) - ε 2 τ 0 ((u ε ) 3 (s), dW (s)) + ε 2 2 τ 0 (|k| 2 L 2 |∂ x u ε | 2 L 2 + |k ′ | 2 L 2 |u ε | 2 L 2 )ds - ε 2 2 k τ 0 R (u ε ) 3 (s)|φe k | 2 dxds -c 0 ε τ 0 ((u ε ) 2 , dW (s)) +c 0 ε 2 |k| 2 L 2 τ 0 m(u ε (s))ds + C|c ε (τ ) -c 0 | 2 .
The term |c ε (τ )c 0 | is then estimated thanks to the orthogonality condition (η ε , ϕ c 0 ) = 0 and the evolution of m(u ε (τ )) given in Lemma 2.2; one obtains, for some constants µ > 0 and C > 0, depending only on c 0 and α 0 (with α ≤ α 0 )

µ|c ε (τ ) -c 0 | ≤ |ϕ c 0 | 2 L 2 -|ϕ c ε (τ ) | 2 L 2 ≤ |εη ε (τ )| 2 L 2 + Cα|c ε (τ ) -c 0 | + 2ε τ 0 ((u ε ) 2 , dW (s)) +2ε 2 |k| 2 L 2 τ 0 |u ε (s)| 2 L 2 ds.
Hence, choosing α 0 sufficiently small one gets

(2.11) |c ε (τ ) -c 0 | 2 ≤ C |εη ε (τ )| 4 L 2 + 4ε 2 τ 0 ((u ε ) 2 , dW (s)) 2 +4ε 4 |k| 4 L 2 τ 0 |u ε (s)| 2 L 2 ds 2
which, once inserted into (2.10) leads to

εη ε (τ ) 2 1 ≤ C |εη ε (τ )| 4 L 2 + ε τ 0 (∂ x u ε , ∂ x (u ε dW (s))) +ε τ 0 ((u ε ) 3 , dW (s)) + c 0 ε τ 0 ((u ε ) 2 , dW (s)) +4ε 2 τ 0 ((u ε ) 2 , dW (s)) 2 + ε 2 k 2 1 τ 0 u ε (s) 2 1 ds +ε 2 |k| 2 L 2 τ 0 u ε (s) 3 1 ds + ε 4 |k| 4 L 2 τ 0 |u ε (s)| 2 L 2 ds 2 .
With this estimate in hand, together with (2.11), the conclusion of Theorem 2.1 follows with the same arguments as in the proof of Proposition 3.1 in [START_REF] De Bouard | Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise[END_REF]. These arguments rely on classical exponential tail estimates for stochastic integrals, after noticing that u ε (s) 1 ≤ C, a.s. for s ∈ [0, τ ε α ∧ T ] and α ≤ α 0 , so that the quadratic variation of each of the integrals involved in the above estimates are bounded above by CT .

A central limit theorem

This section is devoted to the proof of the next theorem: Theorem 3.1. Under the assumptions of Theorem 2.1, let α < α 0 be fixed. Then we can find cε (t) and xε (t) satisfying the conclusion of Theorem 2.1 such that if ηε is defined as in Theorem 2.1, for any T > 0, the process

(η ε (t)) t∈[0,T ] converges in L 2 (Ω; L ∞ (0, τ ε α ∧ T ; L 2 (R)
)) to a Gaussian process η satisfying the additive linear equation

(3.1) dη = ∂ x L c 0 η dt + Qϕ c 0 d W ,
with η(0) = 0, where W is the Wiener process with covariance φφ * given by W = T c 0 t W , and Q is a projection operator. Moreover, for a > 0 sufficiently small compared to c 0 , the process w(t, x) = e ax η(t, x) is a well defined H 1 valued process, of Ornstein-Uhlenbeck type, which converges in law to an H 1 -valued Gaussian random variable as t goes to infinity.

