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Brownian motion with respect to time-changing
Riemannian metrics, applications to Ricci flow

K.A. Coulibaly

Abstract

We generalize Brownian motion on a Riemannian manifold to the case of
a family of metrics which depends on time. Such questions are natural for
equations like the heat equation with respect to time dependent Laplacians
(inhomogeneous diffusions). In this paper we are in particular interested in
the Ricci flow which provides an intrinsic family of time dependent metrics.
We give a notion of parallel transport along this Brownian motion, and
establish a generalization of the Dohrn-Guerra or damped parallel transport,
Bismut integration by part formulas, and gradient estimate formulas. One of
our main results is a characterization of the Ricci flow in terms of the damped
parallel transport. At the end of the paper we give a canonical definition
of the damped parallel transport in terms of stochastic flows, and derive an
intrinsic martingale which may provide information about singularities of
the flow.

1 g(t)-Brownian motion

Let M be a compact connected n-dimensional manifold which carries a family of
time-dependent Riemannian metrics g(t). In this section we will give a generaliza-
tion of the well known Brownian motion on M which will depend on the family of
metrics. In other words, it will depend on the deformation of the manifold. Such
family of metrics will naturally come from geometric flows like mean curvature flow
or Ricci flow. The compactness assumption for the manifold is not essential. Let
∇t be the Levi-Civita connection associated to the metric g(t), ∆t the associated
Laplace-Beltrami operator. Let also (Ω, (Ft)t≥0,F ,P) be a complete probability
space endowed with a filtration (Ft)t≥0 satisfying ordinary assumptions like right
continuity and W be a Rn-valued Brownian motion for this probability space.

Definition 1.1 Let us take (Ω, (Ft)t≥0,F ,P) and a C1,2-family g(t)t∈[0,T [ of met-
rics over M . An M-valued process X(x) defined on Ω × [0, T [ is called a g(t)-
Brownian motion in M started at x ∈ M if X(x) is continuous, adapted, and if
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for every smooth function f ,

f(Xs(x)) − f(x) − 1

2

∫ s

0

∆tf(Xt(x)) dt

is a local martingale.

We shall prove existence of this inhomogeneous diffusion and give a notion of
parallel transport along this process.

Let (ei)i∈[1..d] be an orthonormal basis of Rn, F(M) the frame bundle over M , π
the projection to M . For any u ∈ F(M), let Li(t, u) = ht(uei) be the ∇t horizontal
lift of uei and Li(t) the associated vector field. Further let Vα,β be the canonical
basis of vertical vector fields over F(M) defined by Vα,β(u) = Dlu(Eα,β) where Eα,β

is the canonical basis of Mn(R) and where

lu : GLn(R) → F(M)

is the left multiplication. Finally let (O(M), g(t)) be the g(t) orthonormal frame
bundle.

Proposition 1.2 Assume that g(t)t∈[0,T [ is a C1,2(t, x)-family of metrics over M ,
and

A : [0, T [ × F(M) → Mn(R)
(t, U) 7→ (Aα,β(t, U))α,β

is locally Lipschitz in U unformly in all compact of t. Consider the Stratonovich
differential equation in F(M):

{
∗dUt =

∑n
i=1 Li(t, Ut) ∗ dW i +

∑
α,β Aα,β(t, Ut)Vα,β(Ut) dt

U0 ∈ F(M) such that U0 ∈ (O(M), g(0)).
(1.1)

Then there is a unique symmetric choice for A such that Ut ∈ (O(M), g(t)). More-
over:

A(t, U) = −1

2
∂1G(t, U),

where (∂1G(t, U))i,j = 〈Uei, Uej〉∂tg(t).

Proof : Let us begin with curves. Let I be a real interval, π : TM → M the
projection, V and C in C1(I, TM), two curves such that

x(t) := π(V (t)) = π(C(t)), for all t ∈ I

We want to compute:
d

dt |t=0

(
〈V (t), C(t)〉g(t,x(t))

)
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We write ∂1g(t, x) for ∂sg(s, x) evaluated at t. Let us express the metric g(t) in
a coordinate system; without loss of generality we can differentiate at time 0. Let
(x1, ..., xn) be a coordinate system at the point x(0), in which we have:

V (t) = vi(t)∂xi

C(t) = ci(t)∂xi

g(t, x(t)) = gi,j(t, x(t))dx
i ⊗ dxj

In these local coordinates we get:

d

dt |t=0

〈V (t), C(t)〉g(t,x(t)) =
d

dt |t=0

gi,j(t, x(t))v
i(t)cj(t)

= (∂1gi,j(0, x)v
i(0)cj(0) +

d

dt |t=0

(gi,j(0, x(t))v
i(t)cj(t))

= ∂1gi,j(0, x)v
i(0)cj(0) +

〈
∇0

ẋ(0)V (0), C(0)
〉

g(0,x(0))

+
〈
V (0),∇0

ẋ(0)C(0)
〉

g(0,x(0))

= 〈V (0), C(0)〉∂1g(0,x(0) +
〈
∇0

ẋ(0)V (0), C(0)
〉

g(0,x(0))

+
〈
V (0),∇0

ẋ(0)C(0)
〉

g(0,x(0))
.

In order to compute the g(t) norm of a tangent valued process we will use what
Malliavin calls “the transfer principle”, as explained in [13],[12].

Recall the equivalence between a given connection on a manifold M and a
splitting on TTM , i.e. TTM = H∇TTM ⊕ V TTM [19]. We have a bijection:

Vv : Tπ(v)M −→ VvTTM
u 7−→ d

dt
(v + tu)|t=0.

For X, Y ∈ Γ(TM) we have:

∇XY (x) = V−1
X(x)((dY (x)(X(x)))v),

where (.)v is the projection of a vector in TTM onto the vertical subspace V TTM
parallely to H∇TTM .

For a T (M)-valued process Tt, we define:

DS,tTt = (VTt
)−1((∗dTt)

v,t), (1.2)

where (.)v,t is defined as before but for the connection ∇t. The above generalization
makes sense for a tangent valued process coming from a Stratonovich equation like
Utei, where Ut is a solution of the Stratonovich differential equation (1.1).
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For the solution Ut of (1.1) we get

d
(
〈Utei, Utej〉g(t,π(Ut))

)
= 〈Utei, Utej〉∂1g(t,π(Ut)))

dt (1.3)

+
〈
DS,tUtei, Utej

〉
g(t,π(Ut))

+
〈
Utei, D

S,tUtej

〉
g(t,π(Ut))

(1.4)

We would like to find a symmetric A such that the left hand side of the above
equation vanishes for all time (i.e. Ut ∈ (O(M), g(t))). Denote by evei

: F(M) →
TM the ordinary evaluation, and d evei

: TF(M) → TTM its differential.
It is easy to see that d evei

sends V TF(M) to V TTM and sends H∇h

TF(M) to
H∇TTM . We obtain:

DS,tUtei =

n∑

α=1

Aα,i(t, Ut)Uteα dt. (1.5)

For simplicity, we take for notation: (∂1G(t, U))i,j = 〈Uei, Uej〉∂tg(t) and

(G(t, U))i,j = 〈Uei, Uej〉g(t) .

