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Abstract. This paper is first a brief survey on links between Geometry of Numbers
and aperiodic crystals in Physics, viewed from the mathematical side. In a second
part, we prove the existence of a canonical cut-and-project scheme above a (ssfgud
set) self-similar finitely generated packing of (equal) spheres A in R™ and investigate
its consequences, in particular the role played by the Euclidean and inhomogeneous
minima of the algebraic number field generated by the self-similarity on the Delone
constant of the sphere packing. We discuss the isolation phenomenon. The degree
d of this field divides the Z-rank of Z[A — A]. We give a lower bound of the Delone
constant of a k-thin ssfgud sphere packing which arises from a model set or a Meyer
set when d is large enough.
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1 Introduction

The mathematics of uniformly discrete point sets and Delone sets developped
recently has at least four different origins: (i) the experimental evidence of
nonperiodic states of matter in condensed matter physics, so-called aperiodic
crystals, like quasicrystals [4] [51] [58] [63] [97] incommensurate modulated
crystals phases [62] [64] and their geometric modelization (cf Appendix), (ii)
some works of Delone (Delone) [33] [34] [39] [91] on geometric crystallography
(comparatively, see [54] [78] [84] [95] for a classical mathematical approach
of periodic crystals), (iii) some works of Meyer on now called cut-and-project
sets and Meyer sets [75] [76] [77] [86] (for a modern language of Meyer sets
in locally compact Abelian groups: [79]), (iv) the theory of self-similar tilings
[8] [70] [102] and the use of ergodic theory to understand diffractivity [5] [92]
[102]. In particular, the impact on mathematics of the discovery of quasicrys-
tals in 1984 [97], as long-range ordered phases, was outlined by Lagarias [66].
The term mathematical quasicrystals [6] [67] was proposed to name these De-
lone sets which are used as discrete geometrical models of these new states
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of matter which have particular spectral or diffraction properties; in partic-
ular crystals those for which the spectrum is essentially pure point (see [61]
[96] and the Appendix for the new definition of what is a crystal, and [31]
[53] [59] for spectral/diffraction theory). Delone sets are conceived as natural
generalizations of lattices in modern crystallography.

In this note we will briefly review these notions (Section 2) and will consider
more generally uniformly discrete sets of R™, in particular (ssfgud) self-similar
finitely generated uniformly discrete sets (Definition 2.19). A uniformly dis-
crete set of R™ of constant r > 0 is a packing of (equal) spheres of R™ of
(common) radius r/2. There are several advantages to consider uniformly
discrete sets instead of Delone sets only: their R-spans may take arbitrary
dimensions between 0 and n, while that of a Delone set is only n, they can be
finite sets which is forbidden for Delone sets, they may exhibit (spherical) holes
of arbitrary size at infinity whereas the size of holes in Delone sets is limited
by the Delone constant. A classification of uniformly discrete sets, hence of
Delone sets, which extends that given in [65], is proposed in Subsection 2.3.
Finitely generated uniformly discrete sets of R™ constitute the largest class on
which an address map (Subsection 2.3) can be defined.

The theory of ssfgud sets complements that of lattice packings of (equal)
spheres of R™ [19] [22] [26] [52] [72] [107] since a lattice is already a ssfgud
set itself (integers are self-similarities), where lattices are or not Op-lattices
for F an algebraic number field with involution [13] [30], and makes use of
algebraic integers of certain types (Subsection 2.4). Self-similar Meyer sets only
admit self-similarities which are Pisot or Salem numbers [75], while self-similar
finitely generated Delone sets only provide Perron or Lind numbers as self-
similarities [65]. It is an open problem to find a criterium which ensures that
a given uniformly discrete set admits at least one self-similarity. For a general
Delone set symmetries and in particular inflation symmetries are expected to
be rare, especially when the dimension of the ambient space is large, probably
more frequently than for lattices; a fortiori for uniformly discrete sets. For
lattices, Bannai [9] has shown the existence of many unimodular Z-lattices with
trivial automorphism group in a given genus of positive definite unimodular
Z-lattices of sufficiently large rank (see also [25]).

The existence of cut-and-project schemes above Delone sets is useful to
characterize the set of its self-similarities, inflation centers, local clustering,
etc [27] [28] [49] [73]. Given an arbitrary uniformly discrete set it is an open
problem whether a cut-and-project scheme lies above it (Subsection 2.1.2).
Theorem 1.1 answers in full generality to this problem for a given ssfgud set
A C R™ (with A € UDy,, see Subsection 2.3) with self-similarity A. The
constructions use the Archimedean embeddings of the number field K := Q(\)
generated by the self-similarity A (Section 3) in a vectorial way, as a product
of copies of the étale R-algebra Kr := K ®g R. Denote by £ : K — Kp
the canonical map. The structure of the lattice in the cut-and-project scheme
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above A arises as a consequence of the Jordan invariants of R™4 as a K[X]-
module (from (ii) in Theorem 1.1).

Theorem 1.1. Let A C R™",n > 1, be a uniformly discrete set such that
m = rk Z[A — A] < 400 with m > 1. Let A > 1 be a (affine) self-similarity
of A, i.e. areal number > 1 such that A\(A —c¢) C A —c for a certain ¢ € R™.
Then

(i) A is a real algebraic integer of degree d > 1 and d divides m,

(ii) there exist r =m/d Q-linearly independent vectors wi,wa,...,w, in
the Q(A)-vector space Q[A — A]  such that Z[A — A] is a rank m Z-
submodule of the Z-module:

Zlwy, Mwy, ..., M7 wy we, Awa, - AT g we, Ay, ATy

(iii) for every Z-basis {vi,va,...,vm} of Z[A — A], a matriz relation: AV =
MV holds, where V. = t[v1,...,v] and M is an invertible integral
m x m matriz with characteristic polynomial det(X I— M) = (p(X))™/¢
in which o(X) is the minimal polynomial of A; in particular, det M =
NK/Q()\)m/d, where N o()) is the algebraic norm of A,

(iv) there exists a cut-and-project scheme above A:
T Wi
( H Kr—— ~ HxR[A], L, 7, prl)
o il

where the lattice L = [[;_; S(Z[N]) 7% is such that pri(L) D Z[A — Al

Tl
whose internal space H is the product of two spaces:

H:(RK\R[A] ) x G
where R is the image of R[A] in [],_, KRniﬁ—in by the real and imaginary
embeddings of K, and G the closure in T, K]Rﬁ of the image by
of the space of relations over K between the generators wy,...,w,. The
space Ry \ R[A] is called the shadow space of A. This cut-and-project

scheme is endowed with an Euclidean structure given by a real Trace-like
symmetric bilinear form for which Rk and G are orthogonal.

The central cluster of the basis (Mw;)i=1... rj=o0,. a1 is by definition the
set {wy,ws,...,w,}. Note that some vectors in a central cluster may be R-
linearly dependent. When w1, ws, ..., w, have identical norms and constitute
orbits (i.e. F-clusters) under the action of a finite group, say F', constructions
in (iv) in Theorem 1.1 can be deduced from [29]. It is easy to check that

r =1 in Theorem 1.1 = the R-span of A is one-dimensional .

The converse is generally wrong and Subsection 2.5 gives the example of sets
Zg of beta-integers [10] on the line for which open problems exist.
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Corollary 1.2. If A is a self-similar finitely generated sphere packing in R™,
with self-similarity A, such that r = 1, i.e. for which the degree d of A equals
the rank m of Z|A — A], then Z[A — A] is the projection of a sublattice of finite
index of an Arakelov divisor of K = Q()) in the cut-and-project scheme above
A. This index is an integer multiple of (O : Z[N]).

Theorem 1.1 gives a framework for constructing aperiodic (equal) sphere
packings B(A) for which local arrangements, for instance like t-designs [7], can
be computed from a lattice in higher dimension above A.

Dense sphere packings of R™ are of general interest [17] [22] [26] [50]
[52] [81] [107]. For a sphere packing whose set of centers is a Delone set A
which is a uniformly discrete of constant r > 0, of Delone constant R(A) :=
sup,cgn inf e ||z — pf|, the density §(B(A)) of B(A) satisfies [81]: 6(B(A)) >
(2R(A)/r)~™. If A is only a uniformly discrete set, no equivalent formula for
bounding from below the density §(B(A)) exists in general. However, it is not
the case for Delone-like uniformly discrete sets of R™, which behave in some
sense like Delone sets (Subsection 5.1).

Theorem 1.3. Let A be a uniformly discrete set of R™, of constant r > 0,
which is Delone-like of pseudo-Delone constant R(A). Then the density of the
sphere packing B(A) (of common radius r/2) whose set of centers is A satisfies:

—n
5(B(A)) > <M) | (L1)

Therefore it is crucial to obtain interesting lower bounds of the Delone
constant (or pseudo-Delone constant) R(A) to control dense sphere packings,
in particular, sphere packings whose set of centers is a ssfgud set.

In Section 6 we comment on the two origins of the (pseudo-) Delone con-
stant of a sphere packing whose set of centers is a ssfgud set: the first one lies
in the geometrical properties of the central cluster {wy,ws,...,w,} as given
by Theorem 1.1 (ii), the second one is of purely arithmetical nature; it comes
from the Euclidean and inhomogeneous minima associated with a sublattice
of a product of ideal lattices [12] [23] [24] in bijection with Z[A — A] in the
cut-and-project scheme given by Theorem 1.1 (iv). Only the case r = 1 is
reported in Section 6.

Theorem 1.4. Let A C R™, n > 1, be a ssfgud set which is either a model set
or a Meyer set in the cut-and-project scheme defined by Theorem 1.1 (iv) with
r=1, Q as window and lattice L' such that pri(L') = Z[A — A].

Assume that the self-similarity \ is of degree d (> 3) large enough, that
K = Q(\) has a unit rank > 1 and is not a CM-field. Then, if A is k-thin,
k > 2, its Delone constant R(A) satisfies:

R(A) > vV (M(K)?4 - My(K)*4)? >0, (1.2)
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where M(K), resp. My(K), is the Euclidean minimum, resp. the k-th Eu-
clidean minimum, of K.

The 75%¢™¢ Rencontres between Mathematicians and Physicists held at
IRMA - Strasbourg on the Thema “Number Theory and Physics” have offered
to the author the opportunity of writing this brief note, initially conceived as
a short survey, on the relationships between sphere packings, the mathemat-
ics of aperiodic crystals, algebraic number theory and numeration in base an
algebraic integer > 1.

2 Uniformly discrete sets and Delone sets

2.1 Definitions and Topology

Let us define uniformly discrete sets and Delone sets in two different contexts:
in the metric case when the ambient space is a metric space which is o-compact
and locally compact, like R”, and when the ambient space is R™ with a cut-
and-project scheme that lies above it with a locally compact abelian group as
internal space.

2.1.1 Metric Case Let (H,d) be a o-compact and locally compact metric
space with infinite diameter (for ). A discrete subset A of H is said to be
uniformly discrete if there exists a real number r > 0 such that

x,y € A,z £y implies §(x,y) > r.

