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Abstract

We present and analyze a penalization method which extends the the method of [2] to the
case of a rigid body moving freely in an incompressible fluid. The fluid-solid system is viewed
as a single variable density flow. The interface is captured by a color function satisfying
a transport equation. The solid velocity is computed by averaging at every time the flow
velocity in the solid phase. This velocity is used to penalize the flow velocity at the fluid-solid
interface and to move the interface. Numerical illustrations are provided to illustrate our
convergence result. A discussion of our result in the light of existing existence results is also
given.

1 Introduction

In this paper we are concerned with the numerical analysis of a penalization method for the two-

way interaction of a rigid body with an incompressible fluid in three dimensions. The traditional

numerical approach to deal with fluid-structure problems is the so-called ALE (for Arbitrary La-

grangian Eulerian) method where fluids (resp solids) are described in an Eulerian (resp Lagrangian)

framework. Fluids are computed on a moving mesh fitting the solids and stress and velocity con-

tinuity are used to derive the appropriate boundary conditions on the fluid/solid interface [17].

Another way is to use a fixed mesh and rely on a Lagrange-Galerkin approach where the fluid

is solved using a characteristics-finite-element method in a space where the velocity field is rigid

in the solid, and the solid itself moved by a Lagrangian equation. In [19] the convergence of a

scheme following this approach is proved in the case where the densities of fluid and structure are

equal.

Alternate methods can be devised where the whole fluid-solid system is seen as a multiphase

flow and the fluid/solid interface is captured implicitly rather than explicitly. Likewise, the inter-

face continuity conditions are recovered in an implicit fashion. The rigid motion inside the solid
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phase can be enforced through a Lagrange multiplier [11]. The method we consider here is of this

type but the rigid motion is approximately satisfied in the solid through penalization.

Penalization methods have already been considered in the past for this problem. In [6] the

authors considered a single solid ball and worked inside the frame moving with its center. Then

they penalized the mean velocity of the (virtual) fluid inside this ball. Their method is restricted

to one ball. In[20, 15] the penalization is applied to the deformation tensor inside the body. In [20]

this method is used to prove the existence of solutions for the fluid-solid interaction variational

problem in two dimensions. In [15] it is used together with a two-dimensional finite element

method in a variational framework. Here the penalization is applied to the flow velocity itself.

The method thus extends the one devised and analyzed in [2] in the case of a rigid solid with

prescribed motion.

In our method the determination of the body velocity is part of the problem. This velocity,

instead of the flow velocity, is used to move the solid phase. This has a crucial practical importance,

in particular for problems with large displacements and strong shear, since it ensures that the

solid remains rigid at the discrete level, although the rigidity constraint in the flow field is only

approximately satisfied. A vorticity formulation of the method and its validation on a number of

2D and 3D reference cases are given in [7]. An outline of the paper is as follows. In section 2 we

recall the weak formulation of the problem and we describe the penalization method. Section 3 is

devoted to the convergence proof. In section 4 we provide some numerical illustrations. Section 5

is devoted to some concluding remarks. The proofs of some technical results used in section 3 are

given in the appendix.

2 Weak formulation and penalized problem

Let Ω be an open bounded domain of R3, filled with a viscous incompressible and homogeneous

fluid of density ρf > 0 and viscosity µ > 0. Inside this domain, we consider the motion of an

immersed homogeneous rigid solid of density ρs > 0 during a time interval [0, T ], T > 0, chosen

so that the solid never comes in contact with ∂Ω. For t ∈ [0, T ], we denote by Ωf (t) and Ωs(t) the

non-empty fluid and solid open connected domains, with Ωs(t)∪Ωf (t) = Ω and Ωf (t)∩Ωs(t) = ∅.

The center of mass of the solid is denoted by xG(t), its mass and inertia tensor by M and J(t).
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Without loss of generality we assume that M = 1. Then

xG(t) =

∫

Ωs(t)

ρsx dx, J(t) =

∫

Ωs(t)

ρs(r
2
I− r ⊗ r) dx

where r(x, t) = x− xG(t). The system is subject to a body density force g (usually gravity).

2.1 Weak formulation

The basic formulation of this fluid-solid coupling is the following : given initial conditions,

x′G(0) = v0g , ωu(0) = ω0
u, u = u0, Ωs(0) = Ω0

s (1)

supplemented with

xG(0) =

∫

Ω0
s

x dx, Xs(x, 0) = x, (2)

find t→ Ωs(t) and (x, t) → (u(x, t), p(x, t)) solution for t > 0 of

ρf (ut + (u · ∇)u)− 2µ div(D(u)) +∇p = ρfg on Ωf (t), (3)

div u = 0 on Ωf (t), (4)

u = 0 on ∂Ω, (5)

u = x′G + ωu × r on ∂Ωs(t), (6)

x′′G(t) = g +

∫

∂Ωs(t)

(Σn) ds, (7)

J(t)ω′
u(t) = −ωu(t)× (J(t)ωu(t)) +

∫

Ωs(t)

ρs(r × g) dx+

∫

∂Ωs(t)

r × (Σn) ds, (8)

Ωs(t) = Xs(t,Ω
0
s), (9)

∂Xs

∂t
= x′G(t) + ωu(t)× r(Xs(t), t), (10)

where n denotes the unit outward normal on ∂Ωs(t), and Σ is the fluid stress tensor.

In this formulation the last two equations describe the rigid motion of Ωs(t). In order to give a

weak formulation of this problem, let us introduce some function spaces. From now on, u will

denote the velocity field on the whole computational domain Ω. We define

V = {u ∈ H1
0 (Ω), div u = 0}, H = {u ∈ L2(Ω), div u = 0, u · n = 0 on ∂Ω}

and, with the notations of [20] extended to the three dimensional case,

K(t) = {u ∈ V, D(u) = 0 in Ωs(t)}

= {u ∈ V, ∃(Vu, ωu) ∈ R
3 × R, u = Vu + ωu × r in Ωs(t)}.
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Next we define a density on the whole domain by setting ρ = ρsχΩs(t) + ρfχΩf (t), where χA

denotes the characteristic function of set A, which takes value 1 inside A and 0 outside. Let

us note Q = Ω×]0, T [. Then the weak formulation is the following [14]: given initial conditions

H0 = χΩ0
s
, ρ0 = ρsH

0 + ρf (1−H0) and u = u0 ∈ K(0), find (x, t) → (ρ(x, t), u(x, t), H(x, t)) such

that





u ∈ L∞(0, T,H) ∩ L2(0, T,V), H, ρ ∈ C(0, T ;Lq(Ω)) ∀q ≥ 1,

u(t) ∈ K(t) for a.e. t ∈]0, T [, with Ωs(t) = {x ∈ Ω, H(x, t) = 1},
∀ξ ∈ H1(Q) ∩ L2(0, T ;K(t)),∫

Ω

[ρu · ∂tξ + (ρ(u · ∇)u− 2µD(u)) : D(ξ) + ρg · ξ] dx =
d

dt

∫

Ω

ρu · ξ dx,
∀ψ ∈ C1(Q), ψ(T ) = 0,∫ T

0

∫

Ω

H
∂ψ

∂t
+Hu · ∇ψ dxdt+

∫

Ω

H0ψ(0) dx = 0,
∫ T

0

∫

Ω

ρ
∂ψ

∂t
+ ρu · ∇ψ dxdt+

∫

Ω

ρ0ψ(0) dx = 0.

(11)

Note that we could equivalently have defined ρ = ρsH + ρf (1 −H), as ρ0 is piecewise constant,

and transported by the same velocity field than H.

2.2 Penalized problem

For η > 0, we consider the following penalized problem:

given (ρη(0) = ρ0, uη(0) = u0η, Hη(0) = χΩ0
s
), to find (ρη, uη, pη, Hη), with

ρη, Hη ∈ L∞(]0, T [×Ω), uη ∈ L∞(0, T ;H)∩L2(0, T ;V), pη ∈ L2(Q),
∂

∂t
(ρηuη) ∈ L2(0, T ;V ′)

solution in the sense of distributions in Q of

∂(ρηuη)

∂t
+ div(ρηuη ⊗ uη)− 2µ div(D(uη)) +∇pη +

1

η
ρηHη(uη − uη,s) = ρηg (12)

div uη = 0 (13)

uη,s =
1

Mη

∫

Ω

ρηuηHη dx+

(
J−1
η

∫

Ω

ρη(rη × uη)Hη dx

)
× rη (14)

ρηt + uη.∇ρη = 0 (15)

Hηt + uη,s.∇Hη = 0 (16)

We set Ωη
s(t) = {x ∈ Ω, Hη(x, t) = 1}. In equation (14) we divided the first term by Mη =

∫
Ω
ρηHη dx, which is not constant in time in general. On contrary we have |Ωη

s(t)| =
∫
Ω
Hη dx =

|Ω0
s| since uη,s is divergence free and Hη vanishes on ∂Ω (we assumed no contact of the solid with
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∂Ω). The inertia tensor is defined as

Jη =

∫

Ω

ρηHη(r
2
ηI− rη ⊗ rη) dx =

∫

Ωη
s (t)

ρη(r
2
ηI− rη ⊗ rη) dx.

with rη = x− xGη = x−
∫
Ω
ρηHηx dx.