It is now easy to find the condition for A:

(G(t, Ut)A(t, Ut))j,i + (G(t, Ut)A(t, Ut))i,j = −(∂1G(t, Ut))i,j (1.6)

Given orthogonality G(t, Ut) = Id and so by (1.6) A differs from −1
2
∂1G by skew

symmetric matrice, therefore will be equal to it if we demand symmetry. Conversely
if A = −1

2
∂1G then by (1.3) and equation (1.2) we see G(t, Ut) = Id.

Remark : The SDE in proposition 1.2 does not explode because on any
compact time interval all coefficients and their derivatives up to order 2 in space
and order 1 in time are bounded.

Remark : The condition of symmetry is linked to a good definition of parallel
transport with moving metrics in some sense.

To see where the condition of symmetry comes from we may observe what
happens in the constant metric case. It is easy to see that the usual definition
of parallel transport along a semi-martingale which depends on the vanishing of
the Stratonovich integral of connection form, is equivalent to isometry and the
symmetry condition for the drift in the following SDE in F(M):





dŨt =
∑d

i=1 Li(Ũt) ∗ dW i + A(Ũt)α,βVα,β(Ũt) dt

Ũ0 ∈ (O(M), g)

Ũt ∈ (O(M), g) (isometry)
A(., .)α,β ∈ S(n) (vertical evolution).
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Remark : Isometry of Ut forces A to be skeew symmetric by (1.6), the symmetry
of A give A = 0. We get the usual stochastic differential equation of the parallel
transport in constante metric case.

The next proposition is a direct adaptation of a proposition in [15], page 42;
hence the proof is omitted.

Proposition 1.3 Let α ∈ Γ(T ∗M) and Fα : F(M) → Rd, F i
α(u) = απ(u)(uei) its

scalarization. Then, for all A ∈ Γ(TM),

(∇Aα)π(u)(uei) = h(Aπ(u))F
i
α.

Consequently, for all u ∈ F(M),

(∇g(t)
A df)π(u)(uei) = hg(t)(Aπ(u))F

i
df

and for f ∈ C∞(M),

Li(t)(f ◦ π)(u) = d(f ◦ π)Li(t, u)

= F i
df (u).

Hence we have the formula:

Li(t)Lj(t)(f ◦ π)(u) = hg(t)(uei)F
j
df

= (∇g(t)
uei
df)(uej)

= ∇g(t)df(uei, uej).

Proposition 1.4 Take x ∈M and the SDE in F(M):

{
∗dUt =

∑n
i=1 Li(t, Ut) ∗ dW i − 1

2
∂1G(t, Ut)α,βVα,β(Ut) dt

U0 ∈ F(M) such that U0 ∈ (Ox(M), g(0)).
(1.7)

Then Xt(x) = π(Ut) is a g(t)-Brownian motion, which we note g(t)-BM(x).

Proof : For f ∈ C∞(M),

d(f ◦ π ◦ Ut) =
∑n

i=1 Li(t)(f ◦ π)(Ut) ∗ dW i

=
∑n

i=1 Li(t)(f ◦ π)(Ut)dW
i + 1

2

∑n
i,j=1Li(t)Lj(t)(f ◦ π)dW idW j

dM≡ 1
2

∑n
i=1 ∇g(t)df(Utei, Utei) dt

dM≡ 1
2
∆tf(π ◦ Ut) dt.

The last equality comes from the fact that Ut ∈ (O(M), g(t)).
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Remark : Recall that in the compact case the lifetime of equation (1.7) is
deterministic and the same as the lifetime of the metrics family.

Let Ut be the solution of (1.7). We will write //0,t = Ut ◦ U−1
0 the g(t) parallel

transport over a g(t)-Brownian motion ( we call it parallel transport because it is
a natural extention of the usual parallel transport in the constante metric case).
As usual it is an isometry:

//0,t : (TX0
M, g(0)) → (TXt

M, g(t)).

We also get a development formula. Take an orthonormal basis (v1, ..., vn) of
(TX0

M, g(0)), and Xt(x) a g(t)-Brownian motion of proposition 1.4; then

∗dXt(x) = //0,tvi ∗ dW i
t .

For f ∈ C2(M) we get the Itô formula:

df(Xt(x)) = 〈∇tf, //0,tvi〉tdW i +
1

2
∆t(f)(Xt(x)) dt. (1.8)

We will now give examples of g(t)-Brownian motion. Let (Sn, g(0)) be a sphere
and the solution of the Ricci flow: ∂

∂t
g(t) = −2 Rict that is g(t) = (1−2(n−1)t)g(0)

with explosion time Tc = 1
2(n−1)

. We will use the fact that all metrics are conformal

to the initial metric to express the g(t)-Brownian motion in terms of the g(0)-
Brownian motion. Let f ∈ C2(Sn), Xt(x) be a g(t)-Brownian motion starting
at x ∈ Sn, Bt some real-valued Brownian motion, and Bt(x) a Sn valued g(0)-
Brownian motion. Then:

df(Xt(x)) =‖ ∇tf(Xt(x)) ‖g(t) dBt +
1

2

(
1

1 − 2(n− 1)t

)
∆0f(Xt(x)) dt.

We have:

‖ ∇tf ‖2
g(t)=

1

1 − 2(n− 1)t
‖ ∇0f ‖2

0 .

Let

τ(t) =

∫ t

0

1

1 − 2(n− 1)s
ds,

then

τ(t) =
ln(1 − 2(n− 1)t)

−2(n− 1)
, τ−1(t) =

e−2(n−1)t − 1

−2(n− 1)
.

We have the equality in law:

(X.(x))
L
= (Bτ(.)(x)).
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We have a similar result for the hyperbolic case: Let (Hn(−1), g(0)) be the
hyperbolic space with constant curvature −1. Then g(t) = (1 + 2(n − 1)t)g(0) is
the solution of the Ricci flow. Let Xt(x) be a g(t)-Brownian motion starting at
x ∈ Sn,and Bt(x) an Hn-valued g(0)-Brownian motion. Then:

τ(t) =

∫ t

0

1

1 + 2(n− 1)s
ds,

and in law:
(X.(x))

L
= (Bτ(.)(x)).

Let us look at what happens for some limit of the Ricci flow, the so called
Hamilton cigar manifold ([5]). Let on R2, g(0, x) = 1

1+‖x‖2 gcan be the Hamilton

cigar , where ‖ . ‖ is the Euclidean norm. Then the solution to the Ricci flow

is given by g(t, x) = 1+‖x‖2

e4t+‖x‖2g(0, x). Let f ∈ C2(R2), Xt(x) be a g(t)-Brownian

motion starting at x ∈ R2, Bt a real-valued Brownian motion, and Bt(x) some R2

valued g(0)-Brownian motion. Then:

df(Xt(x)) =‖ ∇tf(Xt(x)) ‖g(t) dBt +
1

2

e4t+ ‖ Xt(x) ‖2

1+ ‖ Xt(x) ‖2
∆0f(Xt(x)) dt.

We have:

∇tf(x) =
e4t+ ‖ x ‖2

1+ ‖ x ‖2
∇0f(x),

‖ ∇tf(x) ‖2
t =

e4t+ ‖ x ‖2

1+ ‖ x ‖2
‖ ∇0f(x) ‖2

0,

∆tf =
e4t+ ‖ x ‖2

1+ ‖ x ‖2
∆0f.