A uniformly discrete set is either the empty set, or a subset {«} of H reduced
to one element, or, if it contains at least two points, they satisfy such an
inequality. If r is equal to the minimal interpoint distance

inf{d(z,y) | z,y € H,x # y}

(when Card(A) > 2) A is said to be a uniformly discrete set of constant r.
The space of uniformly discrete sets of constant r > 0 of (H,¢) is denoted by
UD(H,d),. It is the space SS(H,J), of systems of equal spheres (or space of
sphere packings) of radius r/2 of (H,6): A = (a;)ien € UD(H, ), is the set of
sphere centers of

B(A) = {B(a;,r/2) | i € N} € SS(H, ),

where B(z,t) denotes generically the closed ball centered at z € H of radius
t>0.
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An element A € U,~oUD(H,J), is said to be a Delone set if there exists
R > 0 such that, for all z € H, there exists an element A\ € A such that
d(z,A) < R (relative denseness property). Then a Delone set is never empty.
If A is a Delone set, then
R(A) := sup inf §(z, \) (2.1)
2€H AEA

is called the Delone constant of A. In [81] the range of values of the ratio

R(A)/r in the case H =R",n > 1, is shown to be the continuum
[ V2

. n+1 +oo) (2.2)

In the context of lattices which are Og-modules, with K a number field,
the ”ambient space” is obtained in a canonical way via the real and complex
embeddings of K and the Delone constant is reminicent of the Euclidean min-
imum or inhomogeneous minimum, with possible isolated values instead of the
continuum (2.2) (Section 6).

The Delone constant of A is the maximal circumradius of all its Voronoi
cells. If A € UD(H, ), is a Delone set of Delone constant R, the discrete set A
is also called a (r, R)-system [91]. Let X (H,d), r CUD(H,J), be the subset
of uniformly discrete sets of constant r» which are Delone sets of H of Delone
constant < R.

Theorem 2.1. Let (H,6) be a o-compact and locally compact metric space for
which diam(H) is infinite. Then, for allr > 0, UD(H, ), can be endowed with
a metric d such that the topological space (UD(H,0),,d) is compact and such
that the Hausdorff metric on UD(H,0), s is compatible with the restriction
of the topology of (UD(H,6),,d) to UD(H, ), s. For all R > 0 the subspace
X(H, )y r is closed.

In [82] several (classes of equivalent) metrics on H are constructed. In
such constructions a base point, say a € R", is required. When H = R",
endowed with the Euclidean norm || - ||, the topology on UD(R™, || - ||)., 7 > 0,
is expressed by “unique local pairings of points in big balls centered at the
base point o, as follows (Proposition 3.6 in [82]). Let = 1, the general case
being the same.

Proposition 2.2. Let A,A" € UDR",| - ||)1 with A and N’ nonempty. Let
I=inf{||t —a| |t € A} < 400 and € € ( (T+20)~1). Assume d(A, ') <
Then, for all A € A such that |\ — of < 3=

i) there exists a unique N € A’ such that |A — N[ < %
2

26’

(ii) this pairing (A, X') satisfies the inequality: ||A — N[ < (3 + [|A — a))e



8 Jean-Louis Verger-Gaugry

2.1.2 Cut-and-Project Schemes Above Uniformly Discrete Sets A
locally compact abelian (Ica) group is an abelian group G endowed with a
topology for which G is a Hausdorff space, each point admits a compact
neighbourhood, and such that the mapping G x G — G, (z,y) — v —y is
continuous. In the sequel we will denote additively the additive law of G so
that 0 is the neutral element of G.

Definition 2.3. Let G be a lca group.
(i) A subset A of G is uniformly discrete if there exists an open neigh-
bourhood W of 0 sothat (A—A)NW = {0},

(ii) asubset A of G is relatively dense if there exists a compact subset
K of G suchthat G=A+ K,

(iii) a Delone set of G is a subset A of G which is relatively dense and
uniformly discrete.

Definition 2.4. A lattice of R™,n > 1, is a discrete Z-module of rank n.
A lattice in a lca group G is a subgroup L of G such that:
(i) L is discrete, i.e. the topology on L induced by that of G is the
discrete topology,

(ii) L is cocompact, i.e. G/L is compact.

In the sequel we will only define cut-and-project schemes over uniformly
discrete sets A which lie in finitely dimensional Euclidean spaces R"™, leaving
aside the general case where the ambient space of A 1is a lca group. Such
more general constructions can be found in [75], Chap. II, and in [94]. Denote
by L,, the space of (affine) lattices of R™, n > 1.

Definition 2.5. A cut-and-project scheme (over R™) is given by a 4-tuple
(G xR™ L, m,m2) where:
(i) G xR™ is the direct product of a lca group G and the n-dimensional
Euclidean space R™,n > 1,
(ii) L is alattice in G x R™,
such that the natural projections m : G x R* — G and m : G x R" —
R™ satisfy
(1) the restriction ma|r of w2 to L is a bijection from L to ma(L),
(2) the image m(L) is dense in G.
G is called the internal space.

Definition 2.6. Let A be a uniformly discrete set in the n-dimensional
Euclidean space R™,n > 1. A cut-and-project scheme given by the 4-tuple
(G xR™ L,m1,m9) is said to lie above A if there exists ¢t € R™ such that

A—t C 7T2(L).
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Remark 2.7. The need to introduce the translation ¢ in the last definition
comes from the fact that the uniformly discrete set A does not necessarily
contain the base point of the cut-and-project scheme, which is the origin of
R™ and at the same time the origin of G. Being a uniformly discrete set,
or a Delone set, is an affine notion in the ambient space R", while cut-and-
project schemes priviledge a base point. For instance the lattice w + Z,u =
1/2, of R admits ({0} xR,Z,0,1d) as cut-and-project scheme above it; the
translation ¢ being 1/2 in this case. If A is a Delone set, the translation
t can be chosen such that: ||t|| < R(A) the Delone constant of A.

In the last definition, the image m2(L) of the discrete subgroup L C G x R™
is a Z-module in R™ (the classical structure of Z-modules in R"™ is given
for instance in [35], Theorem 2.3.7).

Cut-and-project sets, also called model sets, of R™ form a particular class
of Delone sets.

Definition 2.8. A discrete subset A of R™,n > 1, is a cut-and-project set,
or model set, if there exists a cut-and-project scheme (G x R™, L, w1, ) over
A, with G a lca group, and a relatively compact subset €2 of the internal space
G, with nonempty interior, such that:

A—t={mw)| mw) e},

for a certain t € R™. The set (1 is called the window of the cut-and-project
set A = A(Q).

Model sets which arise from cut-and-schemes (G x R"™, L, 71, 72) with a lca
group G as internal space do not differ too much from model sets that come
from cut-and-project sets where the internal space is R™, for a certain m, by
the following proposition.

Proposition 2.9. Let A(Q) be a cut-and-project set in the cut-and-project
scheme (GxR"™, L, my,ma) where G is a lca group. Then there exists a subgroup
of G isomorphic to R™, for a certain m > 0, and a model set A’ C R™ having
(R™ x R™ L/, m,m2) as cut-and-project scheme above it such that A(QY) is
contained in a finite number of translates of A’.

Proof. Proposition 2.7 in [79]. O

Proposition 2.10. Let A = A(Q) be a model set in a cut-and-project scheme
(G xR™, L, 71, m) where G is a lca group. Then
(i) A is Delone set of R™,

(i) if Q C int(?) (adherence of its interior) and Q@ generates G as a group,
the following equality holds:

ZIA—A] = m(L).
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Proof. Proposition 2.6 in [79]. O

Remark 2.11. In [79] and [65], the origin implicitely belongs to the Delone
set A, whereas in the present note we do not assume this minor fact. That is
why we refer to Z[A — A] everywhere instead of Z[A], as in Theorem 1.1 or in
Proposition 2.10 for instance.

2.2 Continuity of sphere packings arising from model sets

Let A be a model set in R", viewed as set of centers of a sphere packing, and
consider the cut-and-project scheme (Rk x R™, L, w1, m2) above A which allows
the construction of A by means of a window Q C R*. Let us fix the direct
product R* x R™. Let us write A = Az(Q) and consider how the model set
AL (Q) varies when Q and L vary continuously.

Let W(RF) be the uniform space of nonempty open relatively compact
subsets of RF (set of acceptance windows in R¥) whose affine hull is R¥,
endowed with the pseudo-metric

AW(le QQ) = A(Q_la Q_Q)

where A is the Hausdorff metric on the space of nonempty closed subsets of
R*. The space of lattices £, in R"** is equipped with the quotient topology
of GL(n+ k,R)/GL(n+ k,Z). The metric d built on J,.,UDR"™* |- |),
with 0 as base point [82] is compatible with the quotient topology of GL(n +
kE,R)/GL(n+ k,Z). Let UD = |J,~oUD(R™, || - ||), be the space of uniformly
discrete subsets of R”, endowed with the metric d where here an arbitrary base
point « € R™ is taken (see [82], Theorem 2.1 and Proposition 2.2). Denote by
d, the metric d in this paragraph only. The two origins, of the cut-and-project
scheme and of R™ for the construction of the metric d, on UD, are taken a
priori different.

Theorem 2.12. For any base point o € R™, the mapping
WRF) X Lpix — UD,do) : (L) — AL(Q)

18 continuous.

Proof. Let € > 0. Let Ly € L4k and Qo € W(RF). Let us show the continuity
at (Qo, Lo). Let t = ||af + # Since € is open, there exists 71 > 0 such
that all the sets {x € L | m1(z) € Qo, ||m2(2)|| < t} have the same cardinality
if L belongs to the open set {L | d(L, Ly) < m1}. Since o is continuous and

o,  is assumed to be a bijection from Ly onto ma(Lg), then T, s also a

ILg
bijection from L onto w2 (L) as soon as d(L, L) is small enough. Then, using
Proposition 2.2 and invoking the continuity of o, there exists ' < n; such

that d(L, Lo) < n’ implies do (AL(Q0), AL, (£20)) < €/2.
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The subset {z € L | m1(z) € Q, ||m2(x)|] <t} of L is such that its projection
by 7 is made of a finite collection of points which lie inside € (which is open),
and its projection by my is a finite subset of mo(L) which contains Ay (£9) N

B(a, 1—:/2) (see Proposition 2.2). Since the projection mappings 7 and 7o
are continuous and that 7~ is a bijection from L onto m2(L), the mapping
L — mo(my,, )~1 is continuous on the open set {L | d(L, Lo) < n'}. Then there
exists " > 0 such that Ay (2, Qo) < n” implies do (AL(2), AL(Q0)) < €/2 (the
value of ¢ is chosen according to this last inequality and Proposition 2.2).
Then, as soon as Aw (€2, Qo) < n” and d(L, Lg) < n’ hold, we have:
€ ¢
da(AL(€), ALy (Q0)) < da(AL(2), AL(Q0))+da(AL(Q0), ALy () < 5+ =«
We deduce the claim. O

Note that the assumption “open” for windows in W(RF) is essential to
obtain the continuity in Theorem 2.12. If we consider a collection of model
sets parametrized by a sequence of windows which are not necessarily open,
but with nonempty interiors, then Theorem 2.12 should be applied with the
collections of the interiors of the windows.

2.3 A Classification

Classes of Uniformly Discrete Sets and Delone sets in R™, and their relative
inclusions, are given in Theorem 2.16, following Lagarias [65] for Delone sets.
We first define some classes of uniformly discrete sets intrinsically, i.e. without
any cut-and-project scheme formalism above them. Then we indicate the
definitions of point sets which invoke cut-and-project schemes.

Definition 2.13. Let A be a nonempty uniformly discrete set of R™.
(i) A is finitely generated if the Z-module
ZIN—A] = {Z ai(zi —yi) | a; € Z,wi,y; € A}
finite
is finitely generated, i.e. dimg Q ® Z[A — A] < +o0,
(ii) A is of finite type if, for all ¢ > 0, the intersection
(A—A)n B(0,1)
is a finite set.
If A is a nonempty finitely generated uniformly discrete set, the rank of
A, denoted by rk A, is by definition the dimension of the Q-vector space

Q®Z[A — A] = Q[A — A]. The rank rk A is an invariant of A. Let ¢ € R™.
The rank of Z[A — ¢| varies with ¢ and may be different of that of Z[A — A].
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For instance, with ¢ = 0 and A = v/2+ Z in R we have: rk A = 1 while the
rank of Z[A] = Z[A — ¢] equals 2 (the notations rk A and rk Z[A] should not
be confused); moreover A = A — ¢ and Z[A — A] = Z are disjoint.

