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Abstract

This paper deals with the model predictive control of pro-
cesses. The new step is the use of a distributed parameter
system instead of a lumped parameter system. The internal
model control structure is also used to solve the trajectory
tracking problem. The internal model is obtained from the
linearization of the initial set of nonlinear partial differen-
tial equations about the desired trajectory. Finally, the con-
trol problem stated as a constrained optimization problem is
solved by a control algorithm. Experimental results present-
ed here show the efficiency of this control strategy.

1 Introduction

This work is concerned with a model based approach to
the nonlinear parabolic distributed parameter system control.
There are few practical works directly dealing with the con-
trol of such systems. Even if the existed one are based on
interesting structures, they treat neither complex nonlineari-
ties nor a set of partial differential equations [6, 5]. Besides,
these results do not seem to be applicable to nonlinear mod-
els like the described one in this paper.
The control synthesis is reached by extending the classical
use of the model predictive control (MPC) strategy [9, 11, 10]
from systems described by ordinary differential equations
to systems described by partial differential equations. This
leads to a control problem stated as a constrained optimiza-
tion problem. Moreover this strategy is combined here with
∗Author to whom all correspondence should be addressed.

the internal model control structure (IMC) [8] where the
model is obtained by the off-line linearization of the initial
nonlinear model about a given trajectory. This allows to de-
crease the on-line calculation time due to the model resolu-
tion needed in the constrained optimization problem resolu-
tion. Indeed, this is an important problem to be kept in mind
for real time control.
In the first section, we present the drying plant described by
a nonlinear distributed parameter system . The control prob-
lem is then exposed. In the next section, MPC strategy and
the resolution method are explained in more details. Exper-
imental results are finally exposed to show the possibilities
for this approach in real time control applications.

2 Drying process and control problem

2.1 Drying process

Within the framework of a previous study [1], an experimen-
tal drying process has been built. It allows to dry a painting
film sample coated on a car iron support by supply of an in-
frared flow. The plant is represented Fig. 1 with the infrared
part and with the instrumention part. The sensors are : a
pyrometer that allows the on-line temperature measurement
of the sample at the upper surface and a precision balance
that allows the follow-up of the sample and support set mass.
The painting film sample mass is the sum of the constan-
t final dried mass of the sample with the time variant water
mass in the sample. Indeed, during the drying under infrared
flow, this water mass decreases since the water contained in
the painting film sample migrates from inside to the upper
surface and vaporizes at this surface.
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Figure 1: Drying process.

These mass and temperature measurements during experi-
mental drying kinetics have allowed to validate the knowl-
edge model that we use in this paper : this low thickness
painting film sample is characterised by its temperature as-
sumed uniformT (t) and by its dry basis humidityχ(z, t)
assumed to varying only according to the thicknessz of the
sample [1].
The drying leads to water losses which produces a variation
in the sample geometry. Considering the surface size and the
thickness of the sample, we consider that the water extraction
leads only to the linear reduction of the sample thicknessep
with respect to the mean humiditȳχ :

ep = esec(1 + φχ̄) (1)

whereesec is the final dried thickness of the sample and with :

χ̄(t) =
1

esec

∫ esec

0
χ(z, t) dz (2)

The model of the painting film sample infrared drying can be
finally represented by the state variablesT (t) andχ(z, t). It
is deduced from the following energical and mass balances
(remaining expressions are given in the annexe).