We set:

τ(t) =

∫ t

0

e4s+ ‖ Xs(x) ‖2

1+ ‖ Xs(x) ‖2
ds.

Then in law:
(X.(x))

L
= (Bτ(.)(x))

Remark : If Xt(x) is a g(t)-Brownian motion associated to a Ricci flow
started at g(0) then Xt/c(x) is a cg(t/c)-Brownian motion associated to a Ricci
flow started at cg(0) so it is compatible with the blow up.
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2 Local expression, evolution equation for the

density, conjugate heat equation

We begin this section by expressing a g(t)-Brownian motion in local coordinates.

Proposition 2.1 Let x ∈M , (x1, ..., xn) be local coordinates around x, and Xt(x)
a g(t)-Brownian motion. Before the exit time of the domain of coordinates, we
have:

dX i
t(x) =

√
g−1(t, Xt(x))i,jdB

j − 1

2
gk,lΓi

kl(t, Xt(x)) dt

where we denote
√
g−1(t, Xt(x))i,j the unique positive square root of the inverse to

the matrix (g(t, ∂xi, ∂xj ))i,j; here Γi
kl(t, Xt(x)) are the Christoffel symbols associated

to ∇g(t), and Bi are n independent Brownian motion.

Proof : From the Itô equation 1.8, we get:

dX i
t(x) = 〈∇txi, //0,tvl〉g(t)dW

l +
1

2
∆tx

i(Xt(x))dt,

where (v1, ..., vn) is a g(0)-orthogonal basis of TxM . By the usual expression of the
Laplacian in coordinates:

∆tx
i(Xt(x)) = −gl,kΓi

kl(t, Xt(x)),

and the gradient expression of the coordinates functions:

∇txi = g(t)i,j ∂

∂xj
,

we have:

dX i
t(x) = g(t)i,j〈 ∂

∂xj
, //0,tvl〉g(t)dW

l − 1

2
gl,kΓi

kl(t, Xt(x)) dt

=
∑

m

√
g(t)i,m〈

√
g(t)m,j

∂

∂xj
, //0,tvl〉g(t)dW

l − 1

2
gl,kΓi

kl(t, Xt(x)) dt

=
√
g(t)i,mdBm − 1

2
gl,kΓi

kl(t, Xt(x)) dt ,

where dBm = 〈
√
g(t)m,j ∂

∂xj
, //0,tvl〉g(t)dW

l. By the isometry property of the paral-

lel transport and Lévy’s theorem B = (B1, ..., Bn) is a Brownian motion in Rn.
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Remark : The above equation is similar to the equation in the fixed metric
case.

Now we shall study the evolution equation for the density of the law of the
g(t)-Brownian motion. Let Xt(x) be a g(t)-BM(x), and dµt the Lebesgue measure
over (M, g(t)). Xt(x) is a diffusion with generator ∆t, we have the smoothness of
the density (e.g. [22]). Let hx(t, y) ∈ C∞(]0, T [×M) such that:

{
Xt(x)

L
= hx(t, y)dµt(y), t > 0

X0(x)
L
= δx.

By the continuity of Xt(x) and the dominated convergence theorem we get the
convergence in law:

L

lim
t→0

Xt(x) = δx.

We write in a local chart the expression of dµt in terms of dµ0, i.e.,

dµt =

√
det(gi,j(t))√
det(gi,j(0))

√
det(gi,j(0))|dx1 ∧ dx2 ∧ ... ∧ dxn|

and we note:
µt(dy) = ψ(t, y)µ0(dy).

Proposition 2.2





d

dt
(hx(t, y)) + hx(t, y) Tr

(
1

2
(g−1(t, y))

d

dt
g(t, y)

)
=

1

2
∆g(t)h

x(t, y)

L

lim
t→0

hx(t, y)dµt = δx.

Proof : For f ∈ C∞(M), t > 0, by definition of Xt(x) we have:

E[f(Xt(x))] − f(x) = 1
2
E

[ ∫ t

0
∆g(s)f(Xs(x)) ds

]

d
dt

E[f(Xt(x))] = 1
2
E[∆g(t)f(Xt(x))],

i.e.:
d
dt

∫
M
hx(t, y)f(y)µt(dy) = 1

2

∫
M

∆g(t)f(y)hx(t, y)µt(dy)
= 1

2

∫
M
f(y)∆g(t)h

x(t, y)µt(dy).

The last equality comes from Green’s theorem and the compactness of the manifold.
By changing µt(dy) = ψ(t, y)µ0(dy) in the left hand side, we have:

∫

M

f(y)
d

dt
(hx(t, y)ψ(t, y))µ0(dy) =

1

2

∫

M

f(y)(∆g(t)h
x(t, y))ψ(t, y))µ0(dy)

9
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so:
d

dt
(hx(t, y)ψ(t, y)) =

1

2
(∆g(t)h

x(t, y))ψ(t, y)) (2.1)

We also have by determinant differentiation:

d

dt
ψ(t, y) =

1

2
√

det(gi,j(0))

1√
det(gi,j(t))

det(gi,j(t)) Tr

(
g−1(t, y)

d

dt
g(t, y)

)

=
1

2
ψ(t, y) tr

(
g−1(t, y)

d

dt
g(t, y)

)
.

The part Tr

(
1
2
g−1(t, y) d

dt
g(t, y)

)
is intrinsic, it does not depend on the choice

of the chart. Hence (2.1) gives the following inhomogeneous reaction-diffusion
equation:

d

dt
(hx(t, y)) + hx(t, y)tr

(
1

2
g−1(t, y)

d

dt
g(t, y)

)
=

1

2
∆g(t)h

x(t, y).

We will give as example the evolution equation of the density in the case where
the family of metrics comes from the forward (and resp. backward) Ricci flow.
From now Ricci flow will mean (probabilistic convention):

d
dt
gi,j = −Rici,j . (2.2)

(respectively)
d
dt
gi,j = Rici,j . (2.3)

Remark : Hamilton in [14], and later DeTurck in [7] have shown existence
in small times of such flow. In this section we don’t care about the real existence
time.

For x ∈M , we will denote by S(t, x) the scalar curvature at the point x for the
metric g(t).

Corollary 2.3 For the backward Ricci flow (2.3), we have:




d

dt
(hx(t, y)) +

1

2
hx(t, y)S(t, y) =

1

2
∆g(t)h

x(t, y)
L

lim
t→0

hx(t, y)dµt = δx.

For the forward Ricci flow (2.2), we have:




d

dt
(hx(t, y)) − 1

2
hx(t, y)S(t, y) =

1

2
∆g(t)h

x(t, y)
L

lim
t→0

hx(t, y)dµt = δx.

10
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Remark : These equations are conservative. This is not the case for the ordi-
nary heat equation with time depending Laplacian i.e. ∆g(t). They are conjugate
heat equations which are well known in the Ricci flow theory (e.g. [24]).