Theorem 2.14 (Lagarias). Let A be a Delone set of finite type of R™,n > 1.
Then

rk A < Card (A —A)N B(0,2R(A))) < + o0 (2.3)
where R(A) is the Delone constant of A.

Proof. Theorem 2.1 in [65]. O

Definition 2.15. Let A be a relatively dense discrete subset of R™. A is a
Meyer set if one of the following equivalent assertions is satisfied:

(i) A — A is uniformly discrete,

(ii) A is a Delone set and there exists a finite set F' C R™ such that

A—ACA+F (2.4)

(i) A is a subset of a model set.

Proof. Theorem 9.1 and Proposition 9.2 in [79). O

Conditions (i) and (ii) in the definition of Meyer sets are given indepen-
dently of any “cut-and-project scheme above A” consideration while condition
(iii) asserts the existence of such a cut-and-project scheme above it. In a
similar way a (affine) lattice L € £,, in R™ is intrinsically defined in R", with-
out any help of cut-and-project schemes, admits also ({0} x R™, L,0,73) as
cut-and-project scheme above it and is a model set in this cut-and-project
scheme. The objectives of Theorem 1.1 consist in showing the existence of
general constructions of cut-and-project schemes above ssfgud sets in R”.

Let n > 1. Denote:

M®) := { Model sets in R™ arising from cut-and-project schemes
g

having a m-dimensional Euclidean space R™ as internal space }
Mlcag) .= { Model sets in R™ arising from cut-and-project schemes

having a lca group G as internal space }
ME) := { Meyer sets in R™ arising from cut-and-project schemes

having a m-dimensional Euclidean space R™ as internal space }
Meag) . — { Meyer sets in R™ arising from cut-and-project schemes

having a lca group G as internal space }
uo := { Uniformly discrete sets in R }

UDy,y := { Finitely generated uniformly discrete sets in R™ }
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C UrsoUDR™, [ - [])r
:= { Uniformly discrete sets of finite type in R™ }
Xig := { Finitely generated Delone sets in R™ }
:= { Delone sets of finite type in R™ }

Theorem 2.16. The following inclusions hold:

UDy C UDy,
U U
M) 5 pfleas) 5 g e MB e M® ¢ Xy © Xy, (2.5)
Proof. Theorem 9.1 in [79], Theorem 2.1 and Theorem 3.1 in [65]. O

Definition 2.17. Let A € UDy,. If {e1,e2,...,¢e,} is a Z-basis of Z[A], i.e.
Z[A] = Z[e1, e, ..., ey], then the address map ¢ : Z[A] — Z" of A associated
to this basis is by definition

v
<P( Z mie; ) = (m1,ma,...,my).
i=1

In Section 3 we will mainly use address maps of difference sets A — A for
the elements A of UDy,.

2.4 Algebraic integers, inflation centers and
self-similarities

Given A a uniformly discrete set of R™, a (affine) self-similarity of A is by
definition a real number A > 1 such that

AMA—¢) € A—c (2.6)

for a certain point ¢ in R™ (note that ¢ belongs or not to A). A point
¢ € R” for which (2.6) occurs for a certain A > 1 is called an inflation center
of A. The concept of self-similarity is an affine notion and A depends upon
c. Denote by

C(A):={c|3IXN>1 suchthat M(A—¢) C A—c} (2.7)
the set of inflation centers of A and by
Sle)={A>1 | XA—-¢) C A—c}, forceC(A), (2.8)

the set of self-similarities associated with the point c.
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Proposition 2.18. Let A =t+7Z be a (affine) lattice of R of period 1 with
t€10,1). Then
(i) CcA)=t+Q,
N\ {0} if cet+7,
(i) S(c)=1¢ (1—gZ)NN\{0} if ceC(A), c=t+E, withp.q
relatively prime (p € Z,q > 2).

The set of inflation centers of A of given (point) density 1/(2q) of self-
similarities, with q an integer > 2, is exactly the uniformly discrete set

p
t+ {E | p € Z,gcd(p, q) = £1}.

Proof. Routine, with the following definition of the (point) density of self-
similarities of an inflation center ¢ € C(A):

dens(S(c)) = limsup %# (S(e) N (1,¢]). (2.9)

t—oo

O

In the general case, given a uniformly discrete set, the characterization of
C(A) and S(c) with ¢ € C(A) remains an open problem, even for Delone sets;
see [27], [28] and [73] for Penrose tilings and sets Zg of (-integers [49], with
0 a quadratic Pisot number. At least, C(A) is expected to be far from being
everywhere dense as in Proposition 2.18.

Definition 2.19. A uniformly discrete of R™,n > 1, is a (ssfgud set) self-
similar finitely generated uniformly discrete set if it is finitely generated and
admits at least one (affine) self-similarity.

Although a uniformly discrete set of R, n > 1, may be finite, let us observe
that a nonempty (ssfgud) self-similar finitely generated uniformly discrete set
in R" n > 1, is always infinite.

Definition 2.20. Let A > 1 be a real algebraic integer. Denote by A its
conjugates. We say that A is
(i) a Pisot number if all its conjugates A satisfy [A(?)| < 1,

(ii) a Salem number if all its conjugates A satisfy |\(| < 1, with at least
one on the unit circle,

(iii) a Perron number if all its conjugates A(¥) satisfy |A\(V] < ),

(iv) a Lind number if all its conjugates A satisfy |A\(?)] < X, with at least
one on the circle {|z] = A}.
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Theorem 2.21 (Meyer). Let A C R™,n > 1, be a Meyer set. If A is a ssfgud
set, then all its self-similarities are Pisot or Salem numbers.

If 8 > 1 is a Pisot number of a Parry number, then the sets Zg are Meyer
sets that admit by construction the self-similarity 5 [49]. However, there exist
many Meyer sets which have no self-similarities at all.

Theorem 2.22 (Lagarias). Let A C R™,n > 1, be a Delone set. If A is a
ssfgud set, then all its (affine) self-similarities A are algebraic integers such
that degree(\) divides tk A. Moreover, if A is of finite type, then all the self-
similarities are Perron or Lind numbers.

The concept of (affine) self-similarity is extended as follows in a natural
way [79].

Definition 2.23. Let A be a nonempty uniformly discrete set of R”. A self-
similarity of A is given by a triple (¢, A, Q) where \ is a real number > 1, @
an element of the orthogonal group O(n,R) such that

AMA—-¢c) € A-c (2.10)

for a certain ¢ € R™ (note that ¢ belongs or not to A).

A point ¢ for which (2.10) occurs for certain couple (X, Q) is called an
inflation center of A, as in the affine case. Problems on self-similar sets are
reported in [87].

2.5 Sets Zg of beta-integers and Rauzy fractals

Meyer sets Zg C R of (-integers with 5 a Pisot number, and their vectorial
extension to R™ - so-called (-grids -, are useful tools for modeling quasicrystals
in physics [36] [37] [47] [48]. Indeed, Penrose tilings in the plane and in space
play a fundamental role in this modelling process, with suitable positioning of
atoms in the tiles. Gazeau [48] has observed that Penrose tilings can easily
be deduced from 7-grids, where 7 = %5 is the golden mean, quadratic Pisot
number. Therefore it is natural to extend the constructions of Penrose tilings
and (-grids with Pisot numbers 8 (or more generally with algebraic integers)
of higher degree which could be used in the objective of providing possibly
new models of aperiodic crystals in crystallography to physicists.

Let us recall the mathematical construction of Zg on the line and its prop-
erties when 3 > 1 is a real number, in a general way, and some open questions
related to them when § is in particular an algebraic integer. We refer to [44]
[45] [85] [89] and [10] for an overview on recent studies on Numeration and its
applications.
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2.5.1 Construction and Properties For a real number x € R, the integer
part of = will be denoted by |z| and its fractional part by {z} =z — |z].
The smallest integer larger than or equal to z will be denoted by [z]. For
B> 1 areal number and z € [0,1] we denote by Ts(z) = Bz (mod 1) the
B-transform on [0, 1] associated with (3, and iteratively, for all integers j > 0,
Té“(z) := Tp(T3(2)), where by convention Tj = Id.

Let 8> 1 be areal number. A beta-representation (or [-representation,
or representation in base [ ) of a real number x > 0 is given by an infinite
sequence (7;);>0 and an integer k € Z such that z = Y, x;87 "k,
where the digits z; belong to a given alphabet (C N). Among all the beta-
representations of a real number x > 0,z # 1, there exists a particular one
called Rényi (-expansion, which is obtained through the greedy algorithm
[44] [45]: in this case, k satisfies 8% <z < B! and the digits

;= LﬁTg(%)J i=0,1,2,..., (2.11)

belong to the finite canonical alphabet Ag := {0,1,2,...,[8 —1]}. If G is
an integer, then Ag := {0,1,2,...,5 — 1}; if B 1is not an integer, then
Ag:=1{0,1,2,...,|3]}. We denote by

<$>g = Tox1x2 .. T o T41Tk+2 - - - (2.12)

the couple formed by the string of digits xpx122...TETK4+1Tk42 ... and the
position of the dot, which is at the kth position (between xj and xgy1).
By definition the integer part (in base ) of « is Zf:o ;8% and its
fractional part (in base ) is .. °% L1 @377F If a Rényi (-expansion ends
in infinitely many zeros, it is said to be finite and the ending zeros are omitted.
If it is periodic after a certain rank, it is said to be eventually periodic (the
period is the smallest finite string of digits possible, assumed not to be a string
of zeros).

There is a particular Rényi [-expansion which plays an important role in
the theory, which is the Rényi [-expansion of 1, denoted by dg(1) and
defined as follows: since (3 < 1 < 3, the value Tp(1/8) is here set (by
convention) to 1. Then using (2.11) for all ¢ > 1, we obtain: t; = |3],t2 =
1B{B}].ts = | B{B{B}}], etc. The equality dg(1) = 0.t1tats... corresponds
to 1=37>t,6"". By definition, a real number 3> 1 such that dg(1) is
finite or eventually periodic is called a beta-number or more recently a Parry
number (this new name appears in [37]). In particular, it is called a simple
beta-number or a simple Parry number (after [37]) when dg(1) is finite. Beta-
numbers (Parry numbers) are algebraic integers [85] and all their conjugates
lie within a compact subset which looks like a fractal in the complex plane [41]
[102]. The conjugates of Parry numbers are all bounded above in modulus by
the golden mean 1(1++/5) [41] [102].
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Definition 2.24. The set
Zg :={x € R | |z| is equal to its integer part in base 3}

is called set of beta-integers, or set of [-integers, or set of integers in base (.

By construction, the set Zg is discrete, relatively dense and locally finite
(its intersection with any interval of the line is finite), self-similar, with § as
self-similarity (with inflation center the origin), and symmetrical with respect
to the origin: 8Zg C Zg, Zg = —Zg. lts complete set of self-similarities
is unknown. Thurston [104] has shown that it is uniformly discrete, hence a
Delone set, when [ is a Pisot number. From [49], for 8 a Pisot number, the
relatively dense set Zg NR™T is finitely generated over N.

Theorem 2.25. If 3 is a Pisot number, the Delone set Zg is a Meyer set
which is a ssfgud set in R.

Proof. [21], [49]. For the definition of a ssfgud set, see Definition 2.19. It is a
ssfgud set since 8Zg C Zg. O

Open problem (P;).— What is the class of real numbers (> 1 for which
Zg is uniformly discrete, equivalently a Delone set 7

We know that this class contains Pisot numbers (see [18] [49]) and Parry
numbers. Whether it contains Salem numbers or Perron numbers,; except a few
cases [20], is unknown [105]. Problem (P;) is equivalent to knowing whether
the (§-shift is specified [18] [49] [105].