2.2 Energical balance

We assume that the car iron support is a reliable enough ther-
mical conductor to consider that the temperatureT is uni-
form on the sample and support set. Taking into account of
the different lossesPi as well as the absorbed infrared flow
represented Fig. 2,
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Figure 2: Thermal flows.

the energical balance leads to :

(ρpCp(χ̄, T )ep + ρsCses)
dT
dt

= −
5

∑

i=1

Pi + Pabs (3)

whereρpCp(χ̄, T )ep andρsCses are respectively the surface
thermal capacity of the painting film sample and the surface
thermal capacity of the support.
Different losses due to the natural convection and radiation
phenomena on both surfaces have for expression :

P1 = hc(T − Th) (4)

P2 = σh(T 4 − T 4
h ) (5)

P3 = hc(T − Tb) (6)

P4 = αs σ(T 4 − T 4
b ) (7)

The water lossP5 is linked to the drying velocityṁ(χ̄, T ) :

P5 = lv(T )ṁ(χ̄, T ) (8)

and the absorbed flowPabs depends on the manipulated vari-
able, i.e. the infrared flowϕir(t) :

Pabs = αir(χ̄)ϕir (9)

2.3 Mass balance

Since there is no macroporous structure, we consider that the
water migrates only by diffusion phenomenon. It allows to
write the mass balance using the Fick law :

• for z ∈ Ω =]0, esec[ :

∂χ
∂t

=
∂
∂z

[Deff (χ, T )
∂χ
∂z

] (10)

with the effective diffusion coefficientDeff depending
on the humidity and the temperature :

Deff (χ, T ) =
D0exp(−a

χ )exp(−Ea
RT )

(1 + φχ)2
(11)



• at z = 0, i.e. at the painting film sample lower surface,
there is not any mater transfert :

∂χ
∂z

= 0 (12)

• at z = esec, the outgoing flow is linked to the drying
velocity through :

−Deff (χ, T )
∂χ
∂z

=
ṁ(χ̄, T )

ρ
(13)

2.4 Nonlinear distributed parameter system

From the previous energical and mass balances, the process
is represented by the following nonlinear distributed param-
eter system(SNL) :

(SNL)























































































































































∂χ
∂t = F1(∂2χ

∂z2 , ∂χ
∂z , χ, T ) for z ∈ Ω, t > 0

dT
dt = F2(χ̄, T ) + F3(χ̄, T )u(t) for t > 0

with :

the scalar input :u(t) = ϕir(t) for t > 0

the output :ym(t) = T (t) for t > 0

with the boundary conditions :

∂χ
∂z = 0 for z = 0, t > 0

F4(∂χ
∂z , χ̄, χ, T ) = 0 for z = esec, t > 0

with the initial conditions :

χ(z, 0) = χi for z ∈ Ω ∪ {0, esec}

T (0) = Ti

(14)

Remark 2.1 According to the spatial uniform property as-
sumption on the temperature, the control problem is a dis-
tributed control one : indeed the manipulated variable, i.e.
the infrared flowϕir(t), acts instantaneously at the boundary
(z = esec) and over the painting film sample.

2.5 Control problem statement

For real applications, the final product obtained by the paint-
ing film sample drying has to be usable : bubbles and fissures
phenomena have therefore to be avoided. To ensure the final
product quality, paint producers propose a reference temper-
ature profile during the drying cycle (temperature rising with
a constant velocity and upholding at a given temperature).
The control problem considered here is the tracking of the
temperature reference trajectory shown Fig. 3, subject to
constraints on the manipulated variableu(t).
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Figure 3: Temperature reference trajectory.

Remark 2.2 This reference could be the result of an off-line
optimization problem like in [3]. The ideal optimal problem
would consist in finding the way to simultaneously achieve
the drying as far as possible and to handle the bubbles and
fissures phenomena. A modeling for such problems is unfor-
tunately not available yet.

Considering this constrained control problem, a MPC strate-
gy seems to be well-adapted to satisfy such control require-
ments.

3 Predictive control strategy

3.1 Constrained optimization problem

A reference trajectory tracking problem can be achieved by
the use of the internal model control structure (IMC) [8] de-
picted Fig. 4 where the manipulated variable is applied to
both process and model.
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Figure 4: IMC principle.

