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We show that the Landau levels cease to be eigenvalues if we perturb the 2D Schrödinger operator with constant magnetic field, by bounded electric potentials of fixed sign. We also show that, if the perturbation is not of fixed sign, then any Landau level may be an eigenvalue of the perturbed problem.

Introduction. Main results

In this note we consider the Landau Hamiltonian H 0 , i.e. the 2D Schrödinger operator with constant magnetic field. It is well-known that the spectrum of H 0 consists of an arithmetic progression of eigenvalues called Landau levels of infinite multiplicity. In Theorem 1 we show that under perturbations by fairly general electric potentials of constant sign, the Landau levels cease to be eigenvalues of the perturbed operator. Moreover, in Theorem 2 we show that for each fixed Landau level there exist nonconstant-sign electric potentials such that the Landau levels is still an eigenvalue of infinite multiplicity of the perturbed operator. Let

H 0 := -i ∂ ∂x + by 2 2 + -i ∂ ∂y - bx 2 2 -b
be the Landau Hamiltonian shifted by the value b > 0 of the constant magnetic field.

The operator

H 0 is self-adjoint in L 2 (R 2 ), and essentially self-adjoint on C ∞ 0 (R 2 ). Note that C ∞ 0 (R 2 ) \ {0}
is a form core for the operator H 0 . It is well-known (see [START_REF] Fock | Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld[END_REF][START_REF] Landau | Diamagnetismus der Metalle[END_REF][START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]) that the spectrum σ(H 0 ) of the operator H 0 consists of the so-called Landau levels 2bq, q ∈ N := {0, 1, 2 . . .}, which are eigenvalues of H 0 of infinite multiplicity. Let V ∈ L ∞ (R 2 ; R). We will suppose that

cχ(x) ≤ V (x), x = (x, y) ∈ R 2 , (1.1) 1
where c > 0 is a constant and χ is the characteristic function of a disk of radius r > 0 in R 2 , and

V L ∞ (R 2 ) < 2b. (1.2)
Set H ± := H 0 ± V . The main result of the note is the following (1.4)

Theorem 1. Fix q ∈ N. (i) Assume that V ∈ L ∞ (R 2 ; R) satisfies (1.1); if q ≥ 1,
The proof of Theorem 1 can be found in Section 2.

To the authors' best knowledge the fate of the Landau levels under perturbations of the described class had never been addressed in the mathematical literature. However, the asymptotic distribution of the discrete spectrum near the Landau levels of various perturbations of the Landau Hamiltonian and its generalizations has been considered by numerous authors (see [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF][START_REF] Ivrii | Microlocal Analysis and Precise Spectral Asymptotics[END_REF][START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF][START_REF] Melgaard | Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank[END_REF][START_REF] Filonov | Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains[END_REF][START_REF] Pushnitski | Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain[END_REF][START_REF] Rozenblum | On the spectral properties of the perturbed Landau Hamiltonian[END_REF][START_REF] Rozenblum | Sobolev Discrete spectrum distribution of the Landau operator perturbed by an expanding electric potential, to appear in: Advances in the Mathematical Sciences Spectral Theory of Differential Operators[END_REF][START_REF] Persson | Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamitonian[END_REF]); in particular, it was shown in [START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF] that for any V which satisfies (1.1), and is relatively compact with respect to H 0 , and for any Landau level there exists an infinite sequence of discrete eigenvalues of H ± which accumulates to this Landau level. Such results are related to the problem treated here: indeed, the existence of such an infinite sequence is a necessary condition that the Landau level not be an infinitely degenerate eigenvalue of H ± .

The fact that V has a fixed sign plays a crucial role in our result, as shows the following Theorem 2. Fix q ≥ 0. Then, there exists a bounded compactly supported non-constant-

sign potential V such that V L ∞ (R 2 ) < b and dim Ker (H 0 + V -2bq) = ∞.
(1.5)

The proof of Theorem 2 is contained in Section 3. Its strategy is to consider radially symmetric potentials V , and, applying a decomposition into a Fourier series with respect to the angular variable, to represent the operator H 0 + V as an infinite sum of ordinary differential operators involving only the radial variable. Such a representation of H 0 + V is well known, and has been used in different contexts of the spectral theory of the perturbed Landau Hamiltonian (see e.g. [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF][START_REF] Miller | Quantum magnetic Hamiltonians with remarkable spectral properties[END_REF]). To prove Theorem 2, the basic consequence is that, for a compactly supported, radially symmetric potential V , the first derivative with respect to the coupling constant λ at λ = 0 of the eigenvalues of H 0 + λV close to the q-th Landau level is determined by V near the external rim of its support. Thus, writing V = V t as an infinite sum of concentric potentials depending on different coupling constant t = (t l ) l≥1 ∈ ℓ ∞ (N * ), one can construct an analytic mapping from a neighborhood of 0 in ∈ ℓ ∞ (N * ) to a subset of the eigenvalues of H 0 + V t near the q-th Landau level, the Jacobian of which we control for t = 0. The potential exhibited in Theorem 2 can be chosen arbitrarily small. Following the same idea, one can also construct compactly supported potentials such that any of the Landau levels be of finite non trivial multiplicity or non compactly supported, bounded potentials such that (1.5) be satisfied for any q ∈ N.