3 Damped parallel transport, and Bismut for-

mula for Ricci flow, applications to Ricci flow

for surfaces

In this section, we will be interested in the heat equation under the Ricci flow. The
principal fact is that under forward Ricci flow, the damped parallel transport or
Dohrn-Guerra transport is the parallel transport defined before. The deformation
of geometry under the Ricci flow compensates the deformation of the parallel trans-
port (i.e. the Ricci term in the usual formula for the damped parallel transport
in constant metric case see ([9], [23], [10])). The isometry property of the damped
parallel transport turns out to be an advantage for computations. In particular, for
gradient estimate formulas, everything looks like in the case of a Ricci flat manifold
with constant metric. We begin with a general result independent of the fact that
the flow is a Ricci flow. Let g(t)[0,Tc[ be a C1,2 family of metrics, and consider the
heat equation: {

∂tf(t, x) = 1
2
∆tf(t, x)

f(0, x) = f0(x),
(3.1)

where f0 is a function over M . We suppose that the solution of (3.1) exists until
Tc. For T < Tc, let XT

t be a g(T − t)-Brownian motion, //T
0,t the associated parallel

transport.

Definition 3.1 We define the damped parallel transport W
T
0,t as the solution of:

∗d((//T
0,t)

−1(WT
0,t)) = −1

2
(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t) dt

with
W

T
0,t : TxM −→ TXT

t (x)M,WT
0,0 = IdTxM .

Theorem 3.2 For every solution f(t, .) of (3.1), and for all v ∈ TxM ,

df(T − t, .)XT
t (x)(W

T
0,tv)

is a local martingale.
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Proof : Recall the equation of a parallel transport over the g(T − t)-Brownian

motion XT
t (x):

{
∗dUT

t =
∑d

i=1 Li(T − t, UT
t ) ∗ dW i − 1

2
∂t(g(T − t))(UT

t eα, U
T
t eβ)Vα,β(UT

t ) dt
UT

0 ∈ (Ox(M), g(T )).
(3.2)

For f ∈ C∞(M), its scalarization:

d̃f : F(M) −→ Rn

U 7−→ (df(Ue1), ..., df(Uen)),

yields the following formula in Rn:

df(T − t, .)XT
t (x)(W

T
0,tv) = 〈d̃f(T − t, UT

t ), (UT
t )−1WT

0,tv〉Rn,

for every v ∈ TxM . To recall the notation let:

evei
: F(M) −→ TM

U 7−→ Uei

and recall that UT
t , solution of (3.2), is a diffusion associated to the generator

1

2
∆H

T−t −
1

2
∂t(g(T − t))(evei(.), evej(.))Vi,j(.)

where ∆H
T−t is the horizontal Laplacian in M, associated to the metric g(T − t).

In the Itô sense, we get:

d(df(T − t, .)XT
t (x)(W

T
0,t)v) = d〈d̃f(T − t, UT

t ), (UT
t )−1WT

0,tv〉Rn

dM≡ 〈−(
d

dt
d̃f)(T − t, .)(UT

t )dt+ [
1

2
∆H

T−td̃f(T − t, .)

− 1

2
∂t(g(T − t))(evei ., evej .)Vi,j(.)d̃f(T − t, .)](UT

t ) dt, (UT
t )−1WT

0,tv〉Rn

+ 〈(d̃f(T − t, UT
t )), (UT

0 )−1d((//T
0,t)

−1(WT
0,t))v〉Rn

dM≡ −(
d

dt
df)(T − t, .)((WT

0,t))v) dt+ 〈[1
2
∆H

T−td̃f(T − t, .)

− 1

2
∂t(g(T − t))(evei ., evej)Vi,j(.)d̃f(T − t, .)](UT

t ) dt, (UT
t )−1WT

0,tv〉Rn

− 1

2
〈(d̃f(T − t, UT

t )), (UT
0 )−1(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t)v dt〉Rn .

We shall make separate computations for each term in the previous equality. Using
the well known formula (e.g. [15], page 193)

∆H d̃f = ∆̃df,
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we first note that:

〈1
2
∆H

T−td̃f(T − t, .)(UT
t ), (UT

t )−1WT
0,tv dt〉Rn

= 1
2
〈∆̃T−tdf(T − t, .)(UT

t ), (UT
t )−1WT

0,tv〉Rn dt

= 1
2
∆T−tdf(T − t, .)(WT

0,tv) dt,

By definition:

Vi,jd̃f(u) = d
dt
|t=0d̃f(u(Id +tEij))

= d
dt
|t=0(df(u(Id+tEij)es))s=1..n

= (df(uδs
i ej))s=1..n

= (0, ..., 0, df(uej), 0, ..., 0) i-th position,

so that:

∑
ij ∂t(g(T − t))(evei ., evej .)Vi,j(.)d̃f(T − t, .)(UT

t ) dt

=
∑

ij ∂t(g(T − t))(UT
t ei, U

T
t ej)df(UT

t ej)ei dt

= (〈∇T−tf(T − t, .),
∑

j ∂t(g(T − t))(UT
t ei, U

T
t ej)U

T
t ej〉T−t dt)i=1..n

= (df(T − t, ∂t(g(T − t))#T−t(UT
t ei)) dt)i=1..n.

Then

d(df(T − t, .)XT
t (x)((W

T
0,t)v))

dM≡ − d
dt
df(T − t, .)((WT

0,tv) dt

−1
2
〈(df(T − t, ∂t(g(T − t))#T−t(UT

t ei)))i=1..n, (U
T
t )−1WT

0,tv〉Rn dt

+1
2
∆T−tdf(T − t, .)(WT

0,tv) dt

−1
2
〈(d̃f(T − t, UT

t )), (UT
0 )−1(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t))#g(T−t)(WT

0,t)v dt〉Rn.

By the fact that UT
t is a g(T − t)-isometry we have:

〈(df(T − t, ∂t(g(T − t))#T−t(UT
t ei)))i=1..n, (U

T
t )−1WT

0,tv〉Rn

= 〈
∑

i ∂t(g(T − t))(UT
t ei,∇T−tf(T − t, .))ei, (U

T
t )−1WT

0,tv〉Rn

= 〈
∑

i ∂t(g(T − t))(UT
t ei,∇T−tf(T − t, .))UT

t ei,W
T
0,tv〉T−t

= 〈∂t(g(T − t))#T−t(WT
0,tv),∇T−tf(T − t, .)〉T−t,
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Consequently:

d(df(T − t, .)XT
t (x)(W

T
0,tv))

dM≡ − d

dt
df(T − t, .)(WT

0,tv) dt

− 1

2
〈∇T−tf(T − t, .), ∂t(g(T − t))#T−t(WT

0,tv)〉T−t dt

+
1

2
∆T−tdf(T − t, .)(WT

0,tv) dt

− 1

2
〈(d̃f(T − t, UT

t )), (UT
t )−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t)v dt〉Rn

dM≡ − d

dt
df(T − t, .)(WT

0,tv) dt+
1

2
∆T−tdf(T − t, .)(WT

0,tv) dt

− 1

2
df(T − t,Ric

#g(T−t)
g(T−t) (WT

0,tv) dt.

But recall that f is a solution of:

∂

∂t
f =

1

2
∆tf,

so that

− ∂

∂t
df(T − t, .) = −1

2
d∆T−tf(T − t, .).

