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Let β > 1 be an algebraic number. We study the strings of zeros ("gaps") in the Rényi β-expansion d β (1) of unity which controls the set Z β of β-integers. Using a version of Liouville's inequality which extends Mahler's and Güting's approximation theorems, the strings of zeros in d β (1) are shown to exhibit a "gappiness" asymptotically bounded above by log(M(β))/ log(β), where M(β) is the Mahler measure of β. The proof of this result provides in a natural way a new classification of algebraic numbers > 1 with classes called Q (j) i which we compare to Bertrand-Mathis's classification with classes C1 to C5 (reported in an article by Blanchard). This new classification relies on the maximal asymptotic "quotient of the gap" value of the "gappy" power series associated with d β (1). As a corollary, all Salem numbers are in the class C1∪ Q

; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.

Introduction

The exploration of the links between symbolic dynamics and number theory of β-expansions, when β > 1 is an algebraic number or more generally a real number, started with Bertrand-Mathis [Be1] [Be2]. Bertrand-Mathis, in Blanchard [Bl], reported a classification of real numbers according to their β-shift, using the properties of the Rényi β-expansion d β (1) of 1. A lot of questions remain open concerning the distribution of the algebraic numbers β > 1 in this classification. The Rényi β-expansion of 1 is important since it controls the β-shift [Pa] and the discrete and locally finite set [G1]. The aim of this note is to give a new Theorem (Theorem 1.1) on the gaps (strings of 0 s) in d β (1) for algebraic numbers β > 1, and investigate how it provides (partial) answers to some questions of [Bl], in particular for Salem numbers (Corollary 1.2).

Z β ⊂ R of β- integers [B-K] [E-VG] [Ga]
Theorem 1.1 provides an upper bound on the asymptotic quotient of the gap of d β (1) and is obtained by a version of Liouville's inequality extending Mahler's and Güting's approximation theorems. The proof of Theorem 1.1 turns out to be extremely instructive in itself since it leads to a new classification of the algebraic numbers β as a function of the asymptotics of the gaps in d β (1) and "intrinsic features", namely the Mahler measure M(β), of β (the definition of M(β) is recalled in Section 3). The existence of this double parametrization, symbolic and algebraic, was guessed in [Bl] p 137. This new classification complements Bertrand-Mathis's (Blanchard [Bl] pp 137-139) and both are recalled below for comparison's sake. The question whether an algebraic number β > 1 is contained in one class or another has already been discussed by many authors [START_REF] Bertrand-Mathis | Développements en base Pisot et répartition modulo 1[END_REF] [Pa] [PF] [Sc] [Sk] and depends at least upon the distribution of the conjugates of β in the complex plane. Only the conjugates of β of modulus strictly greater than unity intervene in Theorem 1.1 via the Mahler measure of β. Corollary 1.2 is readily deduced from this remark. We deduce that Salem numbers belong to C 1 ∪ C 2 ∪ Q 0 , whereas the Pisot numbers are in C 1 ∪ C 2 [Th].

[Be2] [Be3] [Bl] [Bo] [Bo1] [Bo2] [Bo3] [D-S] [FS] [Li1] [Li2]
Another proof of Corollary 1.2 consists of controlling the gaps of d β (1) by stronger Theorems of Diophantine Geometry which allow suitable collections of places of the number field Q(β) associated with the conjugates of β and the properties of d β (1) to be taken into account simultaneously. This alternative proof of Corollary 1.2, just sketched in Section 4, is obtained using the Theorem of Thue-Siegel-Roth given by Corvaja [A] [C].