The set Zg contains {0,£1} and all the polynomials in § for which the
coefficients are given by the equations (2.11). Parry [85] has shown that the
knowledge of dg(1) suffices to exhaust all the possibilities of such polyno-
mials by the so-called “Conditions of Parry (CPg)”. Let us recall them. Let
(ci)i>1 € Ag be the following sequence:

t1t2t3 e if dg(l) = O.tltg .- s inﬁnite,
C1C2C3 -+ * = (tltg cee tmfl(tm — 1))w if dg(l) is finite and
equal to O.tito---tm,
(2.13)

where ( )¥ means that the word within ( ) is indefinitely repeated. When
the degree of 3 is > 2, we have ¢; = ¢t; = |3] . Then the polynomial
Yoo ¥iBTY >0, with v > 0,y; € Z arbitrary, belongs to Zj := ZgNR" if
and only if y; € Ag and the following v+ 1 inequalities are satisfied:

(CPB) (yj,yj+1,yj+2,...,yv_l,yU,O,O,O,...) .-< (01,62,63,...),
for allj =0,1,2,...,v, (2.14)
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where “<” means lexicographical smaller. For a negative polynomial, we
consider the above criterium applied to its opposite. Conditions of Parry
(CPg) sieve the elements of the ring Z[5] in the number field Q(f).

The set Zg can be viewed as the set of vertices of the tiling 73 of
the real line for which the tiles are the closed intervals whose extremities are
two successive [-integers. When [ is a Pisot number, the number of (non-
congruent) tiles in 73 is finite [104]. If V is a tile of 73 we denote
by (V) its length. If (3 is a Pisot number and dg(1) is finite, say
dg(1) = 0.t1t2 .. .tm, then the set of the lengths of the tiles of 73 is exactly
(T [0 <i<m—=1} = {1,8 = t,2 =18 —ta,.... 0" = 015" 7% —
toBm 3 — . . —tm_1}. If B is a Pisot number with dg(1) eventually periodic,
say dg(l) = 0.tita.. . tm(Emyitmy2 - . tmip)”, then the set of the lengths of
the tiles of T is exactly {T4(1)[0<i<m+p—-1}={1,6-t,0* -1~
to, ..., 6m71 — t15m72 — t26m73 — .= tmfl,ﬂm — tlﬂmil — t25m72 — .. —
by e ooy fMTPTL — gy gtP=2 g gmtP=3 ¢, 1} Hence, when 3 is
a Pisot number, the set Zg is a Delone set of (sharp) constants (r, R) with
r=min{l{(V) |V €T3} >0 and R = Jmax{l(V) |V €T3} = 3. The tiling
T3 can be obtained directly from a substitution system on a finite alphabet
which is associated to [ in a canonical way [38] [42] [45].

2.5.2 Rauzy fractals and Meyer sets of beta-integers for 3 a Pisot
number Rauzy fractals were introduced by Rauzy [1] [2], [42] (Chapter 7),
[74] [88] [98] [99] to provide geometric interpretations and geometric repre-
sentations of symbolic dynamical systems, in the general objective of under-
standing whether substitutive dynamical systems are isomorphic to already
known dynamical systems or if they are new. Rauzy [88] generalized the dy-
namical properties of the Fibonacci substitution [42] to a three-letter alphabet
substitution, called Tribonacci substitution or Rauzy substitution, defined by:
1 —12,2 — 13,3 — 1. The incidence matrix of this substitution is

111
100 |,
01 0

its characteristic polynomial is X — X2 — X — 1 with 3 > 1 a Pisot number as
dominant root, and two complex conjugates roots a and @ in the unit disc. The
incidence matrix admits as eigenspaces in R? an expanding one-dimensional
direction and a contracting plane [49].

Theorem 2.26 (Rauzy). The Rauzy fractal generates a self-similar periodic
tiling of the plane. The symbolic dynamical system generated by the Tribonacci
substitution is measure-theoretically isomorphic to a toral substitution. The
Tribonacci substitutive dynamical system has a purely discrete spectrum.
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Properties of the Rauzy fractal (connectedness, interiors, boundary, etc)
were obtained in [2] [32] [60] [74] [98] [99] [100] [101]. Gazeau and Verger-
Gaugry [49] proved that the set Zg of integers in base [ are in close relation
with the Rauzy fractal, within the framework of a canonical cut-and-project
scheme (R® = G x E, L = 73,1, m) above Zg, where E is a line in R? and
G the corresponding internal space (hyperplane): the Rauzy fractal is the
adherence of the image of Zgz by the map m o (7T2‘L )~ in the internal space
G. This situation is quite general for Pisot numbers 3 and the Rauzy fractal
appears as a compact canonical window [49]. However, all the points of L are
not selected by this window and only some of them which satisfy the conditions
of Parry are projected on E, Zg being a Meyer set [21] [49].

For all Perron numbers 3, the construction of the cut-and-project scheme
(RY = G x E,L = 7%, 7, 7) over Zg, where d is the degree of 3, F a line
in R? and G the corresponding internal space (hyperplane), is canonical, and
does not use the fact that Zg should be uniformly discrete [49]. If 3 is a Pisot
number then the image of L by m o (7T2‘L)_1 is relatively compact and its
adherence is the (geometric) Rauzy fractal. Whether this image is relatively
compact for § a general Salem number is not known.

The Z-module Z[Zg — Zg] is finitely generated for 3 a Pisot number, but it
is not known whether it is the case for Perron numbers in general (which are
not Pisot numbers).

Open problem (P3).— What is the class of real numbers (> 1 for which
Zga is uniformly discrete and is not finitely generated, i.e. for which

rank Z[Zg — Zg] = +o0?

3 Proof of Theorem 1.1

(i) (same proof as [65] Theorem 4.1 (i)) Let s = dimgR[A] be the dimension
of the R-span of A (by R-span of A, we mean the intersection of all the real
affine subspaces of R which contain A). Then 1 < s <n and m: =tk A > s.
By definition the Z-module Z[A — A] := {> apite @i(zi — ;) | a; € Z,xi, x5 €
A} admits a set of m generators, say {v1,va,...,v,}, which are Q-linearly
independent (nonzero) vectors of R™. Then

ZIA — A) = Z[vy,va, . .., U]
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If A > 1 is a self-similarity of A then there exists ¢ € R™ such that A(A —¢) C
A —c. Since A— A=A —c— (A —c¢), this implies

MZ[IA — A] C ZIA — A]. (3.1)
We deduce that there exist integers a; ; € Z such that
)\vi:amvl + Qi oV + ...+ Qi mUm 1=1,2,....m

with M = (v ;) ;i € Mat,,(Z) the space of m x m integral matrices. Hence

U1
AV =MV, with V = : . (3.2)

Um

Equivalently the transposed matrix *M is the matrix associated with the Q-
linear map which sends {v1, va, . .., v, } to the system {Avq, Ava, . .., Av,, } with
respect to the Q-free system {vy,va,..., vy} Since the polynomial h(X) :=
det(X 1 — M) € Z[X] is monic and cancels at A, the real number A is an
algebraic integer of degree less than m.

Let d be the degree of A and

O(X) =X 4 a1 X 4 X972 1 4 ay, with a; € Z,aq # 0,

be the minimal polynomial of A\. From (3.2) we deduce MV = MV for all
j € N. Hence, since ¢(\) =0,

M)V = (M +a; M 4 aoM*¥™2 + ...+ aq)V =0. (3.3)

Since ¢(M) € Mat,,(Z) and that the vectors vy, ve,..., v, are Q-linearly
independent, we deduce (M) = ¢(*M) = 0. Hence the minimal polynomial
¥(X) € Z|X] of the matrix * M divides p(X ) in Z[X]. Since ¢(X) is irreducible
over Q, there is equality: ¥ (X) = p(X).

Denote by K the number field Q(X). Equation (3.1) implies that Z[A — A]
is a module over the ring Z[\] and that Q[A — A] is a K-vector space. The ring
Z[)] is a subring of finite index of the ring of integers Ok of K. The m x m
integral matrix ‘M corresponds to an endomorphism of R™, say u, expressed
in the canonical basis {e1,ez,...,en}. Since vy, va,..., vy are Q-linearly in-
dependent, the base {e1,ea,...,e,} of R™ and the system {v1,va,..., v} of
R" can be identified as well as the two Q- vector spaces @], Qe; and &7, Qu;.
There are two cases: m = 1 and m > 1. When m = 1, then necessarily A is
an integer > 1 and d = 1. When m > 1 and d = 1, then the matrix M is the
diagonal matrix AI and X is an integer > 1. This case occurs for instance for
(affine) lattices A of R™. Now, if m > 1 and d > 2, then the endomorphism u
induces a Jordan decomposition of R™ as K [X]-module as follows (for instance
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[43] pp 295-301). We assume d > 2 in the sequel. Let

0 0 ... 0 —aq

1 0o : 0 ... 1
A)=1 o0 1 °-. , resp. Uy := o s

: .0 —as 0 0

0o ... 1 —a

be the d x d integral matrix whose terms are 0 except the last column which is
composed of the coefficients of )(X) (up to sign) and the diagonal under the
main diagonal, which is composed with 1, respectively the d x d matrix whose
terms are 0 except the term of the first row and the last column, which is 1 (this
makes sense since d > 1). Then there exists a basis of R™, say {€1,¢€2,...,€mn},
in which the matrix of the endomorphism u takes the diagonal form

Ji 0o ... 0
0 Ji, :
; .0
o ... 0 J

where iy +i2+ ...+t =m, i1 > 92 > ... > 1 > d, and J; ,1 < g <, is the

1q X 14 integral matrix given by

AW) 0 ... 0
T, = Us  AQY) .
: - 0

0 ... Ui A@)

with 0 everywhere except A(¢)) on the main diagonal and Uy on the diagonal
under the main diagonal. Since all the diagonal terms of the matrix J;  are
A(v), they are identical, and therefore d divides i,. Consequently d divides

> g1 ig = m.

(ii) Let us transcript back this Jordan decomposition to the ambient space
R™ of the uniformly discrete set A, block by block. Let us consider the
first block J;,, the situation being the same for the others. The system
{€1,€2,...,¢€;, } satisfies the following relations:

-for1<p<d 0<a<—1,
U(€ad+8) = €ad+B+15 (3.4)
-forf=d,0<a<i -1,

U(€(at1)d) = €(at+1)d+1 — C1€(a+1)d — O2€(a41)d—1 — - - — Qd€ad+1, (3.5)



22 Jean-Louis Verger-Gaugry

-forf=d,a=4% -1

)

i1
d
U(Eil) = —Q1€;; —a2€;;, -1 — ... — Ad€j; —d+1- (36)

Now the matrices ‘M and J have coefficients in Q and are such that there
exist a m x m invertible matrix C' € GL(m,R) such that ‘M = CJC~!. Then
(Corollary 2 in [68], Chap. XV, §3) there exists a m x m invertible matrix C’
in Q such that:

tM=cC'Jc't
The matrix C” is the matrix associated with the linear map which sends
{e1,ea,...,em} to {e1,€a,...,€en} with respect to the basis {e,ea,...,em}.
Let
fi U1
fa U2
.| =tcv, with V=1 . |. (3.7)
fm Um

The Q-free system {f1, fa,..., fm} of nonzero vectors of R™, identified with

the basis {e1, €a,...,€n} of R™, admits the following structure: from (3.2)
U1 U1
NV =MV =tC'JC'" Y| | elCt A=t | 2 | =0; (3.8)
Um Um
hence
1 fi
A=t (3.9)
Im Jm

From (3.9), considering the first block J;,, the situation being the same with
the other blocks J;, ,1 < ¢ <, we deduce (see (3.4), (3.5)):

-for1<pB<d 0<a<—1,
Jadrsr = Maarp = N faar, (3.10)
-forf=d,0<a<i —1,
flatnyars = Masnya + a1 flarnya + 2 fiasnya—1+ - -+ aafaarr. (3.11)

Let us show that the assumption d < iy leads to a contradiction. Assume
d < i1. Then we would have fgy1 # 0 from (3.7) since C’ is invertible. But,
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from (3.10) and (3.11), with a = 0,

Jiri = (AHa1) fatazfa1+...+aqfi
= ()\—l—al))\d_lfl+a2)\d_2f1+...+adf1 = (p()\)flz 0.