The conclusion of Theorem 3.1 will be obtained in three steps. The first step consists in estimating the modulation parameters obtained in Theorem 2.1, in terms of η ε , using the equations for those parameters; then the convergence of η ε as ε tends to zero is proved, and finally in the third step, a slight change in the modulation parameters is performed, in order that the limit process η may be written as an Ornstein-Uhlenbeck process.

From now on, we assume that α is fixed and sufficiently small, so that the conclusion of Theorem 2.1 holds, and we denote τ ε α by τ ε .

3.1. Modulation equations. Since we know that the modulation parameters x ε (t) and c ε (t) are semi-martingale processes adapted to the filtration generated by (W (t)) t≥0 , we may a priori write the stochastic evolution equations for those parameters in the form

(3.2) dx ε = c ε dt + εy ε dt + ε(z ε , dW ) dc ε = εa ε dt + ε(b ε , dW )
where y ε and a ε are real valued adapted processes with a.s. locally integrable paths on [0, τ ε ), and b ε , z ε are predictable processes with paths a.s. in L 2 loc (0, τ ε ; L 2 (R)). We then proceed as in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF] : the Itô-Wentzell Formula applied to u ε (t, x + x ε (t)), together with equation (1.1) for u ε and the first equation of (3.2) for x ε give a stochastic evolution equation for u ε (t, x + x ε ). On the other hand, the standard Itô Formula together with the second equation of (3.2) for c ε give an equation for the evolution of ϕ c ε (t) . Replacing then ϕ c ε (t) + εη ε (t, x) for u ε (t, x + x ε (t)) in the first equation leads to the following stochastic equation for the evolution of η ε (t) :

(3.3) dη ε = ∂ x L c 0 η ε dt + (y ε ∂ x ϕ c ε -a ε ∂ c ϕ c ε )dt -∂ x ((ϕ c ε -ϕ c 0 )η ε )dt +(c ε -c 0 + εy ε )∂ x η ε dt -ε 2 ∂ x ((η ε ) 2 )dt + ϕ c ε T x ε dW +∂ x ϕ c ε (z ε , dW ) -∂ c ϕ c ε (b ε , dW ) + εη ε T x ε dW + ε∂ x η ε (z ε , dW ) + ε 2 ∂ 2 x ϕ c ε |φ * z ε | 2 L 2 dt -ε 2 ∂ 2 c ϕ c ε |φ * b ε | 2 L 2 dt + ε l∈N ∂ x (ϕ c ε T x ε φe l )(z ε , φe l )dt + 1 2 ε 2 ∂ 2 x η ε |φ * z ε | 2 L 2 dt + ε 2 l∈N ∂ x (η ε T x ε φe l )(z ε , φe l )dt
where L c 0 is defined in (2.5). Now, taking the L 2 -inner product of equation (3.3) with ϕ c 0 , on the one hand, and with ∂ x ϕ c 0 on the other hand, then using the orthogonality conditions (2.3) and the fact that L c 0 ∂ x ϕ c 0 = 0, and finally identifying the drift parts and the martingale parts of each of the resulting equations lead to the same kind of system that we previously obtained in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF]; namely, setting

Y ε (t) = y ε (t) a ε (t) and Z ε l (t) = (z ε , φe l ) (b ε , φe l )
then one gets for the drift parts

(3.4) A ε (t)Y ε (t) = G ε (t)
where

(3.5) A ε (t) = (∂ x ϕ c ε + ε∂ x η ε , ∂ x ϕ c 0 ) -(∂ c ϕ c ε , ∂ x ϕ c 0 ) -(∂ x ϕ c ε , ϕ c 0 ) (∂ c ϕ c ε , ϕ c 0 )
and