For a ∈ R
3 \{0}, aTJηa =

∫
Ωη

s (t)
ρη|rη ×a|2 dx ≥ min(ρs, ρf )

∫
Ωη

s (t)
|rη ×a|2 dx (see estimate (18)).

This last quantity being strictly positive for an open nonempty integration set, Jη is nonsingular

(we recall that |Ωη
s(t)| = |Ω0

s| > 0).

Before stating our convergence result, a few remarks are in order.

First one may wonder about the well-posedness of the above problem. However it will directly

result from the a priori estimates and convergence arguments given in the following that this

problem does have at least a weak solution. Indeed, these arguments could easily be used to show

the convergence of the solutions to a linearized version - or finite-dimension approximation - of

(12)-(16). Next we can observe that in this model we penalize the difference between uη and the

projection of uη onto velocity fields rigid in the solid domain, namely uη,s (see lemma 3.1 below).

The density is transported with the original velocity field so that estimates on the Navier-Stokes

equations are easier to obtain. The characteristic function is transported by the rigid velocity

so that the shape of Ωη
s(t) remains undeformed (this is exactly the Eulerian counterpart of (9-

10)). As observed in [7] this has a practical importance (in particular it means that the rigid

solid can be recovered exactly through simple algebra from its initial shape). As far as numerical

analysis is concerned, it also provides ”for free” regularity properties on the computed rigid body,

as soon as the initial body is smooth. The price to pay is that the level sets of ρη and Hη do not

coincide, i.e. in general we do not have ρηHη = ρs as in the non penalized formulation. Note also

that in principle we should prescribe a boundary value for Hη on ∂Ω when uη,s is inward. Since

our analysis is restricted to times when the solid body does not approach the boundary of the

computational box, we can take this boundary value to be zero, which amounts to solve (16) on

R
n and take its restriction to Ω.

Let us now comment on the differences between the present method and the methods in

[20, 18, 22]. The method used in [20] to prove the existence of the fluid-body problem uses a

penalization acting on the deformation. It does not require to compute the rigid body velocity

uη,s. However it does not guarantees a strictly rigid transport of the body, which is clearly a

5



drawback form a practical point of view. The projection method in [18, 22] can be seen as a

particular discretization of the present penalization method, with an explicit time-discretization

of the penalization term. In practice this result in a limitation of the penalization coefficient which

has some We will come back to this point in our numerical illustrations in section 4. Numerical

comparisons for a benchmark challenging 3D case are also given in [7].

In the following sections we will prove the convergence of at least a subsequence of (ρη, uη, pη, Hη)

to the weak solution defined above. Next section starts with some a priori estimates which will

provide weak convergence of subsequences. In section 3.3 we will have to use more sophisticated

tools adapted from [20] to get some strong convergence in uη which will allow us to pass to the

limit in nonlinear terms of (Pη). More precisely we prove the following result.

Theorem 2.1. Under the regularity assumptions of section 2, let (ρη, uη, pη, Hη) a solution of

(Pη). Then there exists a subsequence of (ρη, uη, Hη) and functions (ρ, u,H) such that

ρη → ρ, Hη → H strongly in C(0, T ;Lq(Ω)) for all q ≥ 1,

uη → u strongly in L2(Q) and weakly in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω))

and such that (ρ, u,H), is a solution of (11).

Before proceeding to the proof, let us point out a few remarks. For a sake of simplicity in the

notations we have stated our penalization method and theorem for a single rigid body. It will be

apparent from the proof below that it readily extends to the case of several bodies. Furthermore,

the time to which the convergence result is restricted, is essentially the time for which contact of

the rigid body do not touch the boundary of Ω (in the case of several bodies it would be the time

on which we can ensure that contact between bodies do not happen). As a result if we consider

periodic boundary conditions and a single body convergence holds for all times.

3 Proof of theorem 2.1

The following lemma states that uη,s, as defined in (Pη), is the projection of uη onto velocity fields

which are rigid on Ωη
s(t).

Lemma 3.1. Let ξ be a rigid velocity field, i.e. such that ξ(x) = Vξ +ωξ × r(x) for some constant
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vectors Vξ ∈ R
3 and ωξ ∈ R

3. Then if uη,s is defined by (14) there holds

∫

Ω

ρηHη(uη − uη,s) · ξ dx = 0. (17)

Moreover, the result holds if ξ is a time dependent velocity field rigid in Ωη
s(t) at time t.

Proof. Let the mean translation and angular velocities be defined as

Vu =
1

Mη

∫

Ω

ρηHηuη dx ωu = J−1
η

∫

Ω

ρηHη(rη × uη) dx

then

∫

Ω

ρηHη(uη − uη,s) · ξ dx =

∫

Ω

ρηHη [uη − (Vu + ωu × rη)] · [Vξ + ωξ × rη] dx

= Vξ ·
∫

Ω

ρηHηuη dx+ ωξ ·
∫

Ω

ρηHη(rη × uη) dx− Vu · Vξ
∫

Ω

ρηHη dx

− Vu ·
(
ωξ ×

∫

Ω

ρηHηrη dx

)
− Vξ ·

(
ωu ×

∫

Ω

ρηHηrη dx

)

−
∫

Ω

ρηHη(ωu × rη) · (ωξ × rη) dx

= Vξ · (MηVu) + ωξ · (Jη ωu)− Vu · (MηVξ)

− Vu ·
(
ωξ ×

∫

Ω

ρηHηrη dx

)
− Vξ ·

(
ωu ×

∫

Ω

ρηHηrη dx

)

−
∫

Ω

ρηHη(ωu × rη) · (ωξ × rη) dx.

As (ωu × rη) · (ωξ × rη) = (ωξ ·ωu)r
2
η − (rη ·ωξ)(rη ·ωu), we have

∫

Ω

ρηHη(ωu × rη) · (ωξ × rη) dx =

ωξ · (Jη ωu).

Finally, by definition of rη,

∫

Ω

ρηHηrη dx = 0, and we get

∫

Ω

ρηHη(uη − uη,s) · ξ dx = ωξ · (Jη ωu)− ωξ · (Jη ωu) = 0.

3.1 Estimates for transport and Navier-Stokes equations

In all the sequel, C denotes a positive constant. At this stage, we consider a given time interval

[0, T ]. The value to which T must be restricted will be given later in this section.

Standard estimates for transport equations (15) and (16) show that ρη and Hη are bounded

in L∞(0, T ;L∞(Ω)). More precisely, for all time t ∈ [0, T ],

ρmin := min(ρs, ρf ) ≤ ρη(x, t) ≤ max(ρs, ρf ) Hη(x, t) ∈ {0, 1} a.e. x ∈ Ω. (18)
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Thus, up to extracting a subsequence, we can assume that

ρη ⇀ ρ in L∞(0, T, L∞(Ω)) weak*, (19)

and

Hη ⇀ H in L∞(0, T, L∞(Ω)) weak*, (20)

where H and ρ satisfy the bounds (18). We set Ωs(t) = {x ∈ Ω, H(x, t) = 1}. Concerning the

Navier-Stokes equations, using uη as a test function in the weak formulation of (12) and using

(15) we classically obtain:

1

2

∫

Ω

∂(ρη|uη|2)
∂t

dx+ 2µ

∫

Ω

|D(uη)|2 dx+
1

η

∫

Ω

ρηHη(uη − uη,s) · uη dx =

∫

Ω

ρηg · uη dx.

From Lemma 3.1, since uη,s is a rigid velocity field, we get

∫

Ω

ρηHη(uη − uη,s) · uη dx =

∫

Ω

ρηHη(uη − uη,s)
2 dx.