Contradiction. Hence d = i;. Proceeding now with the other blocks in the
same way leads to the equalities d = i1 =40 = ... = 1,.
The matrix C’ belongs to GL(m,Q). If C' € GL(m,Z) we take

wy = f1,w2 = far1, w3 = fadgr1, .- Wr = fr_1)ds1-

Then we deduce from (3.7) and (3.10) (and its analogs for the other blocks)
that ®;2,Zv; and ©_; &%, ZA"w, are isomorphic as Z-modules. We deduce
the result in this case. If ¢’ € GL(m,Q) \ GL(m,Z), let us denote by u the
lem of the m? denominators of the coefficients of C’~! and take

wy = fl/u,w2 = fd+1/u,w3 = f2d+1/M, s, Wr = f(r71)d+1/u-

The coefficients of D := p*C’~! are in Z and relatively prime so that

[ fi/p ]
>\f1/H
)\d_l-fl/u z;
D : e (3.12)
fT/M U.
A/l "
By

From (3.12), the Z-module ©},Zv; is a Z-submodule of @;_; Oy ZN wy,.
Hence the result.

(iii) Since d = iy = i3 = ... = i, and r = & by (ii), we deduce that J is
the m x m diagonal matrix for which the diagonal terms are all identical and
equal to A(v):

A@W) 0 0
S| 0 aw .
0 A()

Since det M = det J, we obtain the characteristic polynomial of M:
det(X Iy — M) = det(X Ty — A()™* = (p(X)™/*
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in particular, det M = (detA(y))™/? = N(A\)™? where N(\) = (—1)%ay,
product of the conjugates of A, is the algebraic norm of A. This formula is
reminiscent of the algebraic norm of an element in a ring extension [68].

(iv) There are two cases: either (iv-1) wi,ws,...,w, are K-linearly in-
dependent, or (iv-2) they are K-linearly dependent. In the first case the cut-
and-project scheme above A will admit an internal space reduced to its shadow
space (see below and [65]), while, in the second case, the internal space will
come from the shadow space and the space of relations over K between the
vectors w;.

First let us fix some notations. Denote by C the finite set {wq,wo, ..., w,}
and call it the central cluster of the basis ( M w; )i=1,. rj=01,.d—1. For
i=1,2,...,r, let W; := |w;|'w;. Let C := {w1,...,w,} the image of C
on the unit sphere S*~! of R”. We have Card(C) < r. We assume that the
signature of the field K = Q(A), of degree d, is (r1,72). Then d = r1 + 2rs.
Denote by 0,1 < j < ry, the real embeddings of K in R, and by 0}, 0,,+; = 05,
where r1 + 1 < j < ry + rg, the imaginary embeddings of K in C. Assume
o1(\) = \. Let ¥ be the embedding of K in R™ x C22 defined by

V¢ € K, Z(&) = (01(€)a02(§)a---70r1+2T2(€))'

Let (gj)1<j<a be a Z-basis of the ring of integers Ox of K. We identify the
field K to Q¢ via the mapping ¥ defined by ¥(z) = 2?21 2ig; if z € Q%, resp.
Ok to Z% if z € Z%. The composed mapping ® := ¥ o U is then extended in a
continuous way from Q¢ to R?, and denoted in the same way:

d d d
VzeRY, B(z):= (Z 2i01(9i), Z 2i02(gi);s - - s ZziaTﬁgm (gi)> .
i=1 i=1 i=1

3 is an injective homorphism for the ring structures while ¥ is Q-vector space
isomorphism. Thus ® is a R-vector space isomorphism from R? onto the étale
R-vector space

Kp =K®yR=R" x{2€C* | z,.; =% forall j =1,2,...,72}.

The R-subspace ©(Ox) of K is a lattice. Let us extend ® to C? as a C-
endomorphism, keeping the same notation, by (with I = y/—1):

Oz +Ty)=d(x) +1d(y), forall z,yc R

Let us construct the cut-and-project scheme above A. Let z € R[A] C R
be in the R-span of A. For i = 1,2,...,r, denote by p;(z) the orthogonal
projection of x onto the line Rw; and w; := ||w;||"*w;. Then p;(z) can be
written

(x, w;)

pz(l') = <wi’wi>wi = <z5w~1>w~“
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where (-, -) is the standard Euclidean inner product. The point 2 € R™ will be
said K -rational if the r coefficients (x,w;) belongs to K. In this case, for all
i=1,...,7, {z,w;) iz;l:l a; ;(z)g; vzi/th all coefficients «; j(z) € Q. Let us
define ¥; : K — Kgw; by %;(§) = 2(&§)w;, foralli =1,...,r,and &; = %;0 ¥
the R-vector space isomorphism from R? onto the R-vector space
Krw; = (Rwy)" x{{zjw;} | z = (2j) € C*,2z,4; =Z; forall j = 1,2,...,1m2}.
The R-subspace ;(Ok) of Krw; is a lattice. For any set A, denote by pry, :
A? — A the k-th projection, so that pry(Krw;) = op(K)w; foralli=1,...,r
and k =1,...,d. Since the mapping

R = [ o (Kei), @ ( (@, ); (3.13)

i=1

is injective, as R-morphism of vector spaces, the R-span R[A] of A is identified
by (3.13) with a s-dimensional R-subspace of the first component [[}_, Kw; =
[I;_; pri(Krw;). Denote by Rk the subspace of [[!_; Krw; which is the
closure of

{(Zi((z,ws))); | =€ R[A]is K- rational}.

It is a product of 71 copies of R[A] and ry copies of C[A], with pri(Rx) = R[A].
The space ]_[::1 Krw; is a K-vector space, the external law being given by

K x H Krw; — H Krw; (3.14)
=1 =1
(11, u) E(p) - u

with componentwise multiplication, where u = (ug) k=1,...,d» SO that the exter-
nal law, on the k-th component, is given by:

K x ]_[ pry (Kpw;) — ]_[ pry (Kry;) . (3.15)
(1, ug) o (1) - ur,

The actions (3.14) and (3.15) are extended from K to R by continuity. Thus,
by (3.15) and since the conjugate fields o;(K), or,+;(K) are not subfields of
R for j =1,2,...,r2 (if r2 # 0), the usual scalar product (-,-) on R" should
be considered as the restriction to R™ of the standard hermitian form on C™;
in particular, it is anti-linear for the second variable.
We now construct a real positive definite symmetric bilinear form on ]_[2:1 Krw;.
Since

T ke~ 1] (H - mm)

k=1 \i=1
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it suffices to construct it on the k-th component [[;_, ox (K)w;. Let us define
qi : [Ti—y on(K)wi x [1;—; ox(K)w; — R by

T w k=1,2,...,m,
w(UV) = { Sy (@i +uty) k=ri+1,...,r 4o (3.16)

where U = (u;w;); and V' = (v;w;);. Then we define

T T r1+r
o 1] K x [] K B, aUV)i= 3 aulony (). pny(V)). (3.17)
i=1 i=1 k=1
Let
={p €RC| ”( |) € K for all w € C, Z llwil| =Y (wi) w; =0 }.
=1
We call G the space of relations over K between the generators wi,...,w;.

The space G can be identified with a subspace of K¢ ~ K7, therefore with a
subspace of [[;_; Kw;. Denote by G its image by [[;_; ¥; in [[;_, Krw; and
by G, resp. G, the closure of G, resp. of G. For all 2 € R[A] and all ¢ € G,

Z llws ||~ o (w;) w;) Z l|lw; ||~ Yo (w;) (z, w;) = 0. (3.18)

(3.18) implies that g1 ( (||w;| ~te(wi)w; )i, ((z,w;)w; );) = 0. Then the two
subspaces R[\] and G are orthogonal and complementary in I, Rw; ~R",
of respective dimensions s and r — s.

Let us prove that R and G are orthogonal and complementary, of respec-
tive dimension sd and (r—s)d, in [[;_, Krw;. It suffices to prove ¢ (U, V) =0
with U = (o%(||wil]| " o(wi))w; )i and V = (op({@,w;)) w; )i, for all k =
2,3,...,d, z € R[A] K-rational and ¢ € G. We have

T

Z ok ([Jwil ~te(wi)) ok (<x,@;>)] =

i=1
Tk <<"’”Z Iwz'll_lsﬂ(wi)ﬁ>>] =0.
i=1
We deduce the claim.

The cut-and-project scheme above A we have constructed is the following:

1
B qx(U,V) = Re

Re = Re

T (Z [[wil| = p(wi) <z,w7>>

=1

(]_[ Kpw; ~ G x Rg =~ HxR[A],L,7r,pr1>

i=1

where L :_]_[Zzl %(Ok) is a lattice in G x R and pry such that pri(Rg) =
R[A], pr1(G) = 0. Because of the structure of the Z-module Z[A — A] given by
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(ii), it suffices to take L = [[;_, X;(Z[A]). The projection mapping  is Id—pr;.
The internal space, say H, is G x (Rx \R[A]). By construction, (L) is dense in
H and pr is one-to-one on L, onto pry (L) = Z[A][wy, w2, ..., w,] D Z[A — A].
Note that Z[A — A] is not necessarily a free Z[A\]-module, but it is of finite
index in pry (L) = Z[A][wy,w2,...,w,]. The Euclidean structure on the cut-
and-project scheme given by ¢ is such that R[A] and H are orthogonal. The
component Ry \ R[A] of the internal space H is called the shadow space in
[65].

If the vectors wi, ws,. .., w, are K-linearly independent (case (iv-1)) then
G is trivial and the internal space H is Ry \ R[A].

Now, this cut-and-project scheme lies above A since, for all v € A, A—v C
A—ACZ[A - A] Cpry(L). We deduce the claim.

4 Ideal lattices and proof of Corollary 1.2

The objectives of this section are the following: (i) to recall some definitions
concerning ideal lattices, referring to [11] [12] [13] [14] [15], (ii) to show that the
sublattice (L', q) of (L, q) such that pri(L’) = Z[A — A] in the cut-and-project
scheme above the ssfgud set A given by Theorem 1.1 (iv) is a sublattice of an
ideal lattice.

It will suffice to show that the canonical bilinear form ¢ defined by (3.17)
has suitable properties.

The canonical involution (or complex conjugation) of the algebraic number
field K generated by the self-similarity A is the involution ~ : Kg — Ky that
is the identity on R™ and complex conjugation on C™. Let P := {a € Ky |
@ = « and all components of « are > 0}. Let us denote by Tr : Kg — R the
trace map, i.e. Tr(xy,za,...,24) = 1 + ...+ Z4.

A generalized ideal will be by definition a sub Og-module of K-rank one
of Kg. As examples, fractional ideals of K are generalized ideals; ideals of the
type ul where [ is an Og-ideal and u € Kp are also generalized ideals.

Proposition 4.1. Let b : Kgr X Kg — R be a symmetric bilinear form. The
following statements are equivalent:

(1) there exists @ € Kr with o = @ such that
b(z,y) = Tr(azy)
for all x,y € Kg,
(i) the identity
b(pw,y) = blz,my)
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holds for all x,y, n € Kg.