Theorem 1.1. Let β > 1 be an algebraic number and M(β) be its Mahler measure. Denote by d β (1) := 0.t 1 t 2 t 3 . . ., with t i ∈ A β := {0, 1, 2, . . . , β -1 }, the Rényi β-expansion of 1. Assume that d β (1) is infinite and gappy in the following sense: there exist two sequences {m n } n≥1 , {s n } n≥0 such that

1 = s 0 ≤ m 1 < s 1 ≤ m 2 < s 2 ≤ . . . ≤ m n < s n ≤ m n+1 < s n+1 ≤ . . . with (s n -m n ) ≥ 2, t mn = 0, t sn = 0 and t i = 0 if m n < i < s n for all n ≥ 1. Then lim sup n→+∞ s n m n ≤ log(M(β)) log(β) . (1.1) Moreover, if lim inf n→+∞ (m n+1 -m n ) = +∞, then lim sup n→+∞ s n+1 -s n m n+1 -m n ≤ log(M(β)) log(β) . (1.2)
As in Ostrowski [Os] the quotient s n /m n ≥ 1 is called the quotient of the gap, relative to the nth-gap (assuming t j = 0 for all s n ≤ j ≤ m n+1 to characterize uniquely the gaps). Note that the term "lacunary" has often other meanings in literature and is not used here to describe "gappiness". Denote by L(S β ) the language of the β-shift [Bl] [Fr1] [Fr2] [Lo]. Bertrand-Mathis's classification ( [Bl] pp 137-139) is as follows: 1) is ultimately periodic but not finite. C 3 : d β (1) contains bounded strings of 0 s, but is not ultimately periodic. C 4 : d β (1) does not contain some words of L(S β ), but contains strings of 0 s with unbounded length. C 5 : d β (1) contains all words of L(S β ).

C 1 : d β (1) is finite. C 2 : d β (
Present classes of algebraic numbers, with the notations of Theorem 1.1:

Q (1) 0 : 1 = lim n→+∞ s n m n with (m n+1 -m n ) bounded. Q (2) 0 : 1 = lim n→+∞ s n m n with (s n -m n ) bounded and lim n→+∞ (m n+1 -m n ) = +∞. Q (3) 0 : 1 = lim n→+∞ s n m n with lim sup n→+∞ (s n -m n ) = +∞. Q 1 : 1 < lim sup n→+∞ s n m n < log(M(β)) log(β) . Q 2 : lim sup n→+∞ s n m n = log(M(β)) log(β) .
What are the relative proportions of each class in the whole set Q >1 of algebraic numbers β > 1 ? Comparing C 2 , C 3 and Q has shown that the class C 3 (of real numbers β > 1) has Hausdorff dimension one. We have:

• Q >1 ∩ C 2 ⊂ Q (1) 0 , • Q >1 ∩ C 3 ⊂ Q (1) 0 ∪ Q (2) 0 , with C 3 ∩ Q (3) 0 = ∅, • Q >1 ∩ C 4 ⊂ Q (3) 0 ∪ Q 1 ∪ Q 2 .
The Pisot numbers β are contained in C 1 ∪ Q

(1) 0 since they are such that d β (1) is finite or ultimately periodic (Parry [Pa], Bertrand-Mathis [START_REF] Bertrand-Mathis | Questions diverses relatives aux systèmes codés : applications au θ-shift[END_REF]). Recall that a Perron number is an algebraic integer β > 1 such that all the conjugates β (i) of β satisfy |β (i) | < β. Conversely, as shown in Lind [START_REF] Lind | The entropies of topological Markov shifts and a related class of algebraic integers[END_REF], Denker, Grillenberger, Sigmund [D-S] and Bertrand-Mathis [START_REF] Bertrand-Mathis | Développements en base θ et répartition modulo 1 de la suite (xθ n )[END_REF], if β > 1 is such that d β (1) is ultimately periodic (finite or not), then β is a Perron number. Not all Perron numbers are attained in this way: a Perron number which possesses a real conjugate greater than 1 cannot be such that d β (1) is ultimately periodic ( [Bl] p 138). Parry numbers belong to

C 1 ∪ C 2 . Let Q 0 = Q (1) 0 ∪ Q (2) 0 ∪ Q (3) 0 . Corollary 1.2. Let β > 1 be a Salem number which does not belong to C 1 . Then β belongs to the class Q 0 . The attribution of Salem numbers to C 1 , Q (1) 0 , Q (2) 0 and Q (3)
0 is an open problem in general, except in low degree. Boyd [Bo] [Bo3] has shown that Salem numbers of degree 4 belong to C 2 , hence to Q

(1) 0 . It is also the case of some Salem numbers of degree 6 and ≥ 8 in the framework of a probabilistic model [Bo2] [Bo3]. In Section 5 we ask the question whether Corollary 1.2 could still be true for Perron numbers.