Collecting terms we get, since from (18)
√
Hη = Hη,

1

2

d

dt
‖√ρηuη‖2L2(Ω)

+µ‖D(uη)‖2L2(Ω)+
1

η
‖√ρηHη(uη − uη,s)‖2L2(Ω)

≤ ‖√ρηuη‖L2(Ω)‖g‖L∞(Q)‖
√
ρη‖

L2(Q)

which upon time integration on [0, T ] gives

‖√ρη(t)uη(t)‖2L2(Ω)
+ 2µ‖D(uη)‖2L2(Q) +

2

η
‖√ρηHη(uη − uη,s)‖2L2(Q)

≤ ‖√ρη0uη0‖2L2(Ω)
+ C

∫ T

0

‖√ρη(s)uη(s)‖L2(Ω)ds.

Applying Gronwall Lemma, Poincaré inequality and bounds from (18) gives the following esti-

mates :

uη bounded in L2(0, T,H1
0 (Ω)), (21)

√
ρηuη and uη bounded in L∞(0, T, L2(Ω)), (22)

1√
η

√
ρηHη(uη − uη,s) and

1√
η
Hη(uη − uη,s) bounded in L2(0, T, L2(Ω)). (23)

Thus we can extract subsequences from ρη, uη and Hη, still denoted by ρη, uη and Hη, such that

uη ⇀ u in L2(0, T,H1
0 (Ω)) weak, (24)
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√
ρηuη ⇀ χ and uη ⇀ u in L∞(0, T, L2(Ω)) weak*, (25)

√
ρηHηuη −

√
ρηHηuη,s → 0 and Hηuη −Hηuη,s → 0 in L2(0, T, L2(Ω)) strong. (26)

The identification of χ with
√
ρu results from strong convergence results proved by Lions and

DiPerna on transport equations. [9] theorem II.4, (24) and incompressibility imply

ρη → ρ in C(0, T, Lq(Ω)) strong ∀q ∈ [1,+∞[ (27)

with ρ solution of {
ρt + u · ∇ρ = 0 on Ω×]0, T [,

ρ = ρ0 on Ω× {0}.

From this strong convergence we can pass to the limit in the product
√
ρηuη : given v ∈

Lq(0, T ;Lr(Ω)) with q > 2 and r > 6
5 , we write

∫ T

0

∫

Ω

(
√
ρηuη −

√
ρu)v dxdt =

∫ T

0

∫

Ω

(uη − u)
√
ρv dxdt+

∫ T

0

∫

Ω

(
√
ρη −

√
ρ)uηv dxdt.

From the injection of H1 into L6 in dimension less or equal to 3 the first integral converges toward

0. For the second integral we use the strong convergence (following (27)) of
√
ρη in Ls for a s such

that uηv is in Ls′ where s′ is the conjugate exponent of s. Thus we have

√
ρηuη ⇀

√
ρu in Lq(0, T, Lr(Ω)) weak, for all q < 2, r < 6. (28)

3.2 Setting T and passing to the limit in the rigid velocity

This rigid velocity is defined by

uη,s(x, t) = uη,G(t) + ωη(t)× rη(x, t),

with

uη,G(t) =
1

Mη

∫

Ω

ρηuηHη dx and ωη(t) = J−1
η

∫

Ω

ρη(rη × uη)Hη dx.

First we note thatMη =
∫
Ω
ρηHη dx is bounded from below independently of η since ρη is bounded

from below and
∫
Ω
Hη dx = |Ω0

s| > 0 does not depend on η or t. From the bounds on ρη, Hη and

uη it is straightforward to show that

uη,G(t) bounded in L∞(0, T ).
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Likewise, from the definition of Jη we observe that for a ∈ R
3 \ {0}

aTJηa ≥ min(ρs, ρf )

∫

Ωs(t)

|rη × a|2 dx > 0.

Moreover, the initial solid is regular and transported by a rigid velocity. We thus know that there

is a ball of radius R > 0 centered on the center of gravity xGη included into Ωη
s(t). Then the above

estimates implies

aTJηa ≥ min(ρs, ρf )

∫

B(xGη,R)

|rη × a|2 dx = min(ρs, ρf )

∫

B(0,R)

|x× a|2 dx = C(R)|a|2

with C(R) = 2R5π
15 > 0. Taking a = J

− 1
2

η b (Jη is symmetric) we get for all b ∈ R
3 \ {0},

bTJ−1
η b = |J− 1

2
η b|2 ≤ 1

C(R)
|b|2,

which proves that each coefficient of J−1
η is bounded independently of η and t. From the bounds

on uη, Hη and ρη this implies that

ωη(t) is bounded in L∞(0, T ).

In particular this implies that the solid velocity uη,s is bounded in L∞ by some constant M

independent of η and time. We can now define the maximum time for which the convergence

result will be proved. If we denote by d0 the initial distance between solid and the boundary ∂Ω

then choosing for instance T = d0/2M ensures that the body will not touch the boundary for

t ∈ [0, T ]. In all the sequel we will assume this value of T .

From the above estimates we can ensure that there exists uG(t) and ω(t) in L∞(0, T ) such

that, up to the extraction of subsequences,

uη,s ⇀ us := uG + ω × r in L∞(0, T, L∞(Ω)) weak*.

Now we point out that taking the gradient of the rigid velocity field uη,s gives

∇uη,s =




0 −ω3
η ω2

η

ω3
η 0 −ω1

η

−ω2
η ω1

η 0




so that the ∇uη,s (and all subsequent space derivatives) is also bounded in L∞(0, T ;L∞(Ω)). In

particular

uη,s ⇀ us in L2(0, T,W 1,∞(Ω)) weak*. (29)
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We now wish to prove that us (or equivalently uG and ω) has a similar structure as uη,s,

that is, to pass to the limit in the expression defining uη,s. Using (29), the already mentioned

compactness results of [9], applied to the transport equation on Hη now gives

Hη → H a.e. and in C(0, T, Lp(Ω)) strong ∀p ∈ [1,+∞[ (30)

with H verifying {
Ht + us.∇H = 0 on R

n × (0, T )

H = H0 on R
n × {0}.

Note that this Cauchy problem has been set in R
n because us does not vanish on ∂Ω, but H

vanishes outside Ω. However we can prove by passing to the limit in (26) that Hu = Hus. Thus

div(uH) = div(usH) and H verifies a transport equation with velocity field u on Ω (note that no

boundary conditions are needed on ∂Ω since u is zero on the boundary).

This convergence gives us the strong convergence of rη in C(0, T, Lp(Ω)), ∀p ≥ 1, and from

(27),(30) and (24) we can easily pass to the limit in the expression of uη,G and ωη to get

uG(t) =

∫

Ω

ρuH dx
∫

Ω

ρH dx

and ω(t) =

(∫

Ω

ρ(r2I− r ⊗ r)H dx

)−1 ∫

Ω

ρ(r × u)H dx.

3.3 Strong convergence of uη

The remaining part of the proof is more technical since we aim to prove the strong convergence

of at least a subsequence of uη in order to be able to pass to the limit in the inertial term of

Navier-Stokes equations. Classically, this is obtained thanks to a Fourier transform in time which

provides an estimate on some fractional time derivative of uη which brings compactness [16, 23].

Here these technics can not be used since the solid is moving. We instead rely on tools developed

in [20].

Thereafter we will use, for σ > 0 and r ∈ [1/2, 1], the following notations

• Ωs,σ(t) = {x ∈ Ω, d(x,Ωs(t)) < σ},

• V0 = {v ∈ L2(Ω), div v = 0, v · n = 0 on ∂Ω},

• Vr = {v ∈ Hr(Ω), div v = 0, v = 0 on ∂Ω},

• Kr
σ(t) = {v(t) ∈ Vr, D(v(t)) = 0 in D′(Ωs,σ(t))} (which is a closed subset of Vr),
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• P r
σ (t) the orthogonal projection in the sense of the Hr norm of Vr on Kr

σ(t).

To prove the strong convergence of a subsequence of uη in L2(Q) we write

∫ T

0

∫

Ω

|uη − u|2 dxdt ≤ 1

ρmin

(∫ T

0

∫

Ω

|ρ(u2η − u2)| dxdt+
∫ T

0

∫

Ω

|2ρu · (u− uη)| dxdt
)
.