Proof. [11] Proposition 2.1, [12] Proposition 1. O

An ideal lattice is a lattice (I,b) where I is a generalized ideal, and b :
Kr x Kg — R which satisfies the equivalent conditions of Proposition 4.1
with a € P. Ideal lattices with respect to the canonical involution correspond
bijectively to Arakelov divisors of the number field K [11] [12].

It is easy to check that Proposition 4.1 is satisfied by the real symmetric
bilinear form ¢ defined by (3.16) and (3.17) in Section 3, where o = (a;)1<i<d
with a; = 1 for all i. We assume r = 1, i.e. that the degree of the self-similarity
A is equal to the rank rk A. The lattice L’ given by Theorem 1.1 (ii) such that
pri(L’') = Z[A — A] is of finite index in the Ox-module 3(Ok)wy, of K-rank
one in Krpwi. We have:

q(pU, V) =q(U,aV) forall U,V € Krw; andall u € Kg.
Then, by Proposition 4.1, the bilinear form ¢ has the following expression:
qU, V) =Tr(aUV) forall U,V € Kgrws. (4.1)

Therefore (L, q) is a sublattice of finite index of an Arakelov divisor of
K in bijection with Z[A — A] by the projection mapping pri, . We deduce
Corollary 1.2.

The construction of the real bilinear form ¢ in Theorem 1.1 (iv) which
provides the Euclidean structure to the cut-and-project scheme is obtained
with @ = (1)1<i<q in Proposition 4.1. Other choices of a are possible and

the parametrization of the set of possible constants & = a(w7) in ¢ in (4.1) is
studied for instance in Schoof ([93] and related works).

5 Lower bounds of densities and pseudo-Delone
constants

5.1 Pseudo-Delone sphere packings

The following definition is inspired by the “empty sphere” method of Delone
[34]. If A C R™ is any nonempty subset of R™ and A is a uniformly discrete
set of constant r > 0, we define the density of B(A) in A by

vol(U,en, 2 <t B(zi,7/2) N A)
A)) =i 1€A zli<
O4(B(A)) = limsup vol(B(0, 1) N A)

We omit the subscript “R™” when A = R™.

(5.1)



Self-similar finitely generated sphere packings 29

Definition 5.1. A uniformly discrete set A of R",n > 1, of constant r > 0
is Delone-like of constant Re > 0 when there exists a sequence & := (z;,T5);
where (x;); is a sequence of points of R and ( 1)i & sequence of real numbers

such that, with the notation A¢ := R™\ |J; B(xz7 T;):
(i) Vi, Tyy1 > Ty, with T; > r/2,

(111) Vo € Ae, X € A such that ||z — A|| < R,
v)

(i

If it is finite, the infimum inf{R¢} over all possibilites of point sets (z;); in
R™ and collections of radii (73);, such that (i) to (iv) are satisfied, is called
the pseudo-Delone constant of A and denoted by R(A). Let us call optimal a
collection ¢ such that Re is equal to R(A).

vol(A¢NB(0,T))
hmr— oo LG0T = L

By Zorn’s Lemma, optimal collections exist. The portion of space U; B(x;, T5)
defined by an optimal collection is an invariant, independent of the optimal
collection used for defining it. Definition 5.1 means that we can remove the
portion of ambient space which does not intervene at infinity for the compu-
tation of the density of A (in R™). Note that, for a ssfgud set of R™, this
portion of space does not contribute to the determination of the generators w;

)
in Theorem 1.1 since | J; B(x;,T;) contains no point of A, and it is legitimate
to remove it.

5.2 Proof of Theorem 1.3

Let R. := inf{R(A) | A is uniformly discrete of R™ of constant 1} be the infi-
mum of possible Delone constants over sphere packings of common radius 1/2.
R, is only a function of n. Then, for all » > 0, rR, is the infimum of Delone
constants of uniformly discrete sets of constant 7.

Let » > 0 and w,, be the volume of the unit ball of R™. Let R > rR,
and T > R be a real number. Let A be a uniformly discrete set of R™ of
constant r > 0 which is pseudo-Delone of pseudo-Delone constant R. Let
¢ = (z;,T;); be an optimal sequence and A¢ := R™ \ U;B(x;,T;);. For all
e > 0, the pseudo-Delone constant of A in A¢ is smaller than R + €. Then
(B(0,R+¢€)+A)NB(0,T) covers the set B(0,T — R —¢)N A¢. The number of
elements of ANB(0,T) is equal to the number of elements of ANB(0,T)N Ag.
This number is at least

wn(T'— R—¢€)" —vol((R"\ A¢) N B(0,T — R —¢))
wn(R+ €)™
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_(T=R-—e" (. vol(R"\4)NBO,T-R—¢)
(R4 wn(T — R —e)" '

On the other hand, since all the balls of radius r/2 centered at the elements

of AN B(0,T) lie within B(0,T + r/2) and also within A¢, the proportion of

space they occupy in B(0,T +r/2) N A¢ is at least

(T —R— e)n <1 _ vol((R"\ Ag) N B(0,T — R — e))) vol(B(0,r/2))
R+e wn(T — R —¢e)" vol(B(O,T—l—r/Q()ﬂz)élf)
5.2

But, for all € > 0,

lim vol((R™\ A¢) N B(0,T — R —¢))

=0
T—+o00 wp(T—R—e€)"

. vol(B(0,T 4 r/2))
d 1 —1
o 70 vol(B(0, T + /2) N Ag)

Hence, if T is large enough, the quantity (5.2) is greater than

( r(T' — R—e¢) )"

2(R+e)(T+r/2))

When T tends to infinity, this quantity tends to (2(R +¢€)/r)~™, for all € > 0,
which is a lower bound of 6(B(A)). We deduce the claim.

6 Lower bounds of the Delone constant of a ssfgud set

The field K = Q(A) generated by the self-similarity A of the ssfgud set A in
Theorem 1.1 has its own Euclidean spectrum [23] [24] which leads to specific
geometric properties of the Voronoi cell of the lattice L’ [30] of the cut-and-
project scheme above A, where L’ such that prq (L") = Z[A — A]. By projection
by pri, in this cut-and-project scheme above A, the Delone (or pseudo-Delone)
constant of A, whatever the occupation of the elements of A — A in Z[A —
A, reflects the arithmetical features of K (Euclidean minimum, Euclidean
spectrum ... [23] [24]) as well as the geometrical characteristics of the central
cluster {ws,...,w,}; in particular if A is a model set (see Proposition 2.10)
or a Meyer set (see Definition 2.15 (iii) ), since, in both cases, a window in
the internal space controls the thickness of the band around the R-span of A
which is used for selecting the points of the lattice L’. Recall that the Delone
(or pseudo-Delone) constant R(A) of the ssfgud set A, if finite, “measures”
the maximal size of (spherical) holes in A with respect to the portion of space
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where the density is computed (see §2.1.1, §5 and [81]) In the sequel, we recall
these notions and refer to [11] [14] [15] [23] [24] [30] [69].

In the following we will only consider the case r = 1, i.e. the case where
the degree of the self-similarity X is equal to the rank of Z[A — A], leaving aside
the case r > 1. Theorem 6.1, resp. Theorem 6.2, Corollary 6.3 and Theorem
6.4, is a reformulation in the present context of Theorem 3, resp. Theorem 5,
Corollary 6 and Theorem 4 (Remark 2), obtained by Cerri [23]. Recall that,
for all € € K, ¥,(¢) = X(&)wy, with @; = ||Jwy||~'w; the unit vector.

6.1 Euclidean and inhomogeneous spectra of the number
field generated by the self-similarity

Let Ng,q be the norm defined on K by

d 1 T1+72
vee K, Ni@)=[[e@©=][e:® [] l:©* (61
=1 =1 1=r1+1

The field K is said to be norm-FEuclidean if:
V¢ € K, Jy € Ok such that ’NK/@(E — y)’ < 1.

Following the notations of Section 3 and [23] [24], we extend Nk /g o ¥ from
Q4 to R? by the map denoted by N as follows:

d d

Vo e R, N(z) = H zjoi(g;) | - (6.2)

i=1 \j=

Let £ € K. The Euclidean minimum of § (relatively to the norm N q) is
the real number mg(§) := inf{ |[Ng,o(§{ —y)| |y € Ok}. The Buclidean
minimum of K (for the norm N /) is denoted by M (K) and is by definition:

M(K) := 22}2 m(§). (6.3)

The mapping mg o ¥ defined on Q7 is extended to R? and is denoted by m:
m(z) :=inf{ |IN(z = 1)| |l €z} for » € R%.

The inhomogeneous minimum of K is denoted by M (K) and is defined by

M(K) = s:ﬂé)d m(z). (6.4)

The mapping mg o 21_1 is extended to Krw; and is denoted by m:

d
mz(U) = inf { \H Ui — Z)| | Z = (Z;)iwr € B(Oy)w1 }
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for U = (U;);w1 € Krwi. The set of values of my, resp. of m, is called
the Fuclidean spectrum, resp. the inhomogeneous spectrum of K. Successive
minima are enumerated: the second inhomogeneous minimum of K is defined

by
Ms(K) = sup  m(z),

zerd

and the second Euclidean minimum of K by

My(K) = sup m(§).
K
mK(fﬁ)6<M(K)

Tteratively we define (p > 2):

Mpi(B) = swp mla),
zERE
m(z)<Mp(K)
and
Mpy1(K) = sup. mg(§).
EEK
m (§)<Mp(K)

The inhomogeneous minimum M (K) of K is said to be isolated if

My(K) < M(K).
This isolation phenomenon has been conjectured for d = 2 and K totally real
by Barnes and Swinnerton-Dyer. Corollary 6.3 below shows that it occurs
frequently. o
If the inhomogeneous minimum M (K) of K satisfies the following property:

Vo € RY 31 € Z% such that [N (z —1)| < M(K), (6.5)

we will say that M(K) is attained. Note that (6.5) is not verified for the
quadratic field K = Q(+v/13) [69].

Theorem 6.1. Assume that the degree d of the field K generated by the self-
similarity A of the ssfgud sphere packing A is > 3 and is equal to the rank of
Z[A — A]. If the unit rank 1 + 72 — 1 of K is > 1, in particular if K is totally
real, then

(1) there exists £ € K such that

(i)
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Proof. Theorem 3 in [23]. O

The question whether £ is unique under some assumptions is not clear [23]
[24].

Theorem 6.2. Assume that the degree d of the field K generated by the self-
similarity A of the ssfgud sphere packing A is > 3 and is equal to the rank of
Z[A—A]. If the unit rank 1 +r2—1 of K is > 1 and if K is not a CM-field, in
particular if K is totally real, there exists a strictly decreasing sequence (Yp)p>1
of positive rational integers, which satisfies:

(i) limp—4o0 yp =0,
(if) m(R?) = Uz {wp},

(iii) for each p > 1, the set {x +Z% | m(z) = y,} of classes modulo the lattice
7% is finite and lifts up to points of Q¢, i.e. m(x) =0 for all x ¢ Q<.

Proof. Theorem 5 in [23]. O

From the definitions, the inequality M(K) < M(K) holds for an arbi-
trary number field, with equality if d = 2 (Barnes and Swinnerton-Dyer
[69]). Recently Cerri [23] (Corollary 3 of Theorem 3) proved that the equality
M(K) = M(K) does hold true for every number field.

Corollary 6.3. Under the same hypotheses M (K) is attained and
(i) My(K) = My(K)  foralp>1,
(ii) My(K) < M(K) ( M(K) is isolated),

(iii) Vp > 1, Mp1(K) < Mp(K) and limy_ 4 My(K) = 0.

What are the possible fundamental regions of the sublattices L’ of L =
S1(ZIN) in K ?