G ε (t) = G ε 1 (t) G ε 2 (t) , with (3.6) 
G ε 1 (t) = (η ε , L c 0 ∂ 2 x ϕ c 0 ) + (c ε -c 0 )(η ε , ∂ 2 x ϕ c 0 ) + ε 2 (∂ x (η ε ) 2 , ∂ x ϕ c 0 ) +(∂ x ((ϕ c ε -ϕ c 0 )η ε ), ∂ x ϕ c 0 ) -ε 2 (∂ 2 x ϕ c ε , ∂ x ϕ c 0 )|φ * z ε | 2 L 2 + ε 2 (∂ 2 c ϕ c ε , ∂ x ϕ c 0 )|φ * b ε | 2 L 2 -ε l∈N (z ε , φe l )(∂ x (ϕ c ε T x ε φe l ), ∂ x ϕ c 0 ) + 1 2 ε 2 (η ε , ∂ 3 x ϕ c 0 )|φ * z ε | 2 L 2 -ε 2 l∈N (∂ x (η ε T x ε φe l ), ∂ x ϕ c 0 )(z ε , φe l ) and (3.7) 
G ε 2 (t) = -ε 2 (∂ x (η ε ) 2 , ϕ c 0 ) -(∂ x ((ϕ c ε -ϕ c 0 )η ε ), ϕ c 0 ) + ε 2 (∂ 2 x ϕ c ε , ϕ c 0 )|φ * z ε | 2 L 2 -ε 2 (∂ 2 c ϕ c ε , ϕ c 0 )|φ * b ε | 2 L 2 + ε (z ε , φe l )(∂ x (ϕ c ε T x ε φe l ), ϕ c 0 ) + ε 2 2 (η ε , ∂ 2 x ϕ c 0 )|φ * z ε | 2 L 2 + ε 2 l∈N (∂ x (η ε T x ε φe l ), ϕ c 0 )(z ε , φe l ); note that A ε (t) = A 0 + O(|c ε -c 0 | + εη ε 1 ), a.s. for t ≤ τ ε with A 0 = |∂ x ϕ c 0 | 2 L 2 0 0 (ϕ c 0 , ∂ c ϕ c 0 )
and O(|c εc 0 | + η ε 1 ) is uniform in ε, t and ω as long as t ≤ τ ε . Concerning the martingale parts, one gets the equation

(3.8) A ε (t)Z ε l (t) = F ε l (t), ∀l ∈ N with (3.9) F ε (t) = -((ϕ c ε + εη ε )T x ε φe l , ∂ x ϕ c 0 ) ((ϕ c ε + εη ε )T x ε φe l , ϕ c 0 ).
Proposition 3.2. Under the above assumptions, there is a constant

α 1 > 0, such that if α ≤ α 1 , then (3.10) |φ * z ε (t)| L 2 + |φ * b ε | L 2 ≤ C 1 |k| L 2 , a.s. for t ≤ τ ε and (3.11) |a ε (t)| + |y ε (t)| ≤ C 2 |η ε (t)| L 2 + εC 3 , a.s. for t ≤ τ ε
for some constants C 1 , C 2 , C 3 , depending only on α and c 0 , and for any ε ≤ ε 0 .

Proof The proof is exactly the same as the proof of Corollary 4.3 in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF], once noticed that, a.s.

for t ≤ τ ε , l∈N |F ε l (t)| 2 ≤ C l∈N |(ϕ c ε + εη ε )T x ε φe l | 2 L 2 ≤ C l R (ϕ c ε + εη ε ) 2 (x)[(T x ε k) * e l ] 2 (x)dx ≤ R (ϕ c ε + εη ε ) 2 (x) l (T x ε k(x -.), e l ) 2 dx ≤ C R (ϕ c ε + εη ε ) 2 (x)|T x ε k(x -.)| 2 L 2 dx ≤ C|k| 2 L 2 |ϕ c ε + εη ε | 2 L 2 ≤ C|k| 2 L 2
where we have used the Parseval equality in the fourth line.

3.2.