Proof of Theorem 1

Denote by Π q , q ∈ N, the orthogonal projection onto Ker(H 0 -2bq). Set

Π + q := ∞ j=q Π j , Π - q := I -Π + q , q ∈ N.
In order to prove Theorem 1, we need a technical result concerning some Toeplitz-type operators of the form Π q V Π q .

Lemma 3. Let V ∈ L ∞ (R 2 ; R) satisfy (1.1). Fix q ∈ N. Then

Π q V Π q u, u = 0, u ∈ L 2 (R 2 ), (2.1) 
where •, • denotes the scalar product in L 2 (R 2 ), implies

Π q u = 0. (2.2) 
Proof. By (1.1) and (2.1), 0 ≤ c Π q χΠ q u, u ≤ Π q V Π q u, u = 0, (

i. e. Π q χΠ q u, u = 0.

(2.4)

Denote by T := Π q χΠ q the operator self-adjoint in the Hilbert space Π q L 2 (R 2 ). The operator T is positive and compact, and its eigenvalues can be calculated explicitly (see [12, Eq. (3.32)]). This explicit calculation implies that Ker T = {0}. Therefore, (2.2) follows from (2.4).

Proof of Theorem 1. First, we prove (1.3) in the case q = 0. Assume that there exists u ∈ D(H + ) = D(H 0 ) such that H + u = 0. Hence,

H 0 u, u + V u, u = 0. (2.5)
The two terms at the l.h.s. of (2.5) are non-negative, and therefore they both should be equal to zero. Since H 0 u, u = 0, we have

u = Π 0 u. (2.6)
Define the operators

H (m) 0 := - 1 ̺ d d̺ ̺ d d̺ + m ̺ -b̺ 2 -b, m ∈ Z,
self-adjoint in L 2 (R + ; ̺d̺), as the Friedrichs' extensions of the operators defined on C ∞ 0 (R + ) with R + := (0, ∞). Then, the operator H 0 is unitarily equivalent to the orthogonal sum ⊕ m∈Z H (m) 0 under the passage to polar coordinates (̺, φ) in R 2 , and a subsequent decomposition into a Fourier series with respect to the angular variable φ. For any m ∈ Z, we have

σ(H (m) 0 ) = ∞ q=m - {2bq}
where, as usual, m -:= max{0, -m} (see e.g. [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]). In contrast to the 2D Landau Hamiltonian H 0 however, we have dim Ker(H

(m) 0 -2bq) = 1 for all q ≥ m -, m ∈ Z. Further, assume that V ∈ L ∞ (R 2 ; R) and V is radially symmetric i.e. V (x, y) = v x 2 + y 2 , (x, y) ∈ R 2 .
Then, the operator H 0 +V is unitarily equivalent to the orthogonal sum ⊕ m∈Z (H

(m) 0 +v). Thus, dim Ker(H 0 + V -2bq) = m∈Z dim Ker(H (m) 0 + v -2bq), q ∈ N. (3.1) 
If V L ∞ (R 2 ) = v L ∞ (R + ) < b
, for all m ∈ N, the q-th eigenvalue of H (m) 0

+ v that we denote by E q (v; m), stays in the interval 2bq+] -b, b[; in particular, it stays simple. So, as a consequence of regular perturbation theory, see e.g. [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF][START_REF] Reed | Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF], the eigenvalues (E q (v; m)) q≥0 are real analytic functions of the potential v. Moreover, one computes

∂ ∂t E q (tv; m)| t=0 = R + v(ρ)ϕ q,m (̺) 2 ̺d̺ (3.2) 
where 

ϕ q,m (̺) := q! π(q + m)! b 2 m+1 ̺ m L (m) q b̺ 2 /2 e -b̺ 2 /4 , ̺ ∈ R + , q ∈ N,
L (m) q (s) := q l=0 (q + m)! (m + l)!(q -l)! (-s) l l! , s ∈ R, are the generalized Laguerre polynomials. Pick t ∈] -b/2, b/2[ N * and consider the potential v t (ρ) = - j∈N * t 2j-1 1 [x - 2j-1 ,x + 2j-1 ] (ρ) + j∈N * t 2j 1 [x - 2j ,x + 2j ] (ρ), ρ ∈ R + , (3.3) 
where x - j := e -α j /2 , x + j := e -β j /2 , and

α 2j-1 := 2 -N (j-1/2) 2 +1 , β 2j-1 := 2 -N j 2 +1 , α 2j := 2 -N (j-1/2) 2 , β 2j := 2 -N j 2 . (3.4)
We will choose the large integer N later on.