We shall use the Hodge-de Rham Laplacian �T−t = −(dδT−t + δT−td) which com-
mutes with the de Rham differential, and we shall use the well-known Weitzenböck
formula ([16, 17]), which says that for θ a 1-form, �T−tθ = ∆T−tθ − RicT−t θ. We
get:

d∆T−tf(T − t, .) = d�T−tf(T − t, .)
= �T−tdf(T − t, .)
= ∆T−tdf(T − t, .) − RicT−t df(T − t, .).

Finally:

d(df(T − t, .)XT
t (x)(W

T
0,tv))

dM≡ 1
2
RicT−t df(T − t, .)(WT

0,tv) dt

−1
2
〈∇T−tf(T − t, .),Ric#T−t

T−t (WT
0,tv)〉T−t dt

dM≡ 0,

by duality; for a 1-form θ and for v ∈ TM :

Ric(θ)(v) = Ric(θ#, v.)

where〈θ#, v〉 = θ(v) .
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Remark : For the forward Ricci flow, we have:

//T
0,t ∗ d((//T

0,t)
−1WT

0,t) = 0.

For the backward Ricci flow, we have:

//T
0,t ∗ d((//T

0,t)
−1WT

0,t) = −Ric#T−t
T−t (WT

0,t) dt.

When the family of metrics is constant, we have the usual damped parallel
transport, wich satifies:

//0,t ∗ d((//0,t)
−1W0,t) = −1

2
Ric#(W0,t) dt.

Remark : Roughly speaking, the result says that the deformation of the met-
ric under Ricci flow makes the damped parallel transport behaves like the damped
parallel transport in the case of a constant metric with flat Ricci curvature.

For the heat equation under the forward Ricci flow, we take the probabilistic
convention: 




∂tf(t, x) = 1
2
∆tf(t, x)

d
dt
gi,j = −Rici,j

f(0, x) = f0(x)
(3.3)

We shall give a Bismut type formula and a gradient estimate formula for the
above equation. For notation, let Tc be the maximal life time of the forward Ricci
flow g(t)t∈[0,Tc[, solution of (2.2). For T < Tc, X

T
t is a g(T − t)-Brownian motion

and //T
0,t the associated parallel transport. In this case, for a solution f(t, .) of

(3.3), f(T − t, XT
t (x)) is a local martingale for any x ∈ M . When going back in

time, one has to remember all deformations of the geometry.
We now recall a well known lemma giving a Bismut type formula (e.g. [8]).

Let f(t, .) and g(t) be solution of (3.3), T < Tc, and XT
t (x) a g(T − t)-Brownian

motion.

Lemma 3.3 For all Rn-valued process k such that k ∈ L2
loc(W ) where W is some

Rn-valued Brownian motion, and for all v ∈ TxM ,

Nt = df(T − t, .)XT
t (x)(U

T
t )[(UT

0 )−1v −
∫ t

0
krdr]

+ f(T − t, XT
t (x))

∫ t

0
〈kr, dW 〉Rn

is a local martingale.
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Proof : The first remark after theorem 3.2 yield that the first term is a semi-
martingale. By Itô calculus we get:

d(f(T − t, XT
t (x))) = df(T − t, .)XT

t (x)UteidW
i.

With (li)i=1..n a g(T )-orthonormal frame of TxM , we write Nt as:

Nt =
∑

i(df(T − t, .)XT
t (x)(U

T
t (UT

0 )−1)li)(vi −
∫ t

0
〈UT

0 (kr), li〉Tdr)
+ f(T − t, XT

t (x))
∫ t

0
〈kr, dW 〉Rn

with 3.2:

dNt
dM≡ ∑

i(df(T − t, .)XT
t (x)(U

T
t (UT

0 )−1)li)(−〈UT
0 (kt), li〉Tdt)

+d(f(T − t, XT
t (x)))〈kt, dW 〉Rn

dM≡
∑

i(df(T − t, .)XT
t (x)(U

T
t (UT

0 )−1)li)(−〈UT
0 (kt), li〉Tdt)

+
∑

i df(T − t, .)XT
t (x)(U

T
t li)dW

i(
∑

j k
j
tdW

j)
dM≡ 0.

Remark : Since T is smaller than the explosion time Tc, and by the com-
pactness of M , Nt is clearly a true martingale, so we could use the martingale
property for global estimate, or the Doob optional sampling theorem for local es-
timate (e.g. [23]).

Corollary 3.4 Let v ∈ TxM , and take for example kr =
(UT

0
)−1v

T
1[0,T ](r) then:

df(T, .)xv =
1

T

∑

i

E[f0(X
T
T (x))〈(UT

0 )−1v, ei〉RnWi(T )].

Proof : With the above remark, Nt is a martingale. The choice of kr gives

(UT
0 )−1v −

∫ T

0
krdr = 0; the result follows by taking expectation at time 0 and T .

We can give the following estimate for the gradient of the solution of (3.3):

Corollary 3.5 Let ‖f‖∞ = supM |f0|. For T < Tc:

sup
x∈M

‖∇Tf(T, x)‖T is decreasing in time

and:

sup
x∈M

‖∇Tf(T, x)‖T ≤ ‖f‖∞√
T
.
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Proof : Take x ∈ M such that ‖ ∇Tf(T, x) ‖T is maximal. Using the damped
parallel transport 3.2 we obtain that for all v ∈ TxM :

df(T − t, XT
t (x))WT

0,tv,

is a local martingale. By compactness, this is a true martingale. Taking v =
∇Tf(T, x) and averaging the previous martingale at time 0 and t we get:

‖ ∇Tf(T, x) ‖2
T = E[〈∇T−tf(T − t, XT

t (x)),WT
0,tv〉T−t].

Using 3.2, we get the first result.

If we choose kr =
(UT

0
)−1v

T
1[0,T ](r) in 3.3, then Nt is a martingale. Taking

expectations at times 0 and T , we obtain

df(T, .)xv =
1

T
E[f0(X

T
T (x))

∫ T

0

〈UT
0 )−1v, dW 〉Rn].

For x ∈M and v = ∇Tf(T, x), Schwartz inequality gives

‖ ∇Tf(T, x) ‖2
T≤

M0

T
E

[∣∣∣∣
∫ T

0

〈UT
0 )−1v, dW 〉Rn

∣∣∣∣
2
] 1

2

.

We have:

E

[∣∣∣∣
∫ T

0

〈UT
0 )−1v, dW 〉Rn

∣∣∣∣
2
]

= T ‖ v ‖2
T .

The result follows.

For geometric interpretation, let us give an example of normalized Ricci flow
for surfaces (which is completely understood e.g. [5]). We are interested in this
example because the equation for the scalar curvature under this flow is a reaction-
diffusion equation which is quite similar to the heat equation under Ricci flow. We
will give a gradient estimate formula for the scalar curvature under normalized
Ricci flow which gives in the case χ(M) < 0 (the easiest case) the convergence of
the metric to a metric of constant curvature.

The normalized Ricci flow of surfaces comes from normalizing the metric by
some time dependent function to preserve the volume. Let M be a 2-dimensional
manifold, R(t) the scalar curvature, r =

∫
M
Rtdµt/µt(M) its average (which will

be constant in time, as topological constant, e.g. Gauss-Bonnet). We get the
following equation for normalized Ricci flow:

d

dt
gi,j(t) = (r − R(t))gi,j(t).