Theorem 6.4. Denote, for all t > 0,

d
A= {U = (U)wn € Kz | ] U] <t}
=1

If (unit rank) r1 +re — 1 > 1, then
K is norm-Euclidean <= 3t € (0,1) such that ¥1(Ok) + A; = Kgrwy.

Proof. Remark 2 after Theorem 4 in [23]. O
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Then, if the unit rank r; + ro — 1 of K is strictly greater than 1 and K
is norm-Euclidean, there exists ¢ € (0,1) such that the number of copies of
A; to be considered for obtaining the fundamental region of L’ is equal to the
index of L’ in ¥1(Ok)wy, an integer multiple of (O : Z[\]). Recall that ([23]
Proposition 4):

(i) M(K)<1 = K isnorm-Euclidean,

(i) M(K)>1 = K is not norm-Euclidean,
If M(K) = 1, it is not possible to conclude except if there exists £ € K
such that M(K) = mg(£); in this case K is not norm-Euclidean. See [24]
for computations of M,(K),p > 1, with the conventions: M (K) = M (K),

M(EK) = M (E).

6.2 Proof of Theorem 1.4

Let us now deduce lower bounds of the Delone constant of the ssfgud set
A CR",n > 1, that we will assume either a model set or a Meyer set, subset
of a model set, defined by a window  in the internal space Ry \ R[A] of the
cut-and-project scheme

(Krwi = (R \R[A]) x R[A], L/, 7, pry) (6.6)

given by Theorem 1.1 (iv) with L’ such that pri(L’) = Z[A — A] and the
window {2 nonempty, open and relatively compact such that

ACv+{pn()|Uel ,n(U)eQ} C v + Rw;  withveA. (6.7)

A is a Delone set. The central cluster is {w;}. Denote by R[A] + Q the band
{P=(U,V) € Kpw;y | U = pry(P) € R[A],V = n(P) € Q} parallel to the
one-dimensional R-span R[A] of A. Note that R[A] = v +Rw; in R™.

In the sequel we will use the notations of §6.1 and the assumptions of
Theorem 6.2.

Definition 6.5. Let £ > 2 be an integer. The self-similar finitely generated
Delone set A defined by (6.6) and (6.7) is called

(1) thin if the following condition on © and L’ holds:
0 < [[7(Z1(z—1t)| < dM(K)*?, (6.8)
for all t € O such that ¥y (t) € L'N(R[A]+Q), and all z € mz' (M (K)),
(ii) k-thin if
d (Mye1 (K))Y4 < |lw(B1(x =) || < d (Me(E)* (6.9)
for allt € Ok such that 3 (¢) € L'N(R[A]+9) and z € UI;;% my (My(K)).
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This definition is consistent with the following facts:

(a) the values of m constitute a strictly decreasing sequence of positive ra-
tional integers (Theorem 6.2 (ii))which are reached a finite number of
times modulo L’ (Theorem 6.2 (iii)),

(b) the infinite (band) cylinder R[A] + €2, parallel to the one-dimensional
space R[A], can be made sufficiently narrow in order to avoid the set of
points z of Q? such that my o ¥(z) € UI;;} M,(K), for all k > 2, which
is a finite union of translates of L/,

(c) Assertion (b) is possible since free planes, a fortiori free lines, do ex-
ist in any lattice (equal) sphere packings in R% once d is large enough:
Henk [57] has proved the existence of an ﬁ—dimensionzﬂ affine plane
(called free plane) which does not meet any of the spheres in their in-
teriors. Hence, provided d is large enough, free lines exist in the lattice
sphere packing B(L') corresponding to L’ in Krwi. Equivalently narrow
bands, with section a nonempty open set, about free lines, exist in Krw;
which do not intersect L’. By continuity, there exist narrow bands, with
nonempty open cross-sections, about free lines, which do not intersect
any finite union of translates of L’.

For all z € K,t € Ok, by the geometric mean inequality, we have:

71 r1+72
Nicso() = [Nigjgle =) = [[loste =02 ] loute— )"
=1 i=r1+1
1 1 2 T1+T2 d 1 d
§<EZ|ai(x—t)|2+E 3 |0i(x—t)|2> :(Eq(Zl(x—t),El(x—t)))
=1 i=r1+1

(6.10)
where (X1 (z — t), S1(z —t)) = [lpry(Z1(z — )] + |7(S1(z — t))||* with the
notations of Section 3. We have:

Ipry (Z1(z — 0)[1? = [[(z — ywr[|* = [[(v + zw1) — (v + tw1) ||

The set my'(M(K)) = {z € K | mg(r) = M(K) = M(K)} is such that
21 (mg' (M(K))) = {Z1(z) | mi(z) = M(K) = M(K)} is finite modulo L’
by Theorem 6.1 and Theorem 6.2.

Let us take z in my" (M (K)). Then, from (6.10), for all t € Oy,

1 . . d
MU < (5 10+ 070 - (0 + TP + rE - ) )
Hence, for all t € Ok such that ¥1(t) € L' N (R[A] + Q),

(v + 2w1) — (v + tw)|]? > d M(E)* — |[r(Sy (2 — 1))
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Since by hypothesis v + xw; does not belong to A and that we consider the
elements t € Oy, for which v+ twy belongs to A (with ¥4 (¢) € L'N(R[A]+9)),
we have:

R(A) > |[(v+awy) — (v + twy)]].
Hence
R(AY = dM(K)?? = sup||m(S1(z — £)]2 > 0 (6.11)

where the supremum is taken over all x € my'(M(K)) and all t € Oy for
which v 4 twy belongs to A, with X1(¢) € L' N (R[A] + Q)

Let us assume that A is k-thin and take x in Up:l myg (My(K)). Then

the supremum in (6.11) is bounded from above by d M (K )% which allows to
deduce the claim.

Using Theorem 1.3 or [81] we deduce a lower bound of the density of the
ssfgud set A.

The isolation phenomenon which frequently occurs (Corollary 6.3 (ii) of

Theorem 6.2) in higher dimension is likely to occur in R™ as well by projection
for A.

Appendix.— Crystallography of Aperiodic Crystals and
Delone sets

New states of matter call for mathematical idealizations of packings of atoms
and consequently a deep understanding of the mathematics which lies behind
as far as they are characterized by experimental techniques described by a
mathematical formalism which has to be mathematically settled: diffraction
(X-rays, electrons, neutrons, synchrotron radiation, etc) and inverse problems
(crystal reconstruction with satisfying local atom clustering, long-range order
and self-similarities, etc). Indeed, the situation is well-known for (periodic)
crystals [31] [53] [54] [63] [96] but fairly unknown, or at least badly understood
for nonperiodic crystals. Quasicrystals and modulated crystals constitute ex-
ceptions since the use of cut-and-project sets allows periodization in higher
dimension [3] [4] [51] [62] [64] [96]. The parts of mathematics concerned with
the crystallography of aperiodic crystals are mainly Geometry of Numbers
and Discrete Geometry [22] [52] [107], N-dimensional crystallography when
periodization in higher dimension is concerned [78] [84] [95], Spectral Theory,
Ergodic Theory and Fourier Transform of Delone sets as far as diffraction is
concerned [5] [59], Harmonic Analysis as far as density is concerned (as an
asymptotic measure). Atoms are viewed as hard spheres and aperiodic crys-
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tals as Delone sets (sphere centers). Implicitely this means that atoms behave
like spheres, that is do have a spherical potential. This is far from covering
the large variety of possibilities of chemical boundings between atomic species
(see [106] for quasicrystalline models of pure Boron for instance). This pro-
vides first-order crystalline models from which the computation of the electron
density is made possible. Then comparison with experimental data (densities,
physical properties, ...) leads to refine the models.

Looking for a fine hierarchy of Delone sets, from the mathematical side,
either from arithmetics [37] [47] [65] or from tiling theory [6] [8] [80] [102],
leads to interesting and new questions concerning crystals, without knowing
whether these crystals will exist or not. To finish up let us recall the new
definition of a crystal (in R? ) which was recently chosen by the International
Union of Crystallography [61] and the former one [95].

Definition 6.6 (former definition). Any solid for which the set of atom posi-
tions is a finite union of orbits under the action of a crystallographic group.

Definition 6.7 (new definition). Any solid having an essentially discrete
diffraction diagram.

Definition 6.7 covers all cases of solids defined by Definition 6.6 by Poisson
formula (see [67] for a proof).

References

[1]  P. Arnoux, V. Berthé, H. Ei and S. Ito, Tilings, quasicrystals, discrete planes, general-
ized substitutions and multidimensional continued fractions, Disc. Math. and Theor.
Comp. Sci. Proc. AA (DM-CCG), (2001), 59-78.

[2] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc.
8 (2001), 181-207.

[3] F. Axel, F. Dénoyer and J.-P. Gazeau (Eds.), From Quasicrystals to more complex
systems, EDP-Springer-Verlag, Berlin (2000).

[4] F. Axel and D. Gratias (Eds.), Beyond Quasicrystals, EDP-Springer-Verlag, Berlin
(1995).

[5] M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure
point dynamical and diffraction spectra, Ergod. Theory Dynam. Systems 24 (2004),
1867-1893.

[6] M. Baake and R.V. Moody (Eds.), Directions in Mathematical Quasicrystals, CRM
Monographs Series Vol 13, AMS, Providence, (2000).

[7]  C. Bachoc and B. Venkov, Modular forms, lattices and spherical designs, Réseaux Eu-
clidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001),
87-111.



38

(8]
(9]

[10]
[11]
12
13
[14]
[15]

[16]
(17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

27]
28]
29]

(30]

(31]
(32]

Jean-Louis Verger-Gaugry

C. Bandt, Self-similar tilings and patterns described by mappings, in [80], 45-83.

E. Bannai, Positive definite unimodular lattice with trivial automorphism groups,
Mem. Amer. Math. Soc. 85 (1990), n°® 429.

G. Barat, V. Berthé and P. Liardet, Directions in Numeration, Ann. Institut Fourier,
(2006), Special Issue on Numeration and its Applications, submitted.

E. Bayer-Fluckiger, Upper bounds for Euclidean minima of algebraic number fields,
preprint.

E. Bayer-Fluckiger, Ideal Lattices, in A panorama of number theory or the view from
Baker’s garden, (Ziirich 1999), G. Wiistholz (Ed.), Cambridge University Press, Cam-
bridge, (2002), 168-184.

E. Bayer-Fluckiger, Lattices and number fields, Contemporary Math. 241 (1999) 69-84.

E. Bayer-Fluckiger and G. Nebe, On the Euclidean minimum of some real number
fields, preprint.

E. Bayer-Fluckiger and I. Suarez, Ideal lattices over totally real number fields and
Euclidean minima, preprint.

J. Bernat, Arithmetics in S-numeration, preprint, (2005).

K. Bezdek, Compact packings in the Euclidean space, Beitrdge Algebra Geom. 25
(1987), 79-84.

F. Blanchard, 8-expansions and Symbolic Dynamics, Theoret. Comput. Sci. 65, (1989),
131-141.

K. Boroczky, Jr. Finite packing and covering, Cambridge Tracts in Mathematics, 154,
Cambridge University Press, (2004).

D.W. Boyd, The beta expansion for Salem numbers, in Organic Mathematics, Cana-
dian Math. Soc. Conf. Proc. 20, (1997), AMS, Providence, 117-131.

C. Burdik, C. Frougny, J.-P. Gazeau and R. Krejcar, beta-integers as natural counting
systems for quasicrystals, J. Phys. A: Math. Gen. 31 (1998), 6449-6472.

J.W.S. Cassels, An introduction to the Geometry of Numbers, Springer Verlag, Berlin,
(1959).

J.-P. Cerri, Inhomogeneous and Euclidean spectra of number fields with unit rank
greater than 1, preprint.

J.-P. Cerri, Euclidean minima of totally real number fields. Algorithmic determination,
preprint.