From (25) the second integral on the right side converges to 0, thus

∫ T

0

∫

Ω

|uη − u|2 dxdt ≤ 1

ρmin

(∫ T

0

∫

Ω

|ρηu2η − ρu2| dxdt+
∫ T

0

∫

Ω

|(ρη − ρ)u2η| dxdt
)

+ lη,

where lη → 0 when η → 0. Moreover, by (21) and (27) the second integral on the right hand side

converges to 0, and

∫ T

0

∫

Ω

|uη − u|2 dxdt ≤ 1

ρmin

(∫ T

0

∫

Ω

|ρηuη · P r
σ (uη)− ρu · P r

σ (u)| dx dt

+

∫ T

0

∫

Ω

|ρηuη · (uη − P r
σ (uη))| dx dt+

∫ T

0

∫

Ω

|ρu · (P r
σ (u)− u)| dx dt+ lη

)

≤ 1

ρmin
(‖ρηuη · P r

σ (uη)− ρu · P r
σ (u)‖L1(Q)

+ ‖ρη‖L∞(Q)‖uη‖L2(Q)‖P r
σ (uη)− uη‖L2(Q)

+ ‖ρ‖L∞(Q)‖u‖L2(Q)‖P r
σ (u)− u‖L2(Q) + lη

Finally, as ρη is bounded in L∞(0, T, L∞(Ω)) and using (21), we get

∫ T

0

∫

Ω

|uη − u|2 dxdt ≤ 1

ρmin
(‖ρηuη · P r

σ (uη)− ρu · P r
σ (u)‖L1(Q)

+ C‖P r
σ (uη)− uη‖L2(Q)

+ C‖P r
σ (u)− u‖L2(Q) + lη (31)

This decomposition shows that the sought convergence essentially amounts to prove that (up to

the extraction of subsequences)

lim
σ→0

‖P r
σ (u)− u‖L2(Q) = 0 (32)

lim
σ→0

lim
η→0

‖P r
σ (uη)− uη‖L2(Q) = 0 (33)

lim
σ→0

lim
η→0

‖ρηuη · P r
σ (uη)− ρu · P r

σ (u)‖L1(Q) = 0 (34)

To prove (32-34) we will make use of some Lemma that we state now.

Lemma 3.2. Let (fn) be a sequence of functions bounded in Lp(0, T ) for some p > 2 and con-

verging to 0 almost everywhere on [0, T ]. Then (fn) converges strongly to 0 in L2(0, T ).
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Proof. Let ε > 0. From Egorov theorem ([5], p.75), the almost everywhere convergence implies

that there exists Aε ⊂ [0, T ] such that

{
|[0, T ]\Aε| < ε

fn → 0 uniformly on Aε

which means

∃N ∈ N, ∀n ≥ N, ∀t ∈ Aε, |fn(t)|2 < ε.

Therefore
∫

Aε

(fn(t))
2dt ≤ ε|Aε| ≤ εT.

Since, from the bound in the Lp norm

∫

[0,T ]\Aε

(fn(t))
2dt ≤

(∫

[0,T ]\Aε

1qdt

)2/q (∫

[0,T ]

(fn(t))
pdt

)2/p

≤ ε2/qC

with 1
q + 1

p = 1
2 , we get

∫ T

0

(fn(t))
2dt ≤ εT + ε2/qC

which proves the L2 convergence.

Lemma 3.3. Let u(t) ∈ H1(Ωs,σ(t)) such that u|∂Ωs,σ(t)(t) = g(t) and (w(t), p(t)) ∈ H1(Ω\Ωs,σ(t))×

L2(Ω\Ωs,σ(t)) solution of the Stokes problem





−∆w(t) +∇p(t) = 0 on Ω\Ωs,σ(t),

divw(t) = 0 on Ω\Ωs,σ(t),

w(t) = g(t) on ∂Ωs,σ(t),

w(t) = 0 on ∂Ω.

Then there exists σ0 > 0 and C > 0, such that for all σ < σ0, we have the following estimate:

‖w(t)‖2L2(Ω\Ωs,σ(t))
≤ C‖u(t)‖L2(Ωs,σ(t))

‖∇u(t)‖L2(Ωs,σ(t))

The proof of this result is postponed to the appendix.

Lemma 3.4. The limits H, u and us defined in (30), (24) and (29) verify

Hu = Hus. (35)

Proof. First we claim that

Hηuη ⇀ Hu in Lq(0, T, Lr(Ω)) weak, with q < 2 and r < 6 (36)
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Indeed, let us introduce v ∈ Lq(0, T, Lr(Ω)) with q > 2 and r > 6
5 . We have

∫ T

0

∫

Ω

(Hηuη −Hu) · v dxdt =
∫ T

0

∫

Ω

H(uη − u) · v dxdt+
∫ T

0

∫

Ω

(Hη −H)uη · v dxdt

From the injection of H1 into L6 in dimension less or equal to 3 and (24) we get

uη ⇀ u in L2(0, T, L6(Ω)) weak,

and, since H is bounded in L∞(Q),

lim
η→0

∫ T

0

∫

Ω

H(uη − u) · v dx dt = 0.

Moreover from (30) we easily get

lim
η→0

∫ T

0

∫

Ω

(Hη −H)uη · v dx dt = 0.

We next show that

Hηuη,s ⇀ Hus in Lp(0, T, Lp(Ω)) weak, ∀p ∈ [1,+∞[. (37)

Let v ∈ Lp(0, T, Lp(Ω)) with p > 1. We write

∫ T

0

∫

Ω

(Hηuη,s −Hus) · v dxdt =
∫ T

0

∫

Ω

H(uη,s − us) · v dxdt+
∫ T

0

∫

Ω

(Hη −H)uη,s · v dx dt.

As H is bounded in L∞(Q), with (29) we get:

lim
η→0

∫ T

0

∫

Ω

H(uη,s − us) · v dx dt = 0

In addition, from (30) we get

lim
η→0

∫ T

0

∫

Ω

(Hη −H)uη,s · v dx dt = 0.

By (36) and (37) we thus deduce

Hηuη −Hηuη,s ⇀ Hu−Hus in Lq(0, T, Lr(Ω)) weak, with q < 2 and r < 6 (38)

Finally we recall that

Hηuη −Hηuη,s → 0 in L2(Q) strong, (39)

and the desired result follows. The result is finally obtained by identifying the limits in (38) et

(39).
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Lemma 3.5.

∀σ > 0, ∃η0 > 0, ∀η < η0, ∀t ∈ [0, T ], Ωη
s(t) ⊂ Ωs,σ(t) and Ωs(t) ⊂ Ωη

s,σ(t). (40)

Proof. From (30) with p = 1 we have

∀ε > 0, ∃η0 > 0, ∀η < η0, ∀t ∈ [0, T ],

∫

Ω

|Hη(x, t)−H(x, t)| dx < ε, (41)

which means

∀ε > 0, ∃η0 > 0, ∀η < η0, ∀t ∈ [0, T ], |Ωη
s(t) \ Ωs(t)|+ |Ωs(t) \ Ωη

s(t)| < ε. (42)

By contradiction we suppose that we can find σ0 > 0 such as ∀η0 > 0, there exists η < η0 and

t ∈ [0, T ] for which at least one of the inclusions of (40) is false. Assume the first inclusion is

false.This means that we can find xη(t) ∈ Ωη
s(t) such as d(xη(t),Ωs(t)) > σ0. Ωη

s(t) is a rigid

deformation of Ωη
s(0) so its boundary is C2. Thus, there exists a sufficiently small ρ independent

of η, such as for each point of Ωη
s(t) there exists a ball of radius ρ > 0 containing this point and

included in Ωη
s(t). Then there exists also a ball of radius ρ̄ := min(ρ, σ0/3) containing the point

and included in Ωη
s(t). This latter ball is included in Ωη

s(t) \ Ωs(t). Indeed it contains a point at

distance more than σ0 from Ωs(t) and its diameter is less than 2σ0/3. We thus obtained that

∃σ0, ∀η0 > 0, ∃η > 0, ∃t ∈ [0, T ], |Ωη
s(t) \ Ωs(t)| > πρ̄2

with ρ̄ independent of η and t. This contradicts (42). A similar argument shows that the second

inclusion cannot hold either.

A key point in the convergence is the following result.

Lemma 3.6.

lim
σ→0

‖P r
σ (u)− u‖L2(0,T,Vr) = 0, ∀r ∈ [1/2, 1[ (43)

The proof of this result is postponed to the appendix.

The next lemma, which is also proved in the appendix, is essentially a rephrasing of the previous

one with uη instead of u. The difference is that we do not have anymore uη − uη,s = 0 ins Ωη
s(t),

but we do have an estimate on it, from (23), which allows to pass to the limit as η goes to 0.

Lemma 3.7.

lim
σ→0

lim
η→0

‖P r
σ (uη)− uη‖L2(0,T,Vr) = 0, ∀r ∈]1/2, 1[ (44)
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Lemma 3.8.

lim
σ→0

lim
η→0

‖ρηuη · P r
σ (uη)− ρu · P r

σ (u)‖L1([0,T ]×Ω) = 0, ∀r ∈]1/2, 1[. (45)

Proof. Let r ∈]1/2, 1[ and σ > 0. From Lemma 3.5 there exists η0 > 0 such that ∀η < η0,

Ωη
s(t) ⊂ Ωs,σ/3(t), ∀t ∈ [0, T ].