The definition of the class Q 0 does not make any allusion to β, i.e. to M(β), to the conjugates of β, to the minimal polynomial of β or to its length, etc, but takes only into account the quotients of the gaps in d β (1). Hence this class Q 0 can be applied to real numbers β > 1 in full generality instead of only to algebraic numbers > 1. The question whether there exist transcendental numbers β > 1 which belong to the class Q 0 was asked in [Bl]; what proportion appears in each subclass ? Examples of transcendental numbers (Komornik-Loreti constant [AC] [KL], Sturmian numbers [CK]) in Q 0 are given in Section 5.

In the present note, we deal with the algebraicity of values of "gapppy" series, deduced from d β (1), at the algebraic point β -1 . In a related context, more related to transcendency, Nishioka [N] and Corvaja Zannier [CZ] have followed different paths and applied the Subspace Theorem [Sw] to deduce different results.

Definitions

For x ∈ R the integer part of x is x and its fractional part {x} = xx . The smallest integer larger than or equal to x is denoted by x . For β > 1 a real number and z ∈ [0, 1] we denote by T β (z) = βz (mod 1) the β-transform on [0, 1] associated with β [Pa] [Re], and iteratively, for all integers j ≥ 0,

T j+1 β (z) := T β (T j β (z))
, where by convention T 0 β = Id. Let β > 1 be a real number. A beta-representation (or β-representation, or representation in base β) of a real number x ≥ 0 is given by an infinite sequence (x i ) i≥0 and an integer k ∈ Z such that x = +∞ i=0 x i β -i+k , where the digits x i belong to a given alphabet (⊂ N) [START_REF] Ch | Number Representation and Finite Automata[END_REF] [Fr2] [Lo]. Among all the beta-representations of a real number x ≥ 0, x = 1, there exists a particular one called Rényi β-expansion, which is obtained via the greedy algorithm: in this case, k satisfies β k ≤ x < β k+1 and the digits

x i := β T i β x β k+1 i = 0, 1, 2, . . . , (2.1)
belong to the finite canonical alphabet

A β := {0, 1, 2, . . . , β -1 }. If β is an integer, then A β := {0, 1, 2, . . . , β -1}; if β is not an integer, then A β := {0, 1, 2, . . . , β }.
We denote by

x β := x 0 x 1 x 2 . . . x k . x k+1 x k+2 . . . (2.2)
the couple formed by the string of digits x 0 x 1 x 2 . . . x k x k+1 x k+2 . . . and the position of the dot, which is at the k-th position (between x k and x k+1 ). By definition the integer part (in base β) of x is

k i=0 x i β -i+k and its fractional part (in base β) is +∞ i=k+1 x i β -i+k . If a Rényi β-
expansion ends in infinitely many zeros, it is said to be finite and the ending zeros are omitted. If it is periodic after a certain rank, it is said to be eventually periodic (the period is the smallest finite string of digits possible, assumed not to be a string of zeros); for the substitutive approach see [F] [PF].

