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Optimal input design for online
identification: a coupled observer-MPC

approach

S. Flila P. Dufour 1 H. Hammouri

Université de Lyon, Lyon, F-69003, France;
Université Lyon 1; CNRS UMR 5007 LAGEP (Laboratory of Process

Control and Chemical Engineering).
43 bd du 11 novembre, 69100 Villeurbanne, France

Abstract: This paper presents a parametric sensitivity based controller for on line optimal
model parameter identification using constrained closed loop control tools and an observer.
In optimal input design problem, analytical solution exists for few particular cases based on
a relatively simple model. The approach proposed here may be used for a process based on
a continuous model in the time domain, with two assumptions on the observability and the
general structure of the model. The new proposed approach is to solve a model predictive
control problem coupled with an on line process parameter estimation at each time using an
observer. A dynamic parametric sensitivity model (derived from the process model) is also used
on line to get the parametric sensitivity that has to be optimized. Both optimal input and
estimated model parameter are therefore obtained on line. The case study presented here is
a powder coating curing process where the main thermal parameter to identify influences the
powder curing. First simulation results show here the efficiency of the approach in the control
software (MPC@CB) developed under Matlab.

Keywords: design and control, identification for control, model predictive optimization-based
control, nonlinear observer and filter design.

1. INTRODUCTION

Identification is a methodology which aims to approximate
the process model parameters Ljung (1999). In this paper,
one seek to discuss about one essential question in term of
optimal input design for identification: is it possible to de-
sign online a certain input such that the model parameter
θ may be identified on line and such that the input signal
u maximizes the parametric output sensitivity ∂yp

∂θ (where
yp is the measured process output) ?
The problem of optimal design for identification has re-
ceived attention in the literature Gevers (2005). Two pa-
pers Keesman and Stigter (2002) Stigter and Keesman
(2001) include the analytical solution of optimal input
design with respect to one specific parameter θ of the
model. In this case, the Fisher Information Matrix reduces
to a scalar value which may be optimized using a singular
control law. It can be applied on a singular arc in the
state space, and it may be solved by a bang-bang control.
The singular control law is derived by solving a set of
algebraic equations, generated through repeated differen-
tiation of the Pontryagin optimality condition dH

du = 0 on
the compact time interval [t1, t2], where H is the familiar
Hamiltonian associated with the process model and u(t) is
a goal function L. S. Pontryagin and Mishchenko (1986).
In addition, if the cost criterion is based on the trace of
the Fischer Information Matrix, i.e. the A-criterion, the
input design problem may also be solved analytically: it
1 Corresponding author: dufour@lagep.univ-lyon1.fr

involves a maximization of the output sensitivities of a
number of parameters for which an optimal input signal
needs to be found. Recently, Stigter and Keesman (2004)
have found recursive algorithm solutions for an optimal
input design for a specific fed batch bioreactor. In this
case an adaptive receding horizon optimal control problem,
involving the so-called E-criterion, is solved on line using
the current estimation of the parameter θ at each sample
instant (tk, k = 0, ....., N −Nc), where N marks the end of
the experiment and Nc the control horizon. The optimal
feed rate F ∗

in(tk) thus obtained is applied and the measure
y(tk+1) that becomes available is subsequently used in
a recursive prediction error algorithm in order to find
an improved estimate of the parameter estimate θ̂(tk).
Meanwhile, such analytical methods are not easy to use
for complex model based systems. This is often the case,
like in chemical engineering.
The goal of this paper is to present a general framework to
optimally estimate on line the real value of the parameter
θ using the input-output measures and the process model.
This approach may be used for a process modeled by a
continuous dynamic model in the time domain (belonging
to a particular family of models), like a nonlinear partial
differential equation (PDE) based model. An ordinary
differential equation (ODE) based model may also be
used. In this approach, the parametric sensitivity model
is explicitly derived from the process model and is used by
the controller. Since the optimal control law may not be
easily obtained, one has to rely on numerical optimization



methods, involving intensive numerical calculations: we
develop here a control strategy combining a process model,
the coupled parametric sensitivity model, an observer and
a model predictive control (MPC) strategy. The idea is to
maximize on line, over a receding horizon, the paramet-
ric sensitivity of the process output under input-output
constraints. Since the sampling time may be small (a
few seconds), a linearization of the models is also used
to decrease the on line computational burden. With such
optimization, the optimal input u is found on line while
the real value of the parameter θ is also estimated on line.