Let η < η0. Arguing as in [20] we split [0, T ] in NT subintervals Ik = [(k − 1)τ, kτ ], τ = T/NT ,

k = 1, .., NT . We choose NT large enough (depending on σ) such that

Ωs,σ/2(kτ) ⊂ Ωs,σ(t) and Ωs,σ/3(t) ⊂ Ωs,σ/2(kτ), ∀t ∈ Ik, ∀k = 1, .., NT . (46)

This is possible because Ωs,σ(t) is moving with a rigid velocity field, with L2 regularity in time :

the flow X(t, x) generated by this velocity field is thus continuous in time. Let x ∈ Ωs,σ/2(kτ).

There exits y ∈ Ωs(kτ) such that |y−x| ≤ σ/2. But y = X(kτ, z) for some z ∈ Ωs(0) and therefore

|y −X(t, z)| ≤ σ/2 for t ∈ Ik if τ is small enough. Therefore |x −X(t, z)| ≤ σ. This proves the

first inclusion in (46). The second inclusion is proved by a similar continuity argument. On each

subinterval Ik, k = 1, .., NT , we consider the momentum equation

ρη
∂uη
∂t

+ ρη(uη · ∇)uη − 2µ div(D(uη)) +∇pη +
1

η
ρηHη(uη − uη,s)− ρηg = 0.

Let us consider a test function ξ vanishing outside Ik and such that ξ(., t) ∈ K1
σ/2(kτ) for t ∈ Ik.

Since ξ(., t) is rigid on Ωs,σ/2(kτ) ⊃ Ωs,σ/3(t) ⊃ Ωη
s(t), Lemma 3.1 yields

∫

Ik

∫

Ω

[ρηuη · ξt + (ρηuη ⊗ uη − 2µD(uη)) : D(ξ) + ρηg · ξ] dxdt = 0.

From bounds given by (18), (21) and (22) we derive the following estimates:

∣∣∣∣
∫

Ik

∫

Ω

D(uη) : D(ξ) dxdt

∣∣∣∣ ≤ ‖D(uη)‖L2(Ik,L2(Ω))‖D(ξ)‖L2(Ik,L2(Ω))

≤ C‖ξ‖L2(Ik,H1
0 (Ω)) ≤ C‖ξ‖L2(Ik,K1

σ/2
(kτ))

≤ C‖ξ‖L4(Ik,K1
σ/2

(kτ)),
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∣∣∣∣
∫

Ik

∫

Ω

(ρηuη ⊗ uη) : D(ξ) dxdt

∣∣∣∣ ≤
∫

Ik

‖ρη‖L∞(Ω)‖uη ⊗ uη‖L2(Ω)‖D(ξ)‖L2(Ω)dt

≤ ‖ρη‖L∞(Ik,L∞(Ω))

∫

Ik

‖uη‖2L4(Ω)‖ξ‖H1
0 (Ω)dt

≤ C

∫

Ik

‖uη‖
1
2

L2(Ω)‖∇uη‖
3
2

L2(Ω)‖ξ‖H1
0 (Ω)dt

≤ C‖uη‖
1
2

L∞(Ik,L2(Ω))

∫

Ik

‖∇uη‖
3
2

L2(Ω)‖ξ‖H1
0 (Ω)dt

≤ C‖∇uη‖
3
2

L2(Ik,L2(Ω))‖ξ‖L4(Ik,H1
0 (Ω))

≤ C‖ξ‖L4(Ik,H1
0 (Ω)) ≤ C‖ξ‖L4(Ik,K1

σ/2
(kτ)),

and
∣∣∣∣
∫

Ik

∫

Ω

ρηg · ξ dxdt
∣∣∣∣ ≤ ‖ρη‖L∞(Ik,L∞(Ω))‖ξ‖L4(Ik,K1

σ/2
(kτ)) ≤ C‖ξ‖L4(Ik,K1

σ/2
(kτ)).

Collecting terms we get

∣∣∣∣
∫

Ik

∫

Ω

ρηuη · ξt dxdt
∣∣∣∣ ≤ C‖ξ‖L4(Ik,K1

σ/2
(kτ)).

As ξ(., t) ∈ K1
σ/2(kτ), ξt(., t) ∈ K1

σ/2(kτ) ⊂ K0
σ/2(kτ) and we have

|〈ρηuη, ξt〉| = |〈ρηuη, P 0
σ/2(kτ)ξt〉|

= |〈P 0
σ/2(kτ)(ρηuη), ξt〉|

= |〈 d
dt
P 0
σ/2(kτ)(ρηuη), ξ〉|.

Therefore
∣∣∣∣
∫

Ik

∫

Ω

d

dt
P 0
σ/2(kτ)(ρηuη) · ξ dxdt

∣∣∣∣ ≤ C‖ξ‖L4(Ik,K1
σ/2

(kτ)),

which means that

d

dt
P 0
σ/2(kτ)(ρηuη) bounded in L

4
3 (Ik, (K1

σ/2(kτ))
∗). (47)

Moreover ρηuη is bounded in L2(Ik, L
2(Ω)),

P 0
σ/2(kτ)(ρηuη) is bounded in L2(Ik,K0

σ/2(kτ)). (48)

Since K0
σ/2(kτ) ⊂ (Kr

σ/2(kτ))
∗ compactly for r > 0, and (Kr

σ/2(kτ))
∗ ⊂ (K1

σ/2(kτ))
∗ continuously

for r < 1, by the Aubin-Simon Lemma (see e.g. [4], p. 98) with (47) and (48), we obtain the

relative compactness of the sequence
(
P 0
σ/2(kτ)(ρηuη)

)
in L2(Ik, (Kr

σ/2(kτ))
∗) for all r ∈]1/2, 1[.

From (24) we deduce

lim
η→0

P 0
σ/2(kτ)(ρηuη) = P 0

σ/2(kτ)ρu in L2(Ik, (Kr
σ/2(kτ))

∗) strong, ∀r ∈]1/2, 1[. (49)
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Since from (46), we have

P 0
σ/2(kτ)P

r
σ (t) = P r

σ (t) ∀t ∈ Ik ∀r ∈]1/2, 1[, (50)

and we can write

∫

Ik

〈ρηuη, P r
σ (t)(uη)〉L2(Ω)dt =

∫

Ik

〈ρηuη, P 0
σ/2(kτ)P

r
σ (t)uη〉L2(Ω)dt

=

∫

Ik

〈P 0
σ/2(kτ)(ρηuη), P

r
σ (t)uη〉L2(Ω)dt

=

∫

Ik

〈P 0
σ/2(kτ)(ρηuη), P

r
σ (t)uη〉(Kr

σ/2
)∗,Kr

σ/2
dt.

The sequence (uη) is bounded in L2(0, T,Vr) for all r ∈]1/2, 1[, therefore (P r
σ (t)uη) is bounded in

L2(0, T,Kr
σ/2) for all r ∈]1/2, 1[.

Therefore there exists a subsequence of P r
σ (t)uη still denoted P r

σ (t)uη such that

P r
σ (t)uη ⇀ P r

σ (t)u in L2(0, T,Kr
σ/2) weak. (51)

Passing to the limit in η yields

lim
η→0

∫

Ik

〈ρηuη, P r
σ (t)(uη)〉L2(Ω)dt =

∫

Ik

〈P 0
σ/2(kτ)ρu, P

r
σ (t)u〉L2(Ω)dt

=

∫

Ik

〈ρu, P 0
σ/2(kτ)P

r
σ (t)u〉L2(Ω)dt

=

∫

Ik

〈ρu, P r
σ (t)u〉L2(Ω)dt.

Summing over k = 1, .., NT , we finally obtain

lim
η→0

‖ρηuη · P r
σ (uη)− ρu · P r

σ (u)‖L1(Q) = 0,

which implies

lim
σ→0

lim
η→0

‖ρηuη · P r
σ (uη)− ρu · P r

σ (u)‖L1(Q) = 0.

We can now conclude to the strong convergence of uη.

Let ε > 0. From Lemma 3.6,

∃σ0 > 0, ∀σ < σ0, ‖P r
σ (u)− u‖L2(Q) < ε.

18



From Lemma 3.7,

∃σ0 > 0, ∀σ < σ0, ∃η0 > 0, ∀η < η0, ‖P r
σ (uη)− uη‖L2(Q) < ε,

and by Lemma 3.8,

∃σ0 > 0, ∀σ < σ0, ∃η0 > 0, ∀η < η0, ‖ρηuηP r
σ (uη)− ρuP r

σ (u)‖L1(Q) < ε.