17

ha
l-0

03
52

80
5,

 v
er

si
on

 2
 - 

17
 S

ep
 2

00
9



Remark : Hamilton gives a proof of the existence of solutions to this equa-
tion, defined for all time ( e.g. [5])).

Recall that (e.g. [5]) the equation for the scalar curvature R is:

∂

∂t
R = ∆tR +R(R− r).

Proposition 3.6 Let T ∈ R, XT
t (x) be a 1

2
g(T −t)-BM(x), //T

0,t the parallel trans-
port, v ∈ TxM and ϕtv the solution of the following equation:

//T
0,td

(
(//T

0,t)
−1ϕtv

)
= −

(
3

2
r − 2R

(
T − t, XT

t (x)
))

ϕtv dt

ϕ0 = IdTxM .

Then dR(T − t, .)XT
t (x)ϕtv is a martingale and:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0e
− 3

2
rT E[e

R T

0
2R(T−t,XT

t (x)) dt]. (3.4)

Proof : The proof is similar to the one in 3.2, the difference is the reaction term:
R(R−r). For notations and some details see the proof of 3.2. Take F : x 7→ x(x−r),
then:

∂

∂t
R = ∆tR + F (R).

We write:

dR(T − t, .) |XT
t (x) ϕtv = 〈d̃R(T − t, UT

t ), (UT
t )−1ϕtv〉R2

where UT
t is a diffusion on F(M) with generator

∆H
T−t +

1

4
(r −R(T − t, π.))g(T − t)(evei ., evej .)Vi,j(.).

Using theorem 3.2, we have:

d〈d̃R(T − t, UT
t ), (UT

t )−1ϕtv〉R2

= 〈d(d̃R(T − t, UT
t )), (UT

t )−1ϕtv〉R2

+ 〈d̃R(T − t, UT
t ), d((UT

t )−1ϕtv)〉R2

dM≡
[ ∂
∂t

(dR(T − t, .)) + ∆T−tdR(t− t, .) +
1

2
(r −R(T − t, π.))dR(T − t, .)

]
(ϕtv) dt

+ 〈d̃R(T − t, UT
t ), d((UT

t )−1ϕtv)〉R2

Using Weitzenböck formula and the equation for R we get:

∂

∂t
dR(T−t, .) = −[∆T−tdR(T−t, .)−RicT−t dR(T−t, .)+F ′

(R(T−t, .))dR(T−t, .)]
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Recall that for the surface:

RicT−t dR(T − t, .) =
1

2
R(T − t, .)dR(T − t, .),

consequently

d〈d̃R(T − t, UT
t ), (UT

t )−1ϕtv〉R2

dM≡ (
1

2
r − F

′

(R(T − t, .))dR(T − t, .))(ϕtv) dt+ 〈d̃R(T − t, UT
t ), d((UT

t )−1ϕtv)〉R2

dM≡ (
1

2
r − 2R(T − t, .) + r)dR(T − t, .))(ϕtv) dt

+ 〈d̃R(T − t, UT
t ), (UT

t )−1(−3

2
r + 2R(T − t, .))ϕtv)〉R2

dM≡ 0,

where we used the equation of ϕtv in the last step.
For the second part of the proposition, with the equation for ϕtv we have:

d(‖ ϕtv ‖2
T−t) = (4R(T − t, XT

t (x) − 3r) ‖ ϕtv ‖2
T−t dt,

so that
‖ ϕTv ‖2

0=‖ ϕ0v ‖2
T e

−3rT e
R T

0
4R(T−s,XT

s (x)) ds.

Take v = ∇TR(T, x) and average at time 0 and T (it is a true martingale
because all coefficients are bounded) to get:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0e
− 3

2
rT E[e

R T

0
2R(T−s,XT

s (x)) ds].

Remark : For reaction-diffusion equations we can find by this calculation
the correction to the parallel transport leading to a Bismut type formula for the
gradient of the equation:

∂

∂t
f = ∆tf + F (f), (3.5)

where ∆t is a Laplace Beltrami operator associated to a family of metrics g(t).
Let XT

t (x) be a 1
2
g(T − t) − BM(x), //T

0,t the associated parallel transport and
v ∈ TxM . Consider the covariant equation:

//T
0,td(//

T
0,t)

−1Θtv = −
(

Ric#,T−t −1

2

[ ∂
∂t

(g(T − t))
]#,T−t

− F
′

(f)
)
Θtv dt

Then for f a solution of (3.5) and v ∈ TxM we obtain that:

df(T − t, .)Θtv

is a local martingale.
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Corollary 3.7 For χ(M) < 0, there exists C > 0 depending only on g(0), such
that:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0 e
1

2
rT e2C( erT

−1

r
).

Proof : We use proposition 5.18 in [5]. In this case we have r < 0 and a con-
stant C > 0 depending only on the initial metric such that R(t, .) ≤ r + Cert and
the estimate follows from previous proposition.

Remark : For the case χ(M) < 0 we obtained an estimate which decreases
exponentially. For the case χ(M) > 0 one could control the expectation in (3.4).

4 The point of view of the stochastic flow

Let g(t)[0,Tc[ be a C1,2 family of metrics, and consider the heat equation:

{
∂tf(t, x) = 1

2
∆tf(t, x)

f(0, x) = f0(x),
(4.1)

where f0 is a function over M . We suppose that the solution of this equation exists
until Tc. For T < Tc, let XT

t be a g(T−t)-Brownian motion and //T
0,t the associated

parallel transport.
We will build (c.f. (4.2)) a family of semimartingales (T − t, XT

t (x)) such
as XT

t (x) is a g(T − t)-BM(x) for all x nearby x0 and such that the family of
martingales f(T − t, XT

t (x))x is differentiable at x0 with respect to the parameter
x. However, in this section, we will not do it directly using stochastic flows in the
sense of [20]. Instead, we will use differentiation of families of martingales defined
as limit in some semi-martingale space (the topology is as in [11] which has been
extended by Arnaudon, Thalmaier to the manifold case [4], [3], [1], [2]).

We work in the space-time I×M , its tangent bundle being identified to TI×TM
endowed with the cross connection ∇̃ = ∇⊗∇T−t where ∇ is the flat connection.
Let XT

t (x0) be a g(T − t)-BM started at x0, and define Yt(x0) = (t, XT
t (x0)) a

I×M-valued semi martingale. From now on P ∇̃
X,Y stands for the parallel transport

along the shortest ∇̃-geodesic between nearby points X ∈ I ×M and Y ∈ I ×M
for the connection ∇̃.

Let c̃ a curve in I ×M , we write P ∇̃
c̃ for the ∇̃ parallel transport along c̃ and

for a curve c in M we denote by //T−s
c the ∇T−s parallel transport along c. We

also denote π : I ×M → M the natural projection.
For a curve γ : t −→ (s, xt) in I ×M , where s is a fixed time, we have the

following observation:

P ∇̃
γ = (Id, //T−s

π(γ)).
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Define the Itô stochastic equation in the sense of [13]:

d∇̃Yt(x) = P ∇̃
Yt(x0),Yt(x)d

∇̃Yt(x0) (4.2)

Remark : The above equation is well defined, for x sufficiently close to x0,
because dT−t(Xt(x), Xt(x0)) is a finite variation process, with bounded derivative
(by a short computation and [18], [6]).