The objective is to determine a control law such that the pro-
cess outputyp(t) tracks some referenceyref (t) in spite of
some modeling errors. This control strategy can be an ex-
plicit control law for linear time invariant systems even for
distributed parameter system [12]. But for nonlinear or time



variant system, a more feasible approach is the indirect one.
In a previous work [2], we introduce a MPC strategy to deal
with the trajectory tracking task. The mathematical discrete-
time formulation, for a SISO process, can be written as the
following constrained optimization problem :






























































min
ũ

J(ũ) =
j=k+Np

Σ
j=k+1

[yref (j)− yp(j)]2

ũ = [ϕir(k) ... ϕir(k + Nc − 1)]T

and∀j ∈ J = {k + Nc, ..., k + Np − 1} :

u(j) = u(k + Nc − 1)

subject to constraints on the manipulated variable.

(15)

First of all, the knowledge ofyp(j) over the prediction hori-
zonNp is not available at the present timek. Due to the IM-
C, this problem can be solved by reformulating the tracking
problem :

yref (j)− yp(j) = yd(j)− ym(j) (16)

yd(j) = yref (j)− e(j) (17)

Assumption 1 The error e(j) between the process output
and the model output remains the same at each sample time
k over the prediction horizonNp [7, 8]. The error value is
updated at each sampled timek.

Then, according to (16) and assumption (1) the initial crite-
rion J to be minimized can be expressed as :

J(ũ) =
j=k+Np

Σ
j=k+1

[yd(j)− ym(j)]2 (18)

From a practical point of view, the second problem is the
computational time aspect. Indeed, in the MPC strategy, the
model aims to predict the future dynamic behaviour of the
process output over a finite prediction horizonNp. To re-
duce the on-line model resolution time, we use a lineariza-
tion method of the nonlinear model(SNL) about a similar
nonlinear model(S0) computed off-line by choosing its in-
put u0. Then, a time variant linearized model(STV L) can
represent the small state variations∆χ(k) ∆T (k) and smal-
l output variation∆ym(k) about(S0) with respect to small
input variation∆u(k) (Fig. 13 given in annexe).

u(k) = u0(k) + ∆u(k) = ϕir0(k) + ∆ϕir(k)(19)

χ(k) = χ0(k) + ∆χ(k) (20)

T (k) = T0(k) + ∆T (k) (21)

ym(k) = y0(k) + ∆ym(k) (22)

Finally, the off-line solved nonlinear model(S0) and the on-
line solved linearized model(STV L) replace the initial non-
linear model(SNL) in the IMC structure (Fig 5).
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Figure 5: Time Variant Linearized Internal Model Control
(TVLIMC) structure.

The objective is now to find the variation∆u(k) of the ma-
nipulated variableu(k) about a chosen trajectoryu0(k) lead-
ing to the best optimization result. According to the TVLIM-
C structure, the trajectory tracking is now equivalent to the
following constrained optimization problem :



































































































































































































































min
∆ũ

J(∆ũ) =
j=k+Np

Σ
j=k+1

[yd(j)− (y0(j) + ∆ym(j))]2

∆ũ = [∆ϕir(k) ... ∆ϕir(k + Nc − 1)]T

∆u(j) = ∆u(k + Nc − 1) ∀j ∈ J

subject to the time-variant linearized model(SLTV ) :






















































































































































∂∆χ
∂t = A1(t)(∆X ∆T )T for z ∈ Ω, t ∈ T =]kTe, (k + Np)Te]

∂∆T
∂t = A2(t)(∆X ∆T )T + A3(t)∆u(t) for t ∈ T

with :

the scalar input :∆u(t) = ∆ϕir(t) for t ∈ T

the output :∆ym(t) = ∆T (t) for t ∈ T

with the boundary conditions :

∂∆χ
∂z = 0 for z = 0, t ∈ T

A4(t)(∆χ ∆T )T = 0 for z = esec, t ∈ T

with the initial conditions :

∆χ(z, 0) = 0 for z ∈ Ω ∪ {0, esec}

∆T (0) = 0
and subject to constraints on the manipulated variables∆ũ

(23)

where the time-variant linear operatorsA1(t), A2(t), A3(t)
andA4(t) are deduced from the model linearization about
(S0) [2].