Convergence of η ε . Let us first assume that η ε has a limit as ε goes to zero, and take formally the limit as ε goes to zero in the preceding equations. Then, as was noticed above, 

lim ε→0 A ε = A 0 = |∂ x ϕ c 0 | 2 L 2 0 0 (ϕ c 0 , ∂ c ϕ c 0 ) hence (3.12) lim ε→0 φ * z ε = - 1 |∂ x ϕ c 0 | 2 L 2 (T c 0 t φ) * (ϕ c 0 ∂ x ϕ c 0 ) := z (3.13) lim ε→0 φ * b ε = 1 (ϕ c 0 , ∂ c ϕ c 0 ) (T c 0 t φ * )(ϕ 2 c 0 ) := b (3.14) lim ε→0 y ε = 1 |∂ x ϕ c 0 | 2 L 2 (η, L c 0 ∂ 2 x ϕ
dη = ∂ x L c 0 ηdt + 1 |∂xϕc 0 | 2 L 2 (η, L c 0 ∂ 2 x ϕ c 0 )∂ x ϕ c 0 dt +ϕ c 0 T c 0 t dW - 1 2|∂xϕc 0 | 2 L 2 (∂ x (ϕ 2 c 0 ), T c 0 t dW )∂ x ϕ c 0 - 1 (ϕc 0 ,∂cϕc 0 ) (ϕ 2 c 0 , T c 0 t dW )∂ c ϕ c 0 .
It is easy to show that (3.16) has a unique adapted solution η with paths a.s. in C(R + , H 1 ) satisfying η(0) = 0. Moreover using the fact that (∂ c ϕ c 0 , ∂ x ϕ c 0 ) = 0, one easily gets from the above equation that (η,

ϕ c 0 ) = (η, ∂ x ϕ c 0 ) = 0, ∀t > 0.
Next, we make use of the following lemmas, whose proofs are obtained in the same way as the corresponding Lemmas in [START_REF] De Bouard | Random modulation of solitons for the stochastic Korteweg-de Vries equation[END_REF]. Lemma 3.3. Let η be the solution of (3.16) with η(0) = 0. Then, for any T > 0, there is a constant C depending only on c 0 , T and k 1 such that E η(t) 4 1 ≤ C, ∀t ≤ T.

Lemma 3.4. Let η ε be the solution of (3.3), defined for t ∈ [0, τ ε [, obtained thanks to the modulation procedure of Section 2. Then, for any T > 0,

E sup t≤τ ε ∧T |η ε (t)| 4 L 2 ≤ C(T, α, c 0 , k 1 ).
The above lemmas show that

(3.17) ∀T > 0, ∀q ≥ 2, lim ε→0 E sup t≤T ∧τ ε |c ε (t) -c 0 | q = 0.
Indeed, the expression of c ε (t)c 0 given by (3.2) together with (3.10) and (3.11) imply easily

E sup t≤T ∧τ ε |c ε (t) -c 0 | 2 ≤ Cε 2 [1 + E T ∧τ ε 0 |η ε (s)| 2 L 2 ds]
with C = C(α, c 0 , T, k 1 ). Then, (3.17) is deduced form Lemma 3.4 for q = 2, and follows for all other values of q from the uniform boundedness of

|c ε (t) -c 0 | on [0, T ∧ τ ε ].
Note that an immediate consequence of (3.17) is the fact that

(3.18) ∀T > 0, ∀q ≥ 2, lim ε→0 E sup t≤T ∧τ ε ϕ c ε (t) -ϕ c 0 2 2 = 0.
We will finally need the next lemma.

Lemma 3.5. For any T > 0, and any q ≥ 1,

lim ε→0 E sup t≤T ∧τ ε l∈N |Z ε l (t) -Z l (t)| 2 q = 0
where we have set for l ∈ N

Z l (t) = (z, φe l ) (b, φe l ) ,
z and b being given by (3.12) and (3.13), respectively.