MPC has found large applications Qin and Badgwell
(2003), particularly in the chemical processing industry.
The idea of this strategy is to solve on line an open-
loop based optimization problem over a finite prediction
horizon. This procedure is repeated at each sample time
with the update of process measurements. In this paper,
the MPC is based on two models in cascade: the process
model and the associated parametric sensitivity model.

Furthermore, the use of an observer is often needed for
the implementation of the control law. Numerous studies
were interested to design of different kind of observers, for
example: high gain observer J.P. Gauthier and Othman
(1992), Kalman filters etc. In this approach, an observer is
used to estimate on line the model parameter, which value
is also fed into the controller to improve the choice of u.

The case study presented here deals with the optimal input
design problem in the field of a powder coating curing
process control K. Abid and Laurent (2007). Powder coat-
ing curing process presents numerous advantages although
the applications of the powder coatings remain unchanged:
architecture, furniture, domestic appliances L. Vechot and
Lieto (2006). Few studies correlates the optimization of
the cure process and the identification of the different
parameters of the process, whereas one of the uncertain
parameter has here a large impact over control results.

This paper is organized as follows: In Section 2, some pre-
liminaries are presented. The idea of optimal parametric
sensitivity control is detailed in Section 3 leading to a non-
linear observer based model predictive control problem. In
Section 4 the mathematical model of the case studied (a
powder coating curing process) is described. A brief detail
about the MPC@ CB software used here is given. Finally
the simulation results are presented in Section 5.

2. PRELIMINARIES

Let the model structure be defined by the general dynamic
system {

dx(t)
dt

= f(x(t), θ) + g(u(t), θ)
y(t) = C.x(t)

(1)

where x(t) is the n-dimensional state vector, u(t) is the
scalar input, y(t) is the scalar output of the system. In
order to simplify our work and the notation, θ is the scalar
parameter of the model to be identified. f , g and h are
nonlinear functions of suitable sizes.
An estimator is a dynamic system obtained from the
nominal model by adding a correction term which is
proportional to some output deviation. The advantage of

this specific algorithm is that, under some properties of
the model structure, it can be used to accurately estimate
the states not measured and certain unknown parameters
used in the model. It is assumed that the augmented
state x̃ = [x θ]T may be directly observed. Therefore,
an observer may be constructed from the model (1) to
estimate on line ˆ̃x = [x̂ θ̂]T . Let us also assume that this
observer may be written as a state affine system:

dˆ̃x(t)
dt

= f̃(u(t)).ˆ̃x(t)) + g̃(u(t))

−S−1C̃T .(C̃.ˆ̃x(t))− y(t))
dS(t)

dt
= −µ.S − f̃(u(t))T .S − S.f̃(u(t))− C̃T .C̃

(2)

where µ > 0. More details about this observer may be
found in G. Bornard and Celle (1998); Hammouri and
Leon (1990).
In parametric models, the sensitivity of the output y with
respect to a parameter θ (i.e, yθ = ∂y

∂θ ) determines how
the parameter may be estimated from the input/output
data. If yθ is ”small”, then the instrumentation is not
well chosen or the input sequence u(t) may not excite
sufficiently the parametric sensitivity. Here, the aim is to
find a control law that maximizes yθ, based on both the
process model and its parametric sensitivity model. The
associated parametric sensitivity model is derived from the
model (1) and is written as follows:

dxθ(t)
dt

=
∂f

∂x
(x(t), θ).xθ(t) +

∂f

∂θ
(x(t), θ)

yθ(t) =
∂h

∂x
(x(t)).xθ(t)

(3)

where xθ ≡ ∂x
∂θ and yθ ≡ ∂y

∂θ .
The idea of this strategy is to find the control law based
on the model (1) coupled with the sensitivity function (3)
and the observer (2).