3.2 Constraints handling

The problem is now to find a method to handle magnitude
and velocity constraints on the manipulated variable that fol-
low into account (Te is the sampling period) :

umin ≤ u(j) ≤ umax (24)

∆umin ≤ u(j)−u(j−1)
Te

≤ ∆umax (25)

Since the manipulated variable is the only constrained vari-
able, an easy method is the use of the following transforma-
tion method depicted Fig. 6.

{

u(j) = f(p(j)) = fmoy + fampyanh[p(j)−fmoy

famp
]

p(j) ∈ IRNc
(26)

with the following datas updated at each timek :















fmoy = fmax+fmin
2

famp = fmax−fmin
2

fmin = max[umin, u(j − 1) + ∆uminTe]
fmax = min[umax, u(j − 1) + ∆umaxTe]

(27)

p(j)

max[umin, u(j − 1) + ∆uminTe]

u(j − 1)

u(j − 1)

u(j) = p(j)

u(j) min[umax, u(j − 1) + ∆umaxTe]

Figure 6: Transformation law.

Seeking now these unconstrained parametersp(j) always en-
sures the constraints check on the manipulated variable.
Besides, from the linearization method and the functionf
bijectivity we can also define the small variations of the new
seeked parameterp(j) aboutp0(j) = f−1(u0(j)) :

∆p(j) = p(j)− p0(j) (28)

Finally, combining the constrained optimization problem
(23), the transformation lawf and the linearization method,
we can define the final unconstrained optimization problem :











































































































































































































































min
∆p̃

J(∆p̃) =
j=k+Np

Σ
j=k+1

[yd(j)− (y0(j) + ∆ym(j))]2

∆p̃ = [f−1(∆ϕir(k)) ... f−1(∆ϕir(k + Nc − 1))]T

∆p(j) = f−1(∆ϕir(k + Nc − 1)) ∀j ∈ J

∆p̃ ∈ IRNc

subject to the time-variant linearized model(SLTV ) :






















































































































































∂∆χ
∂t = A1(t)(∆X ∆T )T for z ∈ Ω, t ∈ T

∂∆T
∂t = A2(t)(∆X ∆T )T + A3(t)∆u(t) for t ∈ T

with :

the scalar input :∆u(t) = ∆ϕir(t) for t ∈ T

the output :∆ym(t) = ∆T (t) for t ∈ T

with the boundary conditions :

∂∆χ
∂z = 0 for z = 0, t ∈ T

A4(t)(∆χ ∆T )T = 0 for z = esec, t ∈ T

with the initial conditions :

∆χ(z, 0) = 0 for z ∈ Ω ∪ {0, esec}

∆T (0) = 0

(29)

with the time variant linearized model input in the TVLIMC
structure :

∆u(k) = u(k)− u0(k) = f(p0(k) + ∆p(k))− f(p0(k)) (30)

This unconstrained optimization problem(29) can now be
solved by any unconstrained optimization algorithm.

3.3 Resolution method

Widely known for its robustness and convergence properties,
we apply the Levenberg-Marquardt’s algorithm[4], where the
variables∆p̃ are determined at each sample instantk by the
iteration procedure :

∆p̃i+1 = ∆p̃i − (52J i
tot + λI)−1 5 J i

tot (31)

where5J i
tot and52J i

tot are the criteria gradient and the cri-
teria hessian with respect to∆p̃i.
This resolution algorithm is now implemented on the process
and allows to track any kind of reference trajectory.



4 Experimental results

Experiments have been realized to point out the prediction
horizon influence. In this first attempts, the unity control
horizon is chosen.