Let /̃/0,t be the parallel transport, associated to the connection ∇̃, over the semi
martingale Yt(x0).

In the next lemma, we will explain the relationship between the two parallel
transport /̃/0,t and //T

0,t.

Lemma 4.1 Let (ei)i=1..n be a orthonormale of (Tx0
M, g(T )) then

d((//T
0,t)

−1dπ/̃/0,t)(0, ei) =
1

2
(//T

0,t)
−1(

∂

∂t
g(T − t))#T−t(dπ/̃/0,t(0, ei)) dt.

Proof : The parallel transport /̃/0,t does not modify the time vector, i.e.,

/̃/
−1

(t,Xt)
(0, ...) = (0, ...),

as can be shown for every curves, and hence for the semi-martingale Yt by the
transfer principle.

We identify T̃ = {(0, v) ∈ T(0,x0)I×M} and Tx0
M with the help of (0, v) 7−→ v.

Hence
(//T

0,t)
−1dπ/̃/0,t : T̃ → Tx0

M

becomes an element in Mn,n(R).

Recall that //T
0,t = UT

t U
T,−1
0 . By definition of DS,t given in (1.2). We get using

the shorthand ei = UT
0 ẽi, with (ẽi)i=1..n an orthonormal frame of Rn,

∗d((//T
0,t)

−1dπ/̃/0,t) = ∗d(〈(//T
0,t)

−1dπ/̃/0,tei, ej〉T )i,j

= ∗d(〈dπ/̃/0,tei, //
T
0,tej〉T−t)i,j

=
(
〈DS,T−tdπ/̃/0,tei, U

T
t ẽj〉T−t

+
∂

∂t
(g(T − t))(dπ/̃/0,tei, U

T
t ẽj) dt

+〈dπ/̃/0,tei, D
S,T−tUT

t ẽj〉T−t

)
i,j
.
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We also have:

DS,T−tdπ/̃/0,tei = V−1

dπ/̃/
0,tei

((∗d(dπ/̃/0,tei))
vT−t)

= V−1

dπ/̃/
0,tei

((ddπd evei
(∗d/̃/0,t))

vT−t)

= V−1

dπ/̃/
0,tei

(ddπ(d evei
(∗d/̃/0,t))

ṽ)

= 0.

Where we have used in the last equality the fact that /̃/0,t is the ∇̃ horizontal lift

of Yt. The third one may be seen for curves, it comes from the definition of ∇̃.
Following computations similar to one in the first section, we have by (1.5):

∗d((//T
0,t)

−1dπ/̃/0,t)i,j = ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

+ 〈dπ/̃/0,tei, D
S,T−tUT

t ẽj〉T−t

= ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

+ 〈dπ/̃/0,tei,−1
2

∑d
α=1

∂
∂t
g(T − t)(UT

t ẽj , U
T
t ẽα)UT

t ẽα〉T−t dt

= ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

− 1
2

∑d
α=1

∂
∂t
g(T − t)(UT

t ẽj , U
T
t ẽα)〈dπ/̃/0,tei, U

T
t ẽα〉T−t dt

= 1
2

∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt.

In the general case, and by previous identification:

d((//T
0,t)

−1dπ/̃/0,t)(0, ei) =
1

2

∑

j

∂

∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj)ej dt (4.3)

=
1

2
(//T

0,t)
−1(

∂

∂t
g(T − t))#T−t(dπ/̃/0,t(0, ei)) dt.(4.4)

.

Differentiating (4.2) along a geodesic curve beginning at (0, x0) with velocity
(a, v) ∈ T0I × Tx0

M and using corollary 3.17 in [3] we get:

/̃/0,td
(
/̃/

−1

0,tTYt(a, v)
)

= −1

2
R̃(TYt(a, v), dYt(x0))dYt(x0),

where R̃ is the curvature tensor.
Let v ∈ TxM we write:

TXtv := dπTYt(0, v).

In a more canonical way than theorem 3.2, we have the following proposition.
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Proposition 4.2 For all v ∈ TxM we have:

d((//T
0,t)

−1TXtv) =
1

2
(//T

0,t)
−1((

∂

∂t
g(T − t)) − RicT−t)

#,T−t(TXtv) dt.

Proof : For a triple of tangent vectors (Lt, L), (At, A), (Zt, Z) ∈ TI × TM , we
have:

R̃((Lt, L), (At, A))(Zt, Z) = (0, RT−t(L,A)Z).

Hence, according to the relation dY (x0) = (dt, ∗dXt) = (dt, //T
0,tei ∗ dW i) and the

definition of the Ricci tensor:

/̃/0,td
(
/̃/

−1

0,tTYt(0, v)
)

= −1

2
(0,Ric#T−t(TXtv)) dt. (4.5)

In order to compute in Rn, we write:

(//T
0,t)

−1TXtv = ((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v)). (4.6)

By (4.5), we have d
(
/̃/

−1

0,tTYt(0, v)
)
∈ dA where A is the space of finite variation

processes. We get:

d((//T
0,t)

−1TXtv) = d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))+((//T
0,t)

−1dπ/̃/0,t)d(/̃/
−1

0,tTYt(0, v)).

By (4.6) and lemma 4.1 we get:

d((//T
0,t)

−1TXtv) = ∗d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))

+ ((//T
0,t)

−1dπ/̃/0,t) ∗ d(/̃/
−1

0,tTYt(0, v))

= ∗d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))

− 1
2
((//T

0,t)
−1dπ)(0,Ric#,T−t(TXtv) dt

= 1
2
(//T

0,t)
−1( ∂

∂t
g(T − t))#T−t(TXtv) dt

− 1
2
(//T

0,t)
−1 Ric#,T−t(TXtv) dt.

For all f0 ∈ C∞(M), and for f(t, .) a solution of (3.3), f(T − t, XT
t (x)) is a

martingale, where (T−t, XT
t (x)) = Yt(x) is built as in (4.2). We have the following

corollary which agrees with theorem 3.2.

Corollary 4.3 For all v ∈ TxM :

df(T − t, XT
t (x))v = df(T − t, .)XT

t (x)//
T
0,tv,

is a martingale.
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Proof : By differentiation under x of f(T−t, XT
t (x)), we get a local martingale.

According to [3] and by chain rule for differential we get the corollary. This result
matches 3.2 after using the above proposition.

In an canonical way, we have the following result.

Theorem 4.4 The following conditions are equivalent for a family g(t) of metrics:

i) g(t) evolves under the forward Ricci flow.

ii) For all T < Tc we have //T
0,t = W

T
0,t = TXt.

iii) For all T < Tc, the damped parallel transport W
T
0,t is an isometry.

Proof : Here, the forward Ricci flow has probabilistic convention (2.2). The
result follows by the equation of g(t) and by proposition 4.2 and theorem 3.2.