3. OPTIMAL CONTROL PROBLEM

The proposed approach is to solve on line the coupled
input design and identification problem as a global control
problem where the unknown parameter is estimated at
each time using an observer. The control strategy used here
is the MPC, or receding horizon control (RHC). It consists
in solving an explicit optimization problem formulated into
the future. It is based on a cost function that represents
the optimal control problem: process yield, energy effi-
ciency, cost of energy and raw materials, product prices
... The main advantage of the MPC technique is that the
constraints (due to physical limits, safety, environmental
regulation, ...) may be explicitly specified into this formu-
lation. In this structure, a model aims to predict the future
behavior of the process and the best one is chosen by cor-
rect tuning of the manipulated variables. This procedure
is repeated at each sampling time with the update on the
process measurements. In recent applications, K. Abid and
Laurent (2007) and N. Daraoui and Hammouri (2007) have
shown how the current special PDE model based MPC
framework developed in P. Dufour and Laurent (2003) may
be used for the control of such PDE systems, in spite of
the relatively large size and nonlinearity of the model state
computed during the optimization, modeling errors and



uncertainties. In this approach, control problems with a
short sampling period ( a few seconds) may be handled. In
this particular approach, the control problem is a general
optimization problem over a receding horizon Np where
the cost function J to be minimized reflects any control
problem (trajectory tracking, processing time minimiza-
tion, energy consumption minimization, sensitivity maxi-
mization,...):

J(u) =
j=k+Np∑
j=k+1

a(yref (j), yp(k), ym(j), u(j)) (4)

where k (resp. j) is the actual (resp. future) discrete time
index, u is the input, yref describe the specified behavior
for the considered process output yp, ym is the continuous
model output. The cost function J has to be minimized
under:

• Input constraints on the magnitude and velocity of
the manipulated variable:{

umin ≤ u(k) ≤ umax,∀k > 0
∆umin ≤ u(k)− u(k − 1) ≤ ∆umax,∀k > 1 (5)

• Output constraints related to operating conditions,
safety, quality, ...:

gi(yp(k), u(k)) ≤ 0,∀k > 0,∀i ∈ In = (1, ..., n) (6)

The cost function of this optimization problem is trans-
formed into:

Jtot(p(u)) = J(p(u)) + Jext(p(u)) (7)

where the unconstrained optimization argument is p: it is
obtained from a simple hyperbolic transformation of the
magnitude and velocity constraints (5) specified for the
manipulated variable u P. Dufour and Laurent (2003).
Output constraints (6) are explicitly formulated as a
penalty term Fletcher (1987) used in 7:

Jext(p(u)) =
j=k+Np∑
j=k+1

(
∑
i∈In

ωimax2(0, gi(yp(j), p(u(j)))))(8)

where wi is an adaptive positive defined weight tuned
according to Fletcher (1987).
Any unconstrained optimization algorithm may be used
to minimize the penalized cost function (7): widely known
and used for its robustness and convergence properties, the
Levenberg-Marquardt’s algorithm is used where the opti-
mization argument p is determined at each sample time k
using the process measurement, the model prediction and
the cost function Jtot.
In this work, our interest is to maximize the parametric
sensitivity of the process output with respect to the pa-
rameter ( ∂yp

∂ ˆtheta
) with an optimal tuning of the parameter

p, such that θ becomes optimally identified. Based on
the parametric sensitivity model, the cost function J to
minimize can therefore be expressed in the following form:

J(p(u)) =
j=k+Np∑
j=k+1

1∥∥∥ε + ∂yp

∂θ̂
(k)

∥∥∥2 (9)

where ε is a constant tuned such that J is always defined.
From a practical point of view, one of the numerical

problems of the MPC is to reduce the computational time
needed to solve the unconstrained optimization problem
during the short sampling period (a few seconds). Based
on a MPC approach developed and used for on line
control problems P. Dufour and Laurent (2003), we use
a linearization method of the nonlinear model (1) and
the nonlinear parametric sensitivity model (3) chosen and
computed off-line. Finally, the off-line solved nonlinear and
nonlinear parametric sensitivity models, and the on line
solved time varying linearized and time varying linearized
parametric sensitivity models replace the on line initial
nonlinear and nonlinear parametric sensitivity models in
the internal model control (IMC) approach. For this new
approach coupling a model based estimator, the process
model, the coupled sensitivity model, the linearization
and a predictive controller, the final control structure is
presented in Fig. 1. Therefore, the current estimation θ̂ of
the parameter is used to find u, which is then used gain to
update the estimation θ̂. The procedure to apply at each
time instant k is to:

(1) Measure the current measurement yp(k)
(2) Estimate θ̂(k) through the observer,
(3) Compute ∂ym

∂θm
(k) over the time horizon [k + 1, .., k +

Np] and minimize the penalized cost function (7)
(4) Apply the optimal input u(k) thus obtained on the

interval [k, k + 1[

4. CASE STUDY

4.1 A Dynamical Model for Powder Coating Curing
Process

The mathematical partial differential equation model of a
powder coating curing process is based on the knowledge
of the fundamental mechanisms inside the powder during
the infrared flow curing. It is governed by two nonlinear
phenomena: the coupled thermal transfer and the curing.

The thermal model is based on the Fourier law of heat
conduction and Figure 2 shows the boundary conditions
applied at the top surface of the powder and at the
bottom of the metallic substrate. The thermal balance uses
both the temperature variable varying in the thickness of
the powder coated metal sample, and the degree of cure
conversion (which ranges from 0+ at the beginning to 1
at the end). The terms Ci used in the model are positive
known constant values. Inside the powder, it leads to the
following equation:

∂Tp(z, t)
∂t

= C1
∂2Tp(z, t)

∂z2
− C2e

(
−C3

Tp(z,t) )xm(1− x)n,

∀z ∈]0, ep[,∀t > 0
(10)

where Tp is the temperature across the powder film,
which thickness is ep and x is the degree of cure. The
thermal balance inside the substrate leads to the following
equation for the temperature Ts inside the substrate,
which thickness is es:

∂Ts(z, t)
∂t

= C4
∂2Ts(z, t)

∂z2
∀z ∈]ep, ep + es[,∀t > 0 (11)

The boundary conditions are:
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Fig. 1. Linearized IMC-MPC observer based structure for coupled input design and parameter estimation.

−C5
∂Tp(t, z)

∂z
= αpφir(t)− C6(T 4

p (z, t)− T 4
ext)

−C7(Tp(z, t)− Text) at z = 0,∀t
(12)

where φir(t) is the manipulated variable u and αp is the
absorption coefficient that has to be optimally estimated.

∂Tp(z, t)
∂z

= C8
∂Ts(z, t)

∂z
at z = ep,∀t > 0 (13)

expresses the continuity of the thermal flow at the interface
of the powder and the substrate, and:

−C9
∂Ts(z, t)

∂z
= −C10(T 4

s (z, t)− T 4
ext)

−C11(Ts(z, t)− Text) at z = ep + es,∀t > 0
(14)

The initial condition is:

Tp(z, t) = Ts(z, t) = Text∀z ∈ [0, ep + es], t = 0 (15)

Concerning the degree of cure x(z, t) of the powder, the
polymerization reaction is characterized by the Sestak-
Berggren law:
∂x(z, t)

∂t
= C12e

(
−C3

Ts(z,t) )xm(1− x)n∀z ∈ [0, ep],∀t > 0 (16)

The initial condition is:

x(z, t) = 0+∀z ∈ [0, ep], t = 0 (17)

The thermo physical properties of the substrate have been
found in the literature. The thermo physical properties of
the paint were provided by our paint supplier. More details
about the modeling may be found in I. Bombard and Lieto
(2006).

In this case, one is interested to find the optimal control
φir(t) which maximizes the sensitivity of the measure
Ts(ep +es, t) with respect to parameter αp, such that αp is
optimally estimated. Indeed, a study allowed concluding
that the parameter that influences the most the kinetic
of the coating is the absorption coefficient of painting

Fig. 2. Schematic drawing of the ”substrat+powder” sam-
ple.

αp, which is difficult to identify, since it depends on the
temperature of the infra-red lamps.
In order to implement the control law, the original PDE
model is solved as an algebraic differential equation (ADE)
model. There are several methods making it possible to
obtain the solution of the model by a numerical solution.
Among these methods, it is necessary to note: the finite
element method, the method of finite volume and the
method the finite differences. The latter is used in our
study.