Proof Here again, it is sufficient to consider the case q = 1. We recall that Z ε l satisfies equation (3.8). First, it is clear that

lim ε→0 E sup t≤T ∧τ ε (A ε (t)) -1 -(A 0 (t)) -1 2q = 0, ∀q ≥ 1.
On the other hand, in view of (3.9), denoting F 0 l (t) the formal limit of F ε l (t), one has

E sup t≤T ∧τ ε l |F ε l (t) -F 0 l (t)| 2 ≤ CE sup t≤T ∧τ ε l |∂ x ϕ c 0 (T x ε φ -T c 0 t φ)e l | 2 L 2 + CE sup t≤T ∧τ ε ϕ c ε (t) -ϕ c 0 2 1 and E sup t≤T ∧τ ε l |∂ x ϕ c 0 (T x ε φ -T c 0 t φ)e l | 2 L 2 ≤ ϕ c 0 2 1 E sup t≤T ∧τ ε |k(. + x ε (t) -c 0 t) -k| 2 L 2 .
Then, the Itô Formula applied to the function

K ε (t, x) = (k(x + x ε (t) -c 0 t) -k(x)) 2
using equation (3.2) for dx ε (t), together with (3.10), (3.11), and (3.17) lead to the conclusion of Lemma 3.5. Now, in order to prove that

(3.19) lim ε→0 E sup t≤T ∧τ ε |η ε (t) -η(t)| 2 L 2 = 0,
where η is the solution of (3.16) with η(0) = 0, it suffices to set v ε = η εη, to deduce from (3.16) and (3.3) the equation for dv ε and to apply the Itô Formula to get the evolution of |v ε | 2 L 2 . We do not give the details of those tedious, but easy computations. Finally, the use of the following estimates :

ε|(v ε , ∂ x ((η ε ) 2 ))| = ε|(∂ x η, (η ε ) 2 )| ≤ ε η 1 |η ε | 2 L 4 ≤ Cε η 1 |η ε | 3/2 L 2 |∂ x η ε | 1/2 L 2 ≤ C √ ε η 1 |η ε | 3/2 L 2
on the one hand, and

|y ε -y| + |a ε | ≤ C(|v ε | L 2 + |c ε -c 0 ||η ε | L 2 + ε|η ε | 2 L 2 + |η ε | L 2 ϕ c ε -ϕ c 0 1 + ε)
which is obtained as in the proof of Lemma 3.5 on the other hand, together with Lemma 3.3 to 3.5 allow to get the conclusion, that is the convergence of η ε to η in L 2 (Ω, L ∞ (0, τ ε ∧T ; L 2 (R))).

3.3. Complements on the limit equation. First of all, we note that the modulation equations may be written at order one in ε as

dx ε = c 0 dt + εydt + εW 1 dt + εdW 2 + o(ε) dc ε = εdW 1 + o(ε) where y = |∂ x ϕ c 0 | -2 L 2 (η, L c 0 ∂ 2 x ϕ c 0 ), W 1 (t) = (ϕ c 0 , ∂ c ϕ c 0 ) -1 (ϕ 2 c 0 , W (t)) and W 2 (t) = - 1 2 |∂ x ϕ c 0 | -2 L 2 (∂ x (ϕ c 0 2 ), W (t)).
Note that W 1 and W 2 are real valued Brownian motions, which are independent since

E(W 1 (t)W 2 (s)) = - 1 2 |∂ x ϕ c 0 | -2 L 2 (ϕ c 0 , ∂ c ϕ c 0 ) -1 (φ * (∂ x (ϕ 2 c 0 )), φ * (ϕ 2 c 0 ))(t ∧ s) = 0
because the operator φ * commutes with spatial derivation. Now, we want to investigate the asymptotic behavior in time of the process η. However, in the present form, the process η does not converge in law as t goes to infinity; this is due to the fact that the preceding modulation does not exactly correspond to the projection of the solution u ε on the (two-dimensional) center manifold, in which case the remaining term would belong to the stable manifold around the soliton trajectory. We now show that by slightly changing the modulation parameters, we can get a new decomposition of the solution u ε which is defined on the same time interval as before, but which fits with the preceding requirements. For that purpose, we first need to recall a few facts from [START_REF] Pego | Asymptotic stability of solitary waves[END_REF].