5 Second derivative of the stochastic flow

We take the differential of the stochastic flow in order to obtain a intrinsic mar-
tingale. We take the same notation as the previous section, and g(t) is a family of
metrics coming from a forward Ricci flow. Let XT

t (x) be the g(T−t)-BM started at
x, constructed as in the previous section by the parallel coupling of a g(T − t)-BM
started at x0 ( 4.2 ), ∇̃ and Yt(x) = (t, XT

t (x)) as before, define the intrinsic trace
(that do not depend on the choice of Ei as below):

Tr∇.TXt(x0)(.) := dπ

( ∑

i

∇̃(0,ei)TYt(x)(0, Ei(x)) − TYt(x)∇̃(0,ei)(0, Ei(x))

)

where (ei) is a (Tx0
M, g(T )) orthonormal basis, Ei are vectors fields in ΓTM such

that Ei(x0) = ei and ∇̃(0,ei)TYt(x)(0, Ei(x)) is a derivative of a bundle-valued
semi-martingale in the sense of ([4], [3], [1]). By 4.4:

Tr∇.TXt(x0)(.) := dπ
∑

i

∇̃(0,ei)TYt(x)(0, Ei(x)) − //T
0,tdπ(

∑

i

∇̃(0,ei)(0, Ei(x)))

Theorem 5.1 Let Lt := (//T
0,t)

−1 Tr∇.TXt(x0)(.) be a (Tx0
M, g(T ))-valued pro-

cess, started at 0. Then:

i) Lt is a (Tx0
M, g(T ))-valued martingale, independent of the choice of Ei.

ii) The g(T )-quadratic variation of L is given by d[L,L]t =‖ RicT−t(Xt(x0)) ‖2
T−t

dt.
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Proof : Recall that by the same construction of the previous section:

D̃(TYt(x)(0, Ei(x))) = −1

2
R̃(TYt(x)(0, Ei(x)), dYt(x))dYt(x).

By the general commutation formula (e.g. theorem 4.5 in [4]), and by the previous
equation which cancels two terms in this formula, we get:

D̃∇̃(0,ei)(TYt(x)(0, Ei(x))) =∇̃(0,ei)D̃(TYt(x)(0, Ei(x)))

+ R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

− 1

2
∇̃R̃(dYt(x0), TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)

= − 1

2
∇̃(0,ei)(R̃(TYt(x)(0, Ei(x)), dYt(x))dYt(x))

+ R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

− 1

2
(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei).

Taking trace in the previous equation we can go one step further. Recall that
(ei)i=1..n is a orthogonal basis of (Tx0

M, g(T )), and write for notation:

R̃ic
#

(t,x)(V ) = (0,Ric#T−t(dπV )),

then:
∑

i D̃∇̃(0,ei)(TYt(x)(0, Ei(x)))

= −1
2

∑
i ∇̃(0,ei)(R̃ic

#

Yt(x)(TYt(x)Ei(x)))

+
∑

i R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

−1
2

∑
i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)

= −1
2

∑
i(∇̃(TYt(x0)(0,ei))R̃ic

#
)(TYt(x0)(0, ei))

−1
2
(R̃ic

#

Yt(x0)(
∑

i ∇̃(0,ei)TYt(x)(0, Ei(x)))) + R̃ic
#

Yt(x0)(d
∇̃Yt(x0))

−1
2

∑
i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei).

In the last equality, we use the chain derivative formula, and derivation is taking
with respect to x . We will make an independent computation for the last term in
the previous equation. Let Tr stand for the usual trace:

∑
i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)

=
∑

i(0, (∇T−t
dXt

RT−t)(TXt(x0)ei, dXt)TXt(x0)ei)
=

∑
i,j(0, (∇T−t

//T
0,tej

RT−t)(TXt(x0)ei, //
T
0,tej)TXt(x0)ei) dt

=
∑

j(0,Tr1,3(∇T−t
//T

0,tej
RT−t)(//T

0,tej)) dt

=
∑

j(0, (∇T−t
//T

0,tej
Tr1,3R

T−t)(//T
0,tej)) dt

= −
∑

j(0, (∇T−t
//T

0,tej
Ric#T−t)(//T

0,tej)) dt,
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where we have used in the second equality the fact that in case of the forward
Ricci flow //T

0,t is a g(T − t) isometry and dX = //T
0,tejdW

j. In the last equality we
use the commutation between trace and covariant derivative (for example [21], or
[19]). Note that:

∑
i(∇̃(TYt(x0)(0,ei))R̃ic

#
)(TYt(x0)(0, ei))

=
∑

i(0, (∇T−t
TXt(x)ei

Ric#T−t

XT
t (x)

)(TXt(x)ei)) dt

Hence, using 4.4:

D̃(
∑

i ∇̃(0,ei)TYt(x)(0, Ei(x)))

= −1
2
(R̃ic

#

Yt(x0)(
∑

i ∇̃(0,ei)TYt(x)(0, Ei(x)))) + R̃ic
#

Yt(x0)(d
∇̃Yt(x0))

Write, for simplicity, B for
∑

i ∇̃(0,ei)TYt(x)(0, Ei(x)). We compute:

d(//T,−1
0,t dπB) = d([//T,−1

0,t dπ/̃/0,t][(/̃/0,t)
−1B])

= 1
2
//T,−1

0,t (∂tg(T − t))#,T−t(dπB) dt

+//T,−1
0,t (−1

2
dπ(R̃ic

#
(B)) + dπ(R̃ic

#

Yt(x0)(d
∇̃Yt(x0))))

= //T,−1
0,t (dπR̃ic

#

Yt(x0)(d
∇̃Yt(x0)))

=
∑

i //
T,−1
0,t Ric#T−t

XT
t (x)

(//T
0,tei)dW

i,

where we have used lemma 4.1 in the first equality. We get a intrinsic martingale
that does not depend on Ei, starting at 0. By the definition in theorem 5.1 and by
the formula preceding theorem 5.1, the above calculations yield:

Lt =

∫ t

0

∑

i

//T,−1
0,t Ric#T−t

XT
t (x)

(//T
0,tei)dW

i − dπ(
∑

i

∇̃(0,ei)(0, Ei(x))).

For the g(T )-quadratic variation of Lt we use the isometry property of the parallel
transport; we compute the quadratic variation:

d[L,L]t = 〈//T,−1
0,t Ric#T−t

XT
t (x)

(//T
0,tei), //

T,−1
0,t Ric#T−t

XT
t (x)

(//T
0,tei)〉T dt

=
∑

i ‖ Ric#T−t

XT
t (x)

(//T
0,tei) ‖2

g(T−t) dt

= |||Ric#T−t

XT
t (x)

|||2T−t dt;

where |||.||| is the usual Hilbert-Schmidt norm of linear operator. By the indepen-
dence of the choice of the orthonormal basis we can express this norm in terms of
the eigenvalues of the Ricci operator:

d[L,L]t =
∑

i

λ2
i (T − t, XT

t (x)) dt.
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Remark : We could choose Ei such that ∇̃(0,ei)(0, Ei(x)) = 0 that do not
change the martingale L, but give a simple version.

Remark : This martingale can be used to look at the behavior at point where
the first singularity of the Ricci flow occurs, i.e. where the norm of the Riemannian
curvature explodes ([5],[2]).
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