4.1 Operating conditions

The operating conditions are the following one :

• the linearization about(S0) is performed withu0 =
5000 W.m−2 and with the initial conditionsTi = 36 oC
andχi = 0.4 kg.kg−1 ;

• the models(S0) and (STV L) are solved by the finite
volumes method (6 volumes) ;

• the sampling periodTe value is 1 second ;

• constraints boundaries are :

umax = 12, 000 W.m−2 (32)

umin = 0 W.m−2 (33)

∆umax = +500 W.m−2.s−1 (34)

∆umin = −500 W.m−2.s−1 (35)

• atmospheric conditions are :

χair = 20% (36)

Th = 52 oC (37)

Tb = 20 oC (38)

• the control algorithm, written in Fortran code, has been
combined to C code in order to realize the interface with
the sensors and the actuator ;

• the processor rate is400MHz.

4.2 Temperature reference trajectory tracking

From Fig. 7 and Fig. 8, we can see that the tracking objective
is correctly achieved.
Moreover, the intermediate value6s for the horizon predic-
tion gives the best result. It can notably be explained by the
discontinuities handling (atk = 80s, 120s and 200s) for
each horizon prediction value :

• with a small prediction horizon(Np = 3s), the discon-
tinuities handling is less efficient than withNp = 6s as
we can see for the values taken by the criteriaJ (Fig 9).
In this case, informations quantity available describing
the future process behaviour are insufficient. In a way,
with Np = 3s the problem is badly stated for its reso-
lution, as we can see on the applied control : when the
three discontinuities points appear, the infrared flow is
always either satured on its magnitude (Fig. 10) or on
its velocity (Fig. 11). This means that the algorithm
tends too often to find a non admissible solution. This
leads consequently to poor tracking performances ;
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Figure 7: Reference tracking forNp = 3s, 6s, 12s.
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• increasing the prediction horizon value to6s and12s,
the infrared flow becomes more and more smooth
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(Fig. 10), but with a big prediction horizon(Np = 12s),
another problem appears : the model, qualitatively true,
is quantitatively false (Fig. 12). Since more values cal-
culated by the model resolution are taken into account
in the optimization problem, the criteria minimization is
less efficient than in the case where the prediction hori-
zon take an average value for(Np = 6s) (Fig 9).

Therefore, the prediction horizon valueNp = 6s is the “op-
timal” choice for this main parameter.
Moreover, one of the property of the IMC structure is con-
firmed by these experimental results : the tracking is effec-
tive in spite of the model output used to find the control algo-
rithm does not track quantitatively the temperature reference
trajectory (Fig. 12).

5 Conclusion

In this paper, we have developed an efficient approach for an
on-line control problem. It dealed with the trajectory track-
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ing problem of the process output. We have presented a
control strategy combining both the model based predictive
control and the internal model control structure. The new
advance in the MPC strategy is the use of a distributed pa-
rameter system instead of a lumped parameter system. Since
the on-line control algorithm seeks the manipulated variable
by solving the model, we also use an off-line linearization
method.
Experimentals results have shown the efficiency of the MPC
strategy : the influence of the prediction horizon has been
shown. A trade off has to be found between smallest value
that leads to a badly stated optimization problem and a long
horizon control. In this latter case, since too many quan-
titatively false model informations are computed during the
final unconstrained optimization problem resolution, the fi-
nal control does not lead to good tracking performances.
In perspective, others results concerning the application of
this predictive control strategy to another nonlinear distribut-
ed parameter system with output constraints handling will be
published. It deals with the destruction of volatile organic
compounds (VOC) by catalytic reaction.
As for the theoretical perspectives, the accurate characterisa-
tion and the closed loop stability study are expected.

6 Annexe

6.1 Scheme

SLTV

u(k)

u0(k) S0

ym(k)

SNL

ym(k)u(k)

y0(k)

∆ym(k)∆u(k)

Figure 13: Model linearization.