G. Collinet, Homologie rationelle du groupe On(Z[%}) et automorphismes des réseaux
unimodulaires, C. R. Math. Acad. Sci. Paris 335 (2002), n° 2, 127-132.

J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer-Verlag,
Berlin (1988).

N. Cotfas, G-Model Sets and Their Self-Similarities, J. Phys. A 32 (1999), 8079-8093.
N. Cotfas, On the Self-Similarities of a Model Set, J. Phys. A 32 (1999), L165-L168.

N. Cotfas and J.-L.Verger-Gaugry, A Mathematical Construction of n-dimensional
Quasicrystals Starting from G-clusters, J. Phys.A: Math. Gen. 30 (1997), 4283-4291.

R. Coulangeon, Voronoi theory over algebraic number fields, in Réseauz Fuclidiens,
designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001), 147-162.

J.M. Cowley, Diffraction Physics, North-Holland, Amsterdam, 2nd Edition (1986).
F.M. Dekking, Recurrent sets, Adv. in Math. 44 (1982), 78-104.



(33]
(34]

(35]
(36]
(37]

(38]

39]

[40]
[41]
42]

[43]
[44]

[45]
[46]
[47]
(48]
[49]
(50]
[51]
[52]

(53]
(54]

[55]
[56]

Self-similar finitely generated sphere packings 39

B.N. Delone, Neue Darstellung des Geometrische Kristallographie, Z. Kristallographie
84 (1932), 109-149.

B.N. Delone, Sur la Sphere Vide, Bull. Acad. Sci. URSS, VII Ser. 1934, N° 6, (1934),
793-800.

D. Descombes, Eléments de Théorie des Nombres, PUF, Paris (1986), p 57.
M. Duneau and M. Audier, Approximant phases of quasicrystals, in [58], pp 283-333.

A. Elkharrat, C. Frougny, J.-P. Gazeau and J.-L. Verger-Gaugry, Symmetry groups
for beta-lattices, Theoret. Comput. Sci. 319 (2004), 281-305.

S. Fabre, Substitutions et [-systémes de numération, Theoret. Comput. Sci. 137
(1995), 219-236.

D.K. Fadeev, N.P. Dolbilin, S.S. Ryshkov and M.I. Shtogrin, Boris Nikolaevich Delone
(On his Life and Creative Work), Proc. Stekl. Inst. Math. Discrete Geometry and
Topology, On the 100th Anniversary of the Birth of Boris Nikolaevich Delone 196,
Issue 4 of 4 (1992), 1-9.

G. Fejes-T6th, Multiple packing and covering of spheres, Acta Math. Acad. Sci. Hun-
gar. 34 (1979), 165-176.

L. Flatto, J. Lagarias and B. Poonen, The zeta function of the beta transformation,
Ergod. Th. and Dynam. Sys. 14, (1994), 237-266.

N. Pythéas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lect.
Notes Math., vol 1794, Springer-Verlag, (2003).

J. Frenkel, Géométrie pour l’éléve-professeur, Hermann, Paris (1973), Appendice 1.

C. Frougny, Number Representation and Finite Automata, London Math. Soc. Lect.
Notes Ser. 279, (2000), 207—228.

C. Frougny, Numeration Systems, Chapter 7 in Algebraic Combinatorics on Words,
M. Lothaire (Ed.), Cambridge University Press, (2003).

F. Gaehler, P. Kramer, H.-R. Trebin and Urban (Eds.), Proc. of the 7th Int. Conf. on
Quasicrystals, Mat. Sci. & Eng. A (2000).

J.-P. Gazeau, Pisot-cyclotomic integers for quasilattices, in [80], 175-198.
J.-P. Gazeau, Counting Systems with Irrational Basis for Quasicrystals, in [3], 195-217.

J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric Study of the Beta-integers with
B a Perron Number and Mathematical Quasicrystals, J. Théorie Nombres Bordeauz
16 (2004), 125-149.

J.E. Goodman and J.O’Rourke, Handbook of Discrete and Computational Geometry,
CRC Press, Boca Raton (1997).

D. Gratias and L. Michel (Eds.), Int. Workshop on Aperiodic Crystals, Les Houches,
J. de Physique France, Colloque C3-1986, fasc. 7.

P.M. Gruber and C.G. Lerkkerkerker, Geometry of Numbers, North-Holland, Amster-
dam (1987).

A. Guinier, Theory and techniques for X-ray crystallography, Dunod, Paris (1964).

T. Hahn (Ed.), International Tables for Crystallography, Volume A, Reidel Publ. Co.,
Dordrecht, (1983).

T.C. Hales, Sphere packings I, Disc. Comp. Geom. 17 (1997), 1-51.
T.C. Hales, Sphere packings II, Disc. Comp. Geom. 18 (1997), 135-149.



40
[57]
(58]

[59]
[60]

[61]

(62]
(63]
[64]
[65]

[66]
[67]

[68]
[69]

[70]
[71]

(72]
(73]

[74]
[75]
[76]
[77]
(78]
[79]

(80]

(81]

Jean-Louis Verger-Gaugry

M. Henk, Free planes in lattice sphere packings, Adv. in Geometry, 5 (1) (2005), 137—
144.

F. Hippert and D. Gratias (Eds.), Lectures on Quasicrystals, Les Editions de Physique,
Les Ulis, (1994).

A. Hof, Diffraction by aperiodic structures, in [80], 239-268.

S. Ito and M. Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991),
461-486.

International Union of Crystallography, Report of the Executive Committee for 1991,
Acta Cryst. A 48 (1992), 922-946.

A. Janner and T. Janssen, Superspace Groups, Physica 99A (1979), 47-76.
C. Janot, Quasicrystals, A Primer (2nd Edition), Clarendon Press, Oxford (1997).
T. Janssen, From Quasiperiodic to more Complex Systems, in [4], 75-140.

J.C. Lagarias, Geometric Models for Quasicrystals I. Delone sets of Finite Type, Disc.
Comp. Geom. 21 (1999), 161-192.

J.C. Lagarias, The Impact of Aperiodic Order on Mathematics, Mat. Sci. & FEng.
294-296 (2000), 186-191.

J.C. Lagarias, Mathematical Quasicrystals and the Problem of Diffraction, in [6], 61—
93.

S. Lang, Algebra, Addison-Wesley, (1965).

F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Ezpo. Math. 13
(1995), 385-416.

J.-M. Luck, C. Godreche, A. Janner and T. Janssen, The nature of the atomic surfaces
of quasiperiodic self-similar structures, J. Phys. A 26 (1993), 1951-1999.

J.M. Luck, P. Moussa and M. Waldschmidt, Number Theory and Physics, Springer
Proceedings in Physics 47, Springer-Verlag, Berlin, (1990).

J. Martinet, Les Réseaux Parfaits des Espaces Euclidiens, Masson, Paris (1996).

Z. Masédkova, J. Patera and E. Pelantova, Inflation Centers of the Cut-and-Project
Quasicrystals, J. Phys. A:Math.Gen. 31 (1998), 1443-1453.

A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor.
Nombres Bordeauz 10, (1998), 135-162.

Y. Meyer, Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Lecture
Notes in Math. 117, (1970), Springer-Verlag, Berlin.

Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, Amsterdam
(1972).

Y. Meyer, Quasicrystals, Diophantine Approximation and Algebraic Numbers, in [4],
3-16.

L. Michel and J. Morzrzymas, N-Dimensional Crystallography, IHES Workshop on
Mathematical Crystallography, IHES/P/85/47, (August 1985).

R.V. Moody, Meyer sets and their Duals, in [80], 403—442.

R.V. Moody (Ed.), The Mathematics of Long-Range Aperiodic Order, NATO Ad-

vanced Science Institutes Series C: Mathematical and Physical Sciences 489, Kluwer
Academic Publishers, Dordrecht (1997).

G. Muraz and J.-L. Verger-Gaugry, On Lower Bounds of the Density of Delone Sets
and Holes in Sequences of Sphere Packings, Exp. Math. 14:1 (2005), 47-57.



(82]
(83]
(84]
(85]

(86]

(87)

(88]
(89]

[90]
[91]
(92]
93]
[94]

[95]
[96]

[97]

(98]
9]
[100]
[101]
[102]
[103]

[104]

Self-similar finitely generated sphere packings 41

G. Muraz and J.-L. Verger-Gaugry, On a Generalization of the Selection Theorem of
Mabhler, J. Théorie Nombres Bordeauz 17 (2005), 237-269.

J. Oesterlé, Empilements de Spheres, Séminaire Bourbaki n 727 (1989-90), 375-397;
SMF Astérisque 189-190 (1990).

W. Opechowski, Crystallographic and Metacrystallographic Groups, North-Holland,
Amsterdam (1986).

W. Parry, On the B-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11
(1960), 401-416.

J. Patera (Ed.), Quasicrystals and Discrete Geometry, Proc. of the Fall Programme
held at the University of Toronto (1995), Fields Institute Monographs 10, Amer. Math.
Soc., Providence (1998).

Y. Peres and B. Solomyak, Problems on self-similar sets and self-affine sets: An update,
in Fractals and Stochastic II, Proc. of the University of Greifswald 1998 Conference,
C. Bandt, S. Graf and M. Zaehle (Eds.), Progress in Probability 46 (2000), Birkhaiiser,
95-106.

G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110, (1982),
147-178.

A. Rényi, Representations for real numbers and their ergodic properties, Acta Math.
Acad. Sci. Hung. 8, (1957), 477-493.

C. A. Rogers, Packing and covering, Cambridge University Press, Cambridge (1964).
S.S. Ryshkov, Density of an (r, R)-system, Math. Notes 16 (1975), 855-858.

M. Schlottmann, Generalized Model Sets and Dynamical Systems, in [6], 143-159.
R. Schoof, Computing Arakelov class groups, preprint.

J.P. Schreiber, Approximations diophantiennes et problémes additifs dans les groupes
abéliens localement compacts, Bull. Soc. Math. France 101 (1973), 297-332.

R.L.E. Schwarzenberger, N-Dimensional Crystallography, Pitman, London (1980).

M. Sénéchal, Quasicrystals and Geometry, Cambridge University Press, Cambridge
(1995).

D. Shechtman, I. Blech, D. Gratias and J. Cahn, Metallic Phase with Long-Range
Orientational Order and No Translational Symmetry, Phys. Rev. Lett. 53 (1984), 1951—
1953.

A. Siegel, Représentations des systémes dynamiques substitutifs non unimodulaires,
Ergod. Th. Dyn. Sys. 23 (2003), 1247-1273.

A. Siegel, Spectral theory and geometric representations of substitutions, in [42], 199-
252.

V.F. Sirvent, Identifications and dimension of the Rauzy fractal, Fractals 5 (1997),
281-294.

V.F. Sirvent and Y. Wang, Self-affine tiling via substitution dynamical systems and
Rauzy fractals, Pacific J. Math. 206 (2002), 465-485.

B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of
analytic functions, Proc. London Math. Soc. (3) 68, (1993), 477-498.

B. Solomyak, Dynamics of Self-Similar Tilings, Ergod. Th. Dyn. Sys. 17 (1997), 695—
738.

W. Thurston, Groups, Tilings and Finite State Automata, preprint (1989).



42 Jean-Louis Verger-Gaugry

[105] J.-L. Verger-Gaugry, On lacunary Rényi 3-expansions of 1 with 3 > 1 a real algebraic
number, Perron numbers and a classification problem, preprint Institut Fourier 648,
(2004).

[106] D. Weygand and J.-L. Verger-Gaugry, Modeéle d’un quasicristal covalent de Bore pur,
C. R. Acad. Sci. Paris 320 (1994), 253-257.

[107] C. ZoNG Sphere packings, Springer-Verlag, Berlin (1999).