The generalized nullspace of the operator ∂ x L c 0 (that is the operator arising in the linearized evolution equation in the soliton reference frame) is spanned by the functions ∂ x ϕ c 0 and ∂ c ϕ c 0 , with the equality

∂ x L c 0 ∂ c ϕ c 0 = -∂ x ϕ c 0
and there are constants θ 1 and θ 2 (with

θ 1 = (ϕ c 0 , ∂ c ϕ c 0 )) such that if we set g1 (x) = -θ 1 x -∞ ∂ c ϕ c 0 (y)dy + θ 2 ϕ c 0 and g2 (x) = θ 1 ϕ c 0
then the generalized nullspace of -L c 0 ∂ x is spanned by g1 and g2 and

(g 1 , ∂ x ϕ c 0 ) = 1, (g 1 , ∂ c ϕ c 0 ) = 0, (g 2 , ∂ x ϕ c 0 ) = 0, (g 2 , ∂ c ϕ c 0 ) = 1.
We also set, for a > 0,

f a 1 (x) = e ax ∂ x ϕ c 0 , f a 2 (x) = e ax ∂ c ϕ c 0 , g a 1 (x) = e -ax g1 (x), g a 2 (
x) = e -ax g2 (x), so that (f a i , g a j ) = δ ij . Then the operator A a defined for a > 0 by A a = e ax ∂ x L c 0 e -ax has a well defined generalized nullspace spanned by f a 1 , f a 2 and the spectral projection on this nullspace is given by P w = 2 k=1 (w, g a k )f a k where w = e ax v, and v is an L 2 function. Moreover, if Q = I -P , then Q is the spectral projection on the stable manifold of A a , and under the condition 0 < a < c 0 /3, there are constants C > 0 and b > 0 such that (3.20) e Aat Qw 1 ≤ Ce -bt w 1 , ∀t > 0, ∀w ∈ H 1 , where e Aat is the C 0 -semi-group generated by A a (see Theorem 4.2 in [START_REF] Pego | Asymptotic stability of solitary waves[END_REF]). Now, let η be the solution of (3.16) with η(0) = 0, and consider w(t, x) = e ax η(t, x). Note that the orthogonality condition (η, ϕ c 0 ) = 0 implies (w, g a 2 ) = 0, so that P w = λ(t)f a 1 with λ(t) = (w(t), g a 1 ) a real valued stochastic process whose evolution is given by (3.21)

λ(t) = t 0 |∂ x ϕ c 0 | -2 L 2 (η(s), L c 0 ∂ 2 x ϕ c 0 )ds - t 0 |∂ x ϕ c 0 | -2 L 2 (ϕ c 0 ∂ x ϕ c 0 , d W (s)) + t 0 (e ax ϕ c 0 d W (s), g a 1 )
where we have used (3.16) and the fact that A a P w = 0 and λ(0

) = 0. Hence, λ(t) is bounded in L 4 (Ω; L ∞ (0, T ∧ τ ε )) by Lemma 3.3. Let us set xε (t) = x ε (t) -ελ(t) for t ∈ [0, τ ε [. Then (3.22) u ε (t, x + xε (t)) = ϕ c ε (t) (x) + εη ε (t, x) with ηε (t, x) = 1 ε (ϕ c ε (t) (x -ελ(t)) -ϕ c ε (t) (x)) + η ε (t, x -ελ(t)).
Note that, a.s. for t ≤ τ ε :

|ϕ c ε (t) (. -ελ(t)) -ϕ c ε (t) -ελ(t)∂ x ϕ c ε (t) | L 2 ≤ ε 2 λ 2 (t)C(c 0 , α).
Hence, it follows from Lemma 3. Moreover, this covariance operator converges as t goes to infinity and it follows that w 2 converges in law in H 1 to a Gaussian random variable. The end of the statement of Theorem 3.1 follows, setting Qv = e -ax Qe ax v.