6.2 Drying velocity

The pressure difference between the sample and the ambiant
air leads to an inside out water migration. This is charac-
terised by the drying velocitẏm(χ̄, T ) :

ṁ(χ̄, T ) =
kmmv

R
Pt

2
T + Th

log10[
Pt − χairPvsat(Th)
Pt − aw(χ̄)Pvsat(T )

] (39)

where the saturated vapor saturationPvsat(T ) is given in mil-
libar by the expression :

log10Pvsat(T ) = C0(1−
T1

T
)− C1log10

T
T1

+

C2(1− 10−C3(T/T1−1))+

C4(10C5(1−T1/T ) − 1) + C6 (40)

The activityaw(χ̄) is the solution of :

aw(χ̄)
χ̄

= A1a2
w(χ̄) + A2aw(χ̄) + A3 (41)

with :

A1 = Kk

1
c − 1
χm

(42)

A2 =
1− 2

c

χm
(43)

A3 =
1

χm c Kk
(44)

6.3 Energical balance

The absorption coefficientαir(χ̄) is given by :

αir(χ̄) = αp(χ̄)(1− ρp) + αs(1− ρp)(1− αp(χ̄))+

αp(χ̄)(1− αs)(1− ρp)(1− αp(χ̄)) (45)

with :

αp(χ̄) = 1− [aa3(
χ̄
χ̄0

)3 + aa2(
χ̄
χ̄0

)2 + aa1
χ̄
χ̄0

+ aa0]
1

1− ρp
(46)

The latent heat coefficientlv(T ) and the calorific thermal ca-
pacity Cp(χ̄, T ) are expressed with the temperature in Cel-
sius degrees :

lv(T ) = [a5T 5 + a4T 4 + a3T 3 + a2T 2 + a1T + a0] ∗ 103 (47)

Cp(χ̄, T ) = [oT + b + χ̄{cp3T
3 + cp2T

2 + cp1T + cp0}] ∗ 103 (48)

6.4 Numerical values

The numerical values are :

• for the diffusion coefficientDeff :

Name Value Unit

D0 0.68 10−5 m2.s−1

a 0.42 10−1 kg.kg−1

Ea 26464 J.mol−1

R 8.314 J.mol−1.K−1

φ 1.1685 m.m−1

esec 102.138 µm

• for the drying velocityṁ :

Name Value Unit

km 5.19 10−3 m.s−1

mv 18 10−3 kg.mol−1

T1 273.16 oK
Pt 1.01325 105 Pa

• to smooth the saturation vapor pressure expression
Pvsat :

Name Value Unit

C0 10.79574 (-)
C1 5.028 (-)
C2 1.50475 10−4 (-)
C3 8.2969 (-)
C4 0.42873 10−3 (-)
C5 4.76955 (-)
C6 0.78614 (-)

• for the activityaw :

Name Value Unit

Kk 0.985 (-)
c 2.21 (-)

χm 0.0593 kg.kg−1

• for the thermal balance :

Name Value Unit
hc 3 W.m−2.K−1

σ 5.67 10−8 W.m−2.K−4

σh 0.96 σ W.m−2.K−4

ρp 1165 kg.m−3

ρsCses 3540.16 J.m−2.K−1



• to smooth the expression of the absorption coefficient
αir :

Name Value Unit

αs 0.8 (−)
ρp 0.12 kg.m−3

aa3 0.3751 (−)
aa2 −0.6545 (−)
aa1 −0.129 (−)
aa0 0.939 (−)

• to smooth the expression of the latent heat coefficient
lv :

Name Value Unit

a5 −0.69851352 10−9 kJ.kg−1.oC−5

a4 0.47175172 10−6 kJ.kg−1.oC−4

a3 −0.12963934 10−3 kJ.kg−1.oC−3

a2 0.12413792 10−1 kJ.kg−1.oC−2

a1 −2.7913724 kJ.kg−1.oC−1

a0 0.25037 104 kJ.kg−1

• to smooth the expression of the thermal capacity
coefficientCp:

Name Value Unit

o 0.00647 J.kg−1.K−2

b 2.3754 J.kg−1.K−1

cp3 0.749972 10−7 J.kg−1.K−4

cp2 −0.943717 10−5 J.kg−1.K−3

cp1 0.448761 10−3 J.kg−1.K−2

cp0 4.18674 J.kg−1.K−1
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