We therefore get from (31) (up to the extraction of a subsequence)

∃η0 > 0, ∀η < η0,

∫ T

0

∫

Ω

|uη − u|2 dxdt < Cε

which means that (still up to a subsequence)

uη → u in L2(Q) strong. (52)

Classically, we also obtain from (19)

ρηuη ⇀ ρu in L2(Q) weak. (53)

3.4 Passing to the limit

Let us now prove that as η goes to zero, a subsequence of (uη, ρη) converges toward (u, ρ) solution

of the weak formulation (11). Indeed : We have proved that ρη ⇀ ρ in L∞(0, T, L∞(Ω)) weak ∗ .

Therefore

ρ ∈ L∞(Q).

We have proved that uη ⇀ u in L2(0, T, V ) weak, that
√
ρηuη is bounded in L∞(0, T, L2(Ω)) and

ρη bounded from above and below in L∞(0, T, L∞(Ω)). This implies that uη bounded in L∞(0, T, L2(Ω)),

thus its weak limit belongs to L∞(0, T, L2(Ω)) ∩ L2(0, T, V ):

u ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T, V ).

From Lemma 3.4, we have Hu = Hus = H(uG + ω × r) where H is the characteristic function of

Ωs(t). Thus

u(t) ∈ K(t).

Using compactness results of DiPerna-Lions we already obtained that ρ and H are solutions of

transport equations with u and us as velocities. For H this means that for all ψ ∈ C1(Q) with
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ψ(T ) = 0,

∫ T

0

∫

Ω

H
∂ψ

∂t
+Hus · ∇ψ dxdt+

∫

Ω

H0ψ(0) dx = 0.

As from Lemma 3.4, Hus = Hu, H is also solution of

∫ T

0

∫

Ω

H
∂ψ

∂t
+Hu · ∇ψ dxdt+

∫

Ω

H0ψ(0) dx = 0.

In other terms H, like ρ satisfies a transport equation with velocity u.

Let us finally check that u satisfies the momentum equation.

Let σ > 0. If ξσ ∈ H1(Q) ∩ L2(0, T ;K1
σ(t)), from (12) and (15) we get

∫

Ω

[
∂(ρηuη)

∂t
+ div(ρηuη ⊗ uη)− 2µ div(D(uη)) +∇pη +

1

η
Hηρη(uη − uη,s)− ρηg

]
· ξσ dx = 0.

From Lemma 3.5, there exists η0 such that η < η0 implies:

∫

Ω

Hηρη(uη − uη,s) · ξσ dx = 0.

By integration by parts

∫

Ω

−2µ div(D(uη)) · ξσ dx =

∫

Ω

2µD(uη) : D(ξσ) dx,

∫

Ω

div(ρηuη ⊗ uη) · ξσ dx =

∫

Ω

−(ρηuη ⊗ uη) : D(ξσ) dx,

∫

Ω

∂(ρηuη)

∂t
· ξσ dx =

d

dt

∫

Ω

ρηuη · ξσ dx−
∫

Ω

ρηuη ·
∂ξσ
∂t

dx.

As a result

∫

Ω

[
ρηuη ·

∂ξσ
∂t

+ (ρηuη ⊗ uη − 2µD(uη)) : D(ξσ) + ρηg · ξσ
]
dx =

d

dt

∫

Ω

ρηuη · ξσ dx.

We have already established that uη ⇀ u in L2(0, T,H1
0 (Ω)) weak, uη → u in L2(0, T, L2(Ω)) strong,

ρηuη ⇀ ρu in L2(0, T, L2(Ω)) weak, and ρη → ρ in L2(0, T, L2(Ω)) strong. Letting η goes to zero,

we thus obtain

∫

Ω

[
ρu · ∂ξσ

∂t
+ (ρu⊗ u− 2µD(u)) : D(ξσ) + ρg · ξσ

]
dx =

d

dt

∫

Ω

ρu · ξσ dx.

which corresponds to the weak formulation (11). This holds for any ξσ ∈ H1(Q)∩L2(0, T ;K1
σ(t)),

for arbitrary σ > 0, and, since the time interval has been chosen to guarantee that there is no

contact with the boundary, by Proposition 4.3 of [20], for all ξ ∈ H1(Q) ∩ L2(0, T ;K(t)). This

ends the proof of theorem 2.1.

20



4 Numerical simulations

We give here a few numerical illustrations of the penalization method in 2D. We only sketch the

numerical discretization and we refer to [3] for a more detailed description and further numerical

results.

Numerical 2D and 3D validations against experimental and other numerical results for a dis-

cretization of the present penalization method in a vorticity formulation of the Navier-Stokes

equations are given in [7].

We choose a time-step ∆t and denote by a superscript n discretization of all quantities at time

tn = n∆t. For each time integration, we split the penalization model (12)-(16) as follows

• We solve the following variable density flow problem and obtain:

ũ = un −∆t(un.∇)un +
∆t

ρn
µ∆ũ− ∆t

ρn
∇pn+1 +∆tg

with

ρn = ρsH
n + ρf (1−Hn)

• We compute the rigid velocity the rigid velocity corresponding to ũ:

us = uG + w × rn, uG =

∫

Ω

ρn ũHn dx
∫

Ω

ρnHn dx

, ω = J−1

∫

Ω

ρn(rn × ũ)Hn dx

• We penalize the flow with this rigid velocity inside the solid body:

un+1 − ũ

∆t
=

1

η
Hn(us − un+1) ⇔ un+1 =

ũ+ ∆t
η H

nus

1 + ∆t
η H

n
(54)

• We finally advect the solid with the rigid velocity:

Hn+1 = Hn −∆t us · ∇Hn

The variable-density flow equations are solved by a projection method using a MAC staggered

grid: p and H share the same nodes, while the horizontal and vertical components of velocity are

located respectively between a pressure node and its right or upper neighbor. This arrangement

of the degrees of freedom ensures an algebraic divergence free vector field during the projection

step, and prevents parasitic pressure modes. The advection equation is discretized by a fifth order
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WENO scheme, using the real velocity for the density and the rigid velocity field for H, ensuring

a constant shape of the rigid body.

Note that we have used an implicit time discretization of the velocity penalization, which allows

to use a very small penalization parameter η. Using an explicit method would require this value

no to be smaller than ∆t. It can indeed be checked that a explicit method with η = ∆t essentially

amounts to the projection method [18]. We will see below that using smaller values of η together

with an implicit scheme has a significant effect on the accuracy of the method.

In order to numerically validate the penalization method, we consider the case of the sedimen-

tation of a rigid cylinder in two dimensions (see [11], [7]). The domain Ω = [0, 2] × [0, 6] is filled

with an incompressible viscous fluid initially at rest, of density ρf = 1 and viscosity µf = 0.01.

The rigid cylinder of radius R = 0.125 and density ρs = 1.5 is initially centered in (1, 4), and we

apply the gravity force g = −980. In this experiment, the Reynolds number based on the cylinder

diameter varies from 0 to about 250.

In order to verify how the rigid constraint is satisfied in the solid, we monitor at time t = 0.1 the

L2-norm of the discrete deformation tensor defined by:

‖D(u)‖2L2(Ωs(t))
:=
∑

ij

Hij

(
D2

11(uij) + 2D2
12(uij) +D2

22(uij)
)
(∆x)2

We fix ∆x = 1/256 and ∆t = 10−4, and compute this norm for values of η from 10−4 to 10−12, at

t = 0.1.

The results presented in table 1 indicate a convergence of the penalization method, as far as the

deformation is concerned, with first order in η. Note that in our decomposition of the penalization

model, we have chosen to verify the divergence free constraint in the stage that precedes the

computation of the rigid velocity. As a result, the solution at the end of a complete time step

exhibits a boundary layer in the divergence of the velocity, proportional to ∆t
η ‖(uS−u)·n)‖L2(∂ΩS).

If we had chosen to apply the pressure correction after the equation (54) the divergence of the

velocity would be algebraically zero at the end of the time step but the deformation inside the

body would be significantly higher.

In figure 1 we show the profiles of the vertical velocity for several values of η, corresponding to a

cross section at the center of the cylinder. We can observe that below η = 10−8 one may consider

that we obtained converged velocity results. The projection method of [18, 22] essentially consists
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η ‖D(u)‖L2(Ωs(t)) α for O(ηα)

10−4 4.30838 -

10−6 3.84749× 10−2 1.0247

10−8 3.45379× 10−4 1.0234

10−10 3.81643× 10−6 0.9783

10−12 3.79832× 10−8 1.001

Table 1: Sedimentation of a two dimensional cylinder. Errors on ‖D(u)‖L2(Ωs(t)) and convergence
orders at t = 0.1 for ∆x = 1/256 and ∆t = 10−4.

of replacing the step (54) by un+1 = us. This corresponds to the following explicit discretization

of the penalization term:

un+1 − ũ

∆t
=

1

η
Hn(us − ũ)

with ∆t = η. We show the results obtained with these parameters and this discretization of the

penalization term. As far as precision is concerned, one can notice the benefit of using larger

penalization parameters combined with an implicit time discretization of the penalization term.