4.2 Control Software: Main Features of MPC@CB

The codes of the MPC@CB Software 2 have been written
with Matlab. It allows to realize the MPC under con-
straints of any continuous process. The advantages of these
codes is first the easy use for any continuous SISO process
(Single Input Single Output), through the user files (where
model equations have to be specified), synchronized by few
main standards files (where the use has to make few (or no)
changes). The model may features any number of states
variable, it may be linear or not linear, time variant or time
invariant, based on ODE and/or PDEs. Another original
feature of the software is the straightforward resolution

2 University Claude Bernard Lyon 1 - EZUS. In order to use
MPC@CB, please contact the author: dufour@lagep.univ-lyon1.fr.



of various model based control problems through different
choices:

• MPC for a trajectory tracking problem, with or
without the output constraint. The user may specify
any reference trajectory.

• MPC to solve an operating time problem, with or
without the output constraint.

• MPC to solve any user defined constrained optimal
control problem.

• In order to study the robustness of the control law
with simulations, it is easy to introduce, for any
parameter, different values in the model (used in the
controller) and in the simulated process.

• Introduce a software sensor for the estimate of the
variables not measured (currently under development
for this process).

The other originality is the method used to develop the
codes: it is very easy to introduce new parts in the code,
such as: user defined problem, handle SIMO, MISO or
MIMO model (M stands for multiple, S stands for single)
and apply the software for a real time application or
simulation.

5. SIMULATION RESULTS

As mentioned previously, our aim is to find the optimal
control φir(t) which maximizes the output sensitivity
∂Ts(ep + es, t)/∂α̂p(t). For this reason, the MPC@CB
software is tuned to solve 3 different control problems to
compare the following approaches:

• open loop control with a step at the input satisfying
the input constraints,

• closed loop control defined in this paper, with input
constraints,

• closed loop control defined in this paper, with input
constraints and an output constraint.

For the input constraints, the constraints (5) for the
manipulated variable are:{

0 W.m−2 ≤ φir(k) ≤ 23000 W.m−2

−2000 W.m−2 ≤ φir(k)− φir(k − 1) ≤ 2000 W.m−2 (18)

and the process output constraint (6) that allows to avoid
overheating that deteriorates the powder during the curing
is:

Ts(ep + es, k) ≤ 380 K (19)

In each cases, the unknown parameter αp is estimated after
30 s (Fig. 3). In case of closed loop control with input
constraints, the parametric sensitivity is more maximized
than is the open loop case (Fig. 4) and the temperature
in process output takes very large values (Fig. 5). In
the meantime, the estimation of αp is more continuous.
In the third case, the output constraint (19) is always
satisfied (Fig. 5) by a correct tuning of the input (Fig.
6): the parameter is in this case estimated on line while
the process is under closed loop control and in a safe use
specified by the constraints of the user. In both closed loop
cases, the trajectory of the estimation are very closed since
the observer converges before the saturation of the output
constraint (19).
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6. CONCLUSION

A new approach coupling a particular continuous time-
domain process model, the parametric sensitivity model
(derived from the process model), a model based observer
and a model based predictive controller was used on-
line for optimal identification. It consisted in solving on-
line an explicit constrained optimization problem over a
receding horizon to maximize the considered parametric
sensitivity. In the MPC, the process model and its asso-
ciated parametric sensitivity model are used. In order to
decrease the computational burden, a linearization of the
models has been done. During the prediction, the current
estimation of the unknown parameter is used to find the
optimal control action. The obtained results provide an
optimal parametric sensitivity in output, helping for a pro-
cess model parameter identification. The optimal control
problem is solved using a control software (MPC@CB)
developed under MATLAB.
In the future, this optimal identification strategy will also
be used to find a compromise between dual effects, in terms
of its ability to both control the system in closed loop for
the use under normal operating specifications, and excite
it enough to be able to obtain an optimal identification.
This approach will also be extend for other process models,
and for a parameter vector case. Noise sensitivity and
robustness with respect to the initial value used in the
observer will also be studied.
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