A remark on the soliton diffusion

Let us go back to the stochastic evolution equations for the new modulation parameters, that we may write as If we keep only the order one terms in ε i.e. we consider the solution (X ε (t), C ε (t)) of the system of SDEs dX ε = c 0 dt + εB 1 dt + εdB 2 dC ε = εdB 1 , then (X ε (t)c 0 t, C ε (t)c 0 ) is a centered Gaussian vector, and it is easy to compute its covariance matrix. Let us denote by µ ε t the law of (X ε (t)c 0 t, C ε (t)c 0 ); we may compute 

E ϕ C ε (t) (x -X ε (t)) ≤ K 0 ε -1/2 t -5/4
for t large enough. This inequality has to be compared to the result of [START_REF] Wadati | Stochastic Korteweg-de Vries equations[END_REF] where an additive equation with a white noise in time was considered. An inequality of the form (4.3) was obtained, but with a power t -3/2 instead of t -5/4 .

t 0 e 2 1 dσ ≤ C t 0 e -bσ dσ l e ax ϕ c 0 φe l 2 1

 0202 Aa(t-σ) Q[e ax ϕ c 0 d W (σ)]; the trace of the covariance operator of the Gaussian process w 2 in H 1 may be easily computed and estimated thanks to (3.20) as t 0 l e Aaσ Qe ax ϕ c 0 φe l dσ ≤ C k 2 1 e ax ϕ c 0 2 1 .

(4. 1 )

 1 dx ε = c 0 dt + εB 1 dt + εdB 2 + o(ε) dc ε = εdB 1 + o(ε) with B 1 = W 1 and B 2 = -(e ax ϕ c 0 W (t), g a 1 ) = -( W (t), ϕ c 0 g1). Note that B 1 and B 2 are now correlated Brownian motions. We denote by σ = (σ ij ) i,j = cov(B 1 , B 2 ).

E

  ϕ C ε (t) (x -X ε (t)) = max x∈R ϕ c+c 0 (xc 0 ty)µ ε t (dy, dc)

  3, 3.4 and the above bound on λ that

	(3.23)	lim ε→0	E sup t≤T ∧τ ε	|η ε (t) -η(t)| 2 L 2 = 0
	with η(t) = η(t) -λ(t)∂ x ϕ c 0 . So now, with this new decomposition, we clearly have, setting w(t, x) = e ax η(t, x) :
			P w = 0, Q w = Qw.
	Also, if w 2 = Qw, then the equation (3.16) implies
	(3.24)	dw 2 = A a w 2 dt + Qe ax ϕ c 0 d	W
	hence			
		w 2 (t) =	

  1/2 ϕ c+c 0 (xc 0 ty) exp -the covariance matrix of (X ε (t)c 0 t, C ε (t)c 0 ), given by Σ = ε 2 σ 11 t σ 12 t + σ 11Inserting this inequality in (4.2), using the fact that ϕ c (x) = cϕ 1 ( √ cx) and integrating in y

	where Σ is t 2
					σ 12 t + σ 11	t 2 2	2 σ 22 t + σ 12 t 2 + σ 11	3 t 3	.
	It is not difficult to see that										
	exp -	1 2	Σ -1 c y	.	c y	≤ exp -	1 2	ε 2 det Σ	σ 11	t 3 12	+ (σ 22 -	σ 2 12 σ 11	t) c 2 .
	give the bound												
	E ϕ C ε (t) (x -X ε (t)) ≤	K (det Σ) 1/2	0	+∞	√	c + c 0 e -1 2	ε 2 det Σ [σ 11	t 3 12 +(σ 22 -	σ 2 12 σ 11	t)]c 2	dc
	where K is a constant, and since								
					0	+∞	√ ce -c 2 2α 2 dc ≤ Kα 3/2
	for another constant K, it follows								
	(4.3)		max x∈R									
														1 2	Σ -1 c y	.	c y	dcdy