This confirms the results reported in [7].
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Figure 1: Sedimentation of a two-dimensional cylinder, for ∆x = 1/256 and ∆t = 10−4. Vertical
velocity in an horizontal cross-section through the center of the cylinder at t = 0.1 for several
values of the penalization parameter.
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5 Conclusion

We have presented and analyzed a penalization method that extends the method of [2] to the

case of a rigid body moving freely in an incompressible fluid. The proof is based on compactness

arguments. Numerical illustrations have been provided to illustrate our convergence result. The

benefit of using very large penalization parameters combined with an implicit time discretization

of the penalization term, compared to the projection method [22] which corresponds to a particular

explicit time discretization for the penalized equation, has been demonstrated.

While this was not our primary goal, an outcome of our convergence study is an existence

result for a weak formulation of the coupling between a rigid solid and a fluid. Let us shortly

discuss how this result compares with existing ones [12, 8, 6, 20]. In [12] local in time existence

and uniqueness of strong solutions was proved. The Eulerian approach was developed in [8] where

global in time existence of weak solutions was proved in dimension 2, without collisions. In

the three-dimensional case, to our knowledge only local in time existence of weak solutions was

obtained, since L2 regularity of the time derivative of velocity was required (and therefore global

existence would imply global existence of strong solutions). In [6, 13] the existence of global weak

solution in three dimensions for one ball shaped solid, with possible collision with the boundary,

was proved. In [20] the existence of global weak solutions for several rigid bodies with collisions

was proved in dimension 2. Our results prove the existence of global in time weak solutions in three

dimensions, before collision. By contrast with [6, 13], this result can easily be generalized to the

case of several bodies by introducing indicator functions, rigid velocities and penalization terms

corresponding to each body. To our knowledge, the existence of global in time weak solutions for

several bodies with collisions is an open problem in three dimensions.

6 Appendix

This section si devoted to the proof of some technical lemmas that were used in section 3.
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Proof of Lemma 3.3 Let φ(t) ∈ L2(Ω\Ωs,σ(t)), and (v(t), q(t)) ∈ H1(Ω\Ωs,σ(t))×L2(Ω\Ωs,σ(t))

solution of the Stokes problem





−∆v(t) +∇q(t) = φ(t) on Ω\Ωs,σ(t),

div v(t) = 0 on Ω\Ωs,σ(t),

v(t) = 0 on ∂
(
Ω\Ωs,σ(t)

)
.

Since we assumed a C2 regularity on Ω\Ω0
s this regularity is conserved through rigid motion and,

for σ small enough (say σ < σ0 for some σ0 > 0) to Ω\Ωs,σ(t). The regularity results of Agmon-

Douglis-Nirenberg on the linear Stokes problem (see [23], prop. 2.3. p. 35) give

(v(t), q(t)) ∈ H2(Ω\Ωs,σ(t))×H1(Ω\Ωs,σ(t))

and there exists C > 0 such that

‖v(t)‖H2(Ω\Ωs,σ(t))
+ ‖q(t)‖H1(Ω\Ωs,σ(t))

≤ C‖φ(t)‖L2(Ω\Ωs,σ(t))
.

Note that, with our definition of T , the constant C, which depends on the geometry of the domain

boundary, can be taken independent of t ∈ [0, T ] and σ, provided σ0 is taken small enough. We

can then write

∫

Ω\Ωs,σ(t)

w(t) · φ(t) dx = −
∫

Ω\Ωs,σ(t)

w(t) ·∆v(t) dx+

∫

Ω\Ωs,σ(t)

w(t) · ∇q(t) dx

= −
∫

∂(Ω\Ωs,σ)(t)

w(t) · ∂v(t)
∂n

ds+

∫

Ω\Ωs,σ(t)

∇w(t) · ∇v(t) dx

+

∫

∂(Ω\Ωs,σ)(t)

w(t)q(t) · nds−
∫

Ω\Ωs,σ(t)

divw(t)q(t) dx

= −
∫

∂Ωs,σ(t)

w(t) · ∂v(t)
∂n

ds+

∫

∂(Ω\Ωs,σ)(t)

∂w(t)

∂n
· v(t)ds

−
∫

Ω\Ωs,σ(t)

∆w(t) · v(t) dx+

∫

∂Ωs,σ(t)

w(t)q(t) · nds

= −
∫

∂Ωs,σ(t)

w(t) · ∂v(t)
∂n

ds+

∫

Ω\Ωs,σ(t)

v(t) · ∇p(t) dx

+

∫

∂Ωs,σ(t)

w(t)q(t) · nds
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The integral of v · ∇p vanishes since v is divergence-free and vanishes on ∂
(
Ω\Ωs,σ(t)

)
. Then

using classical trace theorems in Sobolev spaces we get

∫

Ω\Ωs,σ(t)

w(t) · φ(t) dx = −
∫

∂Ωs,σ(t)

g(t) · ∂v(t)
∂n

ds+

∫

∂Ωs,σ(t)

g(t)q(t) · nds

≤ ‖g(t)‖L2(∂Ωs,σ(t))

(
‖∇v(t)‖L2(∂Ωs,σ(t)) + ‖q(t)‖L2(∂Ωs,σ(t))

)

≤ C‖g(t)‖L2(∂Ωs,σ(t))

(
‖v(t)‖H2(Ω\Ωs,σ(t))

+ ‖q(t)‖H1(Ω\Ωs,σ(t))

)

≤ C‖g(t)‖L2(∂Ωs,σ(t))‖φ(t)‖L2(Ω\Ωs,σ(t))

≤ C‖u(t)‖
1
2

L2(Ωs,σ(t))
‖∇u(t)‖

1
2

L2(Ωs,σ(t))
‖φ(t)‖L2(Ω\Ωs,σ(t))

.

This proves the assertion.

Proof of Lemma 3.6

Step 1: We first show how to construct for a.e. t ∈]0, T [ a function vσ(., t) ∈ Kr
σ(t) such that

lim
σ→0

‖vσ(., t)− u(., t)‖Vr = 0 a.e. on ]0, T [.

Let σ > 0 and vσ(., t) such that





−∆vσ(., t) +∇p(., t) = −∆u(., t) on Ω\Ωs,σ(t),

div vσ(., t) = 0 on Ω\Ωs,σ(t),

vσ(., t) = us(., t) on ∂Ωs,σ(t),

vσ(., t) = 0 on ∂Ω,

where

us =
1

M

∫

Ω

ρuH dx+

(
J−1

∫

Ω

ρ(r × u)H dx

)
× r.

By lemma 3.4, u(., t) = us(., t) on Ωs(t). Extending vσ(., t) by us(., t) in Ωs,σ(t), we have vσ(., t) ∈

Kr
σ(t). We set eσ(., t) = vσ(., t)− u(., t). It satisfies





−∆eσ(., t) +∇p(., t) = 0 on Ω\Ωs,σ(t),

div eσ(., t) = 0 on Ω\Ωs,σ(t),

eσ(., t) = us(., t)− u(., t) on ∂Ωs,σ(t),

eσ(., t) = 0 on ∂Ω.

We extend eσ(., t) by us(., t)− u(., t) in Ωs,σ(t), so that eσ(., t) = 0 in Ωs(t).

We claim that

lim
σ→0

‖eσ(., t)‖L2(Ω) = 0 a.e. on ]0, T [. (55)
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In Ωs(t) eσ(., t) = 0, thus

‖eσ(., t)‖2L2(Ω) = ‖eσ(., t)‖2L2(Ωs,σ(t)\Ωs(t))
+ ‖eσ(., t)‖2L2(Ω\Ωs,σ(t))

.