As, for j ≥ 1, one has

N(j -1) 2 < N(j -1/2) 2 -1 < N(j -1/2) 2 < Nj 2 -1 < Nj 2 < N(j + 1/2) 2 -1,
we note that, for N sufficiently large, one has:

• v t L ∞ (R + ) < b for t ∈] -b/2, b/2[ N * ;
• v t vanishes identically if and only if the vector (t j ) j vanishes identically.

For j ≥ 1, define m j = 2 N j 2 -1 and consider the mapping

E : t ∈] -b/2, b/2[ N * → (E 2j-1 (t), E 2j (t)) j≥1 = (t 2j + t 2j-1 , Ẽq (v t ; m j )) j≥1 ∈] -r, r[ N * where Ẽq (v t ; m j ) = 2πq! C j m j (m j !) 2 (q + m j )! 2 b m j +1 (E q (v t ; m j ) -2bq)
The constants (C j ) j are going to be chosen later on. The mapping is real analytic and we can compute its Jacobi matrix at t = 0. First, bearing in mind (3.2), (3.3), and (3.4), we easily find that

∂ t 2j E 2l (0) = C -1 j (e -m l β 2j (1 + o(1)) -e -m l α 2j (1 + o(1))) =        1 if j = l, O e -2 N|j-l| if l > j, O 2 -N |j-l| if l < j, ∂ t 2j+1 E 2l (0) = -C -1 j (e -m l β 2j+1 (1 + o(1)) -e -m l α 2j+1 (1 + o(1))) =        -e -2 + O(e -2 Nj ) if j = l, O e -2 N|j-l| if l > j, O 2 -N |j-l| if l < j,
when one chooses C j properly. In this formula, o(1) refers to the behavior of the function when N → +∞ uniformly in l, j. Moreover, obviously,

∂ t 2j-1 E 2l-1 (0) = ∂ t 2j E 2l-1 (0) = δ jl .
Hence, the Jacobi matrix of the mapping E(t) at t = 0 can be written as J + E where J is a block diagonal matrix made of the blocks 1 1 -e -2 1 and the error matrix E is a bounded operator from l ∞ (N * ) to itself with a norm bounded by C2 -N . So for N large enough this Jacobi matrix is invertible and, using the analytic inverse mapping theorem, we see that there exists a real analytic diffeomorphism ϕ on a ball of l ∞ (N * ) centered at 0, such that E • ϕ(u) = (u 2j + u 2j-1 , u 2j -e -2 u 2j-1 ) j≥1 ∈] -r, r[ N * , and ϕ(0) = 0. To construct the potential v t having the Landau level 2bq as an eigenvalue with infinite multiplicity, it suffices to take t = ϕ(u) with u 2j = e -2 u 2j-1 = 0 for infinitely many indices j ∈ N * . This completes the proof of Theorem 2.

  are the normalized eigenfunctions of the operator H (m) 0 , m ∈ N, and
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Therefore, V u, u = Π 0 V Π 0 u, u = 0. By Lemma 3, we have Π 0 u = 0, and by (2.6) we conclude that u = 0. Next, we prove (1.3) in the case q ≥ 1. Assume that there exists u ∈ D(H 0 ) such that

(2.7)

Set u + := Π + q u, u -:= u -u + ; evidently, u ± ∈ D(H 0 ). Since H 0 commutes with the projections Π ± q , (2.7) implies

Now note that the operator

, and its inverse is a negative operator. Moreover, by (2.9) we have

which inserted into (2.8) implies

The three terms on the l.h.s. of (2.11) are non-negative, and hence they all should be equal to zero. Since u + = Π + q u + , the equality (H 0 -2bq)u + , u + = 0 implies u + = Π q u + .

(2.12)

Therefore, Π + q V Π + q u + , u + = Π q V Π q u + , u + , and Π + q V Π + q u + , u + = 0 is equivalent to Π q V Π q u + , u + = 0. Now by Lemma 3 we have Π q u + = 0, by (2.12) we have u + = 0, and by (2.10) we have u -= 0. Therefore, u = 0. Finally, we sketch the proof of (1.4) which is quite similar to the one of (1.3)

), its inverse is a positive operator, and by analogy with (2.10) we get

w -, w -= 0. The three terms on the l.h.s. are non-positive, and hence they should vanish. As in the proof of (1.3), we easily conclude that w -= 0, and hence w = 0.