Since Ωs,σ(t)\Ωs(t) has width 2σ, from the proof of lemma 5.10 of [10] we have a.e. on ]0, T [,

‖eσ(., t)‖2L2(Ωs,σ(t)\Ωs(t))
≤ C

(
‖eσ(., t)‖2L2(∂Ωs(t))

+ σ2‖∇eσ(., t)‖2L2(Ωs,σ(t)\Ωs(t))

)

≤ C
(
‖eσ(., t)‖L2(Ωs(t))

‖∇eσ(., t)‖L2(Ωs(t))
+ σ2‖∇eσ(., t)‖2L2(Ωs,σ(t)\Ωs(t))

)

= Cσ2‖∇eσ(., t)‖2L2(Ωs,σ(t)\Ωs(t))

Next, as eσ(., t) = us(., t)−u(., t) in Ωs,σ(t) and u(., t) and us(., t) are inH
1
0 (Ω), we get ‖∇eσ(., t)‖L2(Ωs,σ(t)\Ωs(t))

≤

‖∇eσ(., t)‖L2(Ωs,σ(t))
≤ ‖∇eσ(., t)‖L2(Ω) ≤ C, where C is independent of σ. This gives

‖eσ(., t)‖L2(Ωs,σ(t))
= ‖eσ(., t)‖L2(Ωs,σ(t)\Ωs(t))

≤ Cσ.

By Lemma 3.3 we thus get

‖eσ(., t)‖2L2(Ω\Ωs,σ(t))
≤C‖eσ(., t)‖L2(Ωs,σ(t))

‖∇eσ(., t)‖L2(Ωs,σ(t))
≤ Cσ.

Collecting the above estimates, we conclude that

lim
σ→0

‖eσ(., t)‖2L2(Ω) = 0.

In order to prove that this convergence also holds in Vr we first note that

‖eσ(., t)‖H1(Ω) ≤ C a.e. on ]0, T [ (56)

as is readily seen from estimates on the Stokes problem verified by eσ. By interpolation (see e.g.

[1], p. 135), we obtain

‖eσ(., t)‖Vr ≤ ‖eσ(., t)‖1−r
L2(Ω)‖eσ(., t)‖

r
H1(Ω) (57)

and due to (55) and (56),

lim
σ→0

‖eσ(., t)‖Vr = 0 ∀r ∈ [1/2, 1[ a.e. on ]0, T [. (58)

Step 2: By definition of P r
σ ,

‖P r
σu(., t)− u(., t)‖Vr ≤ ‖vσ(., t)− u(., t)‖Vr
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thus the pointwise convergence on vσ we just obtained implies

lim
σ→0

‖P r
σu(., t)− u(., t)‖Vr = 0 a.e. on ]0, T [. (59)

Step 3: fσ : t 7→ ‖P r
σu(., t)− u(., t)‖Vr is measurable on [0, T ] and since 0 ∈ Kr

σ,

‖fσ‖
2
r

L
2
r (0,T )

=

∫ T

0

‖P r
σu(., t)− u(., t)‖

2
r

Vrdt ≤
∫ T

0

‖u(., t)‖
2
r

Vrdt

≤ C

∫ T

0

‖u(., t)‖
2(1−r)

r

L2(Ω) ‖u(., t)‖
2
H1(Ω)dt

≤ C‖u‖
2(1−r)

r

L∞(0,T,L2(Ω))‖u‖
2
L2(0,T,H1

0 (Ω))

≤ C.

To summarize fσ verifies 



lim
σ→0

fσ(t) = 0 a.e. on [0, T ],

fσ is measurable on [0, T ],

‖fσ‖
L

2
r (0,T )

≤ C with r < 1.

Therefore, thanks to lemma 3.2, lim
σ→0

‖fσ‖L2(0,T ) = 0, which means

lim
σ→0

‖P r
σu− u‖L2(0,T,Vr) = 0.

Proof of Lemma 3.7

Step 1: We construct for a.e. fixed t ∈ [0, T ] a function vησ(., t) ∈ Kr
σ(t) such that

lim
σ→0

lim
η→0

‖vησ(., t)− uη(., t)‖Vr = 0 a.e. on ]0, T [.

Let σ > 0 and vησ(., t) solution of the following Stokes problem outside Ωη
s,σ(t):





−∆vησ(., t) +∇p(., t) = −∆uη(., t) on Ω\Ωη
s,σ(t),

div vησ(., t) = 0 on Ω\Ωη
s,σ(t),

vησ(., t) = uη,s(., t) on ∂Ωη
s,σ(t),

vησ(., t) = 0 on ∂Ω.

Extending vησ(., t) by uη,s(., t) in Ωη
s,σ(t), we have vησ(., t) ∈ Kr

σ(t). We then introduce eησ(., t) =

vησ(., t)− uη(., t). It verifies





−∆eησ(., t) +∇p(., t) = 0 on Ω\Ωη
s,σ(t),

div eησ(., t) = 0 on Ω\Ωη
s,σ(t),

eησ(., t) = uη,s(., t)− uη(., t) on ∂Ωη
s,σ(t),

eησ(., t) = 0 on ∂Ω,

and we extend it by uη,s(., t)− uη(., t) in Ωη
s,σ(t).
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We claim that

lim
σ→0

lim
η→0

‖eησ(., t)‖L2(Ω) = 0 a.e. on ]0, T [. (60)

From lemma 3.5, for a given σ > 0, there exists η0 > 0 such that ∀η < η0,

Ωη
s(t) ⊂ Ωs,σ(t) and Ωs(t) ⊂ Ωη

s,σ(t).

Let η < η0. We write

‖eησ(., t)‖2L2(Ω) = ‖eησ(., t)‖2L2(Ωη
s (t))

+ ‖eησ(., t)‖2L2(Ωs,σ(t)\Ω
η
s (t))

+ ‖eησ(., t)‖2L2(Ω\Ωs,σ(t))
. (61)

From estimate (23), there holds

∫ T

0

‖eησ(., t)‖2L2(Ωη
s (t))

dt ≤ Cη. (62)

Since Ωs,σ(t)\Ωη
s(t) has width less than 2σ, from the proof of lemma 5.10 of [10] we have a.e. on

]0, T [,

‖eησ(., t)‖2L2(Ωs,σ(t)\Ω
η
s (t))

≤ C
(
‖eησ(., t)‖2L2(∂Ωη

s (t))
+ σ2‖∇eησ(., t)‖2L2(Ωs,σ(t)\Ω

η
s (t))

)
.

(63)

And using a trace theorem, we get

‖eησ(., t)‖2L2(Ωs,σ(t)\Ω
η
s (t))

≤ C
(
‖eησ(., t)‖L2(Ωη

s (t))
‖∇eησ(., t)‖L2(Ωη

s (t))

+σ2‖∇eησ(., t)‖2L2(Ωs,σ(t)\Ω
η
s (t))

)

≤ C
(
‖eησ(., t)‖L2(Ωη

s (t))
‖∇eησ(., t)‖L2(Ωs,σ(t))

+σ2‖∇eησ(., t)‖2L2(Ωs,σ(t))

)
. (64)

Adding ‖eησ(., t)‖2L2(Ωη
s (t))

to this inequality gives

‖eησ(., t)‖2L2(Ωs,σ(t))
≤ C

(
‖eησ(., t)‖2L2(Ωη

s (t))
+ ‖eησ(., t)‖L2(Ωη

s (t))
‖∇eησ(., t)‖L2(Ωs,σ(t))

+σ2‖∇eησ(., t)‖2L2(Ωs,σ(t))

)
. (65)

For the last term in (61) we use Lemma 3.3:

‖eησ(., t)‖2L2(Ω\Ωs,σ(t))
≤ C‖eησ(., t)‖L2(Ωs,σ(t))

‖∇eησ(., t)‖L2(Ωs,σ(t))
. (66)
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Since eησ(., t) = uη,s(., t)−uη(., t) in Ωs,σ(t) and uη, uη,s are bounded in L2(0, T ;H1
0 (Ω)), we have

∫ T

0

‖∇eησ(., t)‖2L2(Ωs,σ(t))
dt ≤ C. (67)

With (62) and (67) we are now in position to estimate the integral over [0, T ] of (64-66). By

Cauchy-Schwarz inequality:

∫ T

0

‖eησ(., t)‖2L2(Ωs,σ(t)\Ω
η
s (t))

dt ≤ C(η
1
2 + σ2),

∫ T

0

‖eησ(., t)‖2L2(Ω\Ωs,σ(t))
dt ≤ C

(∫ T

0

‖eησ(., t)‖2L2(Ωs,σ(t))
dt

) 1
2

≤ C(η + η
1
2 + σ2)

1
2 .

Therefore, for a fixed value of σ we can pass to the limit in η, and then pass to the limit in σ, to

obtain

lim
σ→0

lim
η→0

∫ T

0

‖eησ(., t)‖2L2(Ω)dt = 0. (68)

This strong convergence can be turned into an almost everywhere in t convergence up to the

extraction of a subsequence. The rest of the proof is adapted in a straightforward way from that

of Lemma 3.6.
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