The Rényi β-expansion which plays an important role in the theory is the Rényi β-expansion of 1, denoted by d β (1) and defined as follows: since β 0 ≤ 1 < β, the value T β (1/β) is set to 1 by convention. Then using the formulae (2.1)

t 1 = β , t 2 = β{β} , t 3 = β{β{β}} , . . . (2.3)
The writing

d β (1) = 0.t 1 t 2 t 3 . . . corresponds to 1 = +∞ i=1 t i β -i .
Links between the set Z β of beta-integers and

d β (1) are evoked in [E-VG] [F-K] [G1] [G2] [V1] [V2]. A real number β > 1 such that d β (1
) is finite or eventually periodic is called a beta-number or more recently a Parry number (this recent terminology appears in [E-VG]). In particular, it is called a simple beta-number or a simple Parry number when d β (1) is finite. Beta-numbers (Parry numbers) are algebraic integers [Pa] and all their conjugates lie within a compact subset which looks like a fractal in the complex plane [So]. The conjugates of beta-numbers are all bounded above in modulus by the golden mean

1 2 (1 + √ 5) [So] [F-P].
3 Proof of Theorem 1.1

Since algebraic numbers β > 1 for which the Rényi β-expansion d β (1) of 1 is finite are excluded, we may consider that β does not belong to N.

Indeed, if β = h ∈ N, then d h (1) = 0.h is finite (Lothaire [Lo], Chap. 7). If β ∈ N, then β -1 = β and the alphabet A β equals {0, 1, 2, . . . , β },
where β denotes the greatest integer smaller than or equal to β.

Let f (z) := +∞ i=1 t i z i be the "gappy" power series deduced from the representation d β (1) = 0.t 1 t 2 t 3 . . . associated with the β-shift (gappy in the sense of Theorem 1.1). Since d β (1) is assumed to be infinite, its radius of convergence is 1. By definition, it satisfies

f (β -1 ) = 1, (3.1) 
which means that the function value f (β -1 ) is algebraic, equal to 1, at the real algebraic number β -1 in the open disk of convergence D(0, 1) of f (z) in the complex plane. This fact is a general intrinsic feature of the Rényi expansion process which leads to the following important consequence by the theory of admissible power series of Mahler [Ma].

Proposition 3.1.

lim sup n→+∞ s n m n < +∞. (3.2)
Proof. This is a consequence of Theorem 1 in [Ma]. Indeed, if we assume that there exists a sequence of integers (n i ) which tends to infinity such that lim i→+∞ s ni /m ni = +∞, then f (z) would be admissible in the sense of [Ma]. Since f (z) is a power series with nonnegative coefficients, which is not a polynomial, the function value f (β -1 ) should not be algebraic. But it equals 1. Contradiction.

Let us improve Proposition 3.1. Assume that lim sup

s n m n > log(M(β)) log(β) (3.3)
and show the contradiction with (1.1) and (1.2). Recall that, if

P β (X) = d i=0 α i X i = α d d-1 i=0 (X -β (i) )
with d ≥ 1, α 0 α d = 0, denotes the minimal polynomial of β = β (0) > 1, having β (1) , β (2) , . . . , β (d-1) as conjugates, the Mahler measure of β is by definition

M(β) := |α d | d-1 i=0 max{1, |β (i) |}.
Güting [Gü] has shown that the approximation of algebraic numbers by algebraic numbers is fairly difficult to realize by polynomials. In the present proof, we use a version of Liouville's inequality which generalizes approximation theorems obtained by Güting [Gü], and apply it to the values of the "polynomial tails" of the power series f (z) at the algebraic number β -1 , to obtain the contradiction. Let us write

f (z) = +∞ n=0 Q n (z) (3.4) with Q n (z) := mn+1 i=sn t i z i , n = 0, 1, 2, . . . . (3.5)
By construction the polynomials Q n (z), of degree m n+1 , are not identically zero and Q n (1) > 0 is an integer for all n ≥ 0. Denote by S n (z) = -1 + mn i=1 t i z i the m n th-section polynomial of the power series f (z)-1 for all n ≥ 1. Recall that, for R(

X) = v i=0 α i X i ∈ Z[X], L(R) := v i=0 |α i | denotes the length of the polynomial R(X). We have: L(S n ) = 1 + mn i=1 t i = 1 + n-1 j=0 Q j (1)
. From Theorem 5 in [Gü] we deduce that only one of the following cases (G-i) or (G-ii) holds, for all n ≥ 1:

(G -i) S n (β -1 ) = 0, (3.6) (G -ii) S n (β -1 ) ≥ 1 1 + n-1 j=0 Q j (1) d-1 L(P * β )
mn , (3.7)

where P * β (X) = X d P β (1/X) is the reciprocal polynomial of the minimal polynomial of β, for which L(P β ) = L(P * β ) ∈ N \ {0, 1}. Case (G-i) is impossible for any n. Indeed, if there exists an integer n 0 ≥ 1 such that (G-i) holds, then, since all the digits t i are positive and that β -1 > 0, we would have t i = 0 for all i ≥ s n0 . This would mean that the Rényi expansion of 1 in base β is finite, which is excluded by assumption. Contradiction. Therefore, the only possibility is (G-ii), which holds for all integers n ≥ 1. From Lemma 3.10 and Liouville's inequality (Proposition 3.14) in Waldschmidt [W] the inequality (G-ii) can be improved to

(L -ii) S n (β -1 ) ≥ 1 1 + n-1 j=0 Q j (1) d-1 (M(β)) mn . (3.8)
This improvement may be important; recall the well-known inequalities:

M(β) ≤ L(P β ) ≤ 2 deg(β) M(β)
and see [W] p113 for comparison with different heights. On the other hand, since S n (β -1 ) = +∞ i=sn t i β -i for all integers n ≥ 1, we deduce

S n (β -1 ) ≤ β 1 -β -1 β -sn n = 1, 2, . . . . (3.9)
Putting together (3.8) and (3.9), we deduce that

β sn 1 + n-1 j=0 Q j (1) d-1 M(β) mn ≤ β 1 -β -1
(3.10) should be satisfied for n = 1, 2, 3, . . .. Denote

u n := β sn 1 + n-1 j=0 Q j (1) d-1
M(β) mn for all n ≥ 1.

Proof of (1.1): from (3.3) assumed to be true there exists a sequence of integers (n i ) which tends to infinity and an integer i 0 such that

s ni m ni > log(M(β)) log(β) for all i ≥ i 0 . Now, 1 1 + β m ni d-1   β sn i mn i M(β)   mn i ≤ 1 1 + ni-1 j=0 Q j (1) d-1   β sn i mn i M(β)   mn i ≤ u ni . (3.11) For i ≥ i 0 the inequality 1 = β log(M(β)) log(β) M(β) < β sn i mn i M(β) (3.12)
holds. This implies that the left-hand side member of (3.11) tends exponentially to infinity when i tends to infinity. By (3.11) this forces u ni to tend to infinity. The contradiction now comes from (3.10) since the sequence (u n ) should be uniformly bounded.

Proof of (1.2): for n = 1, 2, . . ., let us rewrite the n-th quotient

u n+1 u n = β sn+1-sn M(β) mn+1-mn 1 + n-1 j=0 Q j (1) d-1 1 + n j=0 Q j (1) d-1 (3.13) as u n+1 u n = β s n+1 -sn m n+1 -mn M(β) mn+1-mn (m n+1 -m n + 1) (d-1)   (mn+1 -m n + 1) (d-1) 1 + n-1 j=0 Q j (1) d-1 1 + n j=0 Q j (1) d-1   
(3.14) and denote

U n := 1 (m n+1 -m n + 1) (d-1)   β s n+1 -sn m n+1 -mn M(β)   mn+1-mn (3.15) and W n := (m n+1 -m n + 1) (d-1) 1 + n-1 j=0 Q j (1) 1 + n j=0 Q j (1) d-1 (3.16) so that u n+1 /u n = U n W n . Lemma 3.2. 0 < lim inf n→+∞ W n
(3.17)

Proof. Assume the contrary. Then there exists a subsequence (n i ) of integers which tends to infinity such that lim i→+∞ W ni = 0. In other terms, for all > 0, there exists i

1 such that i ≥ i 1 implies W ni ≤ , equivalently (m ni+1 -m ni + 1) 1 + ni-1 j=0 Q j (1) ≤ 1 d-1 × 1 + ni j=0 Q j (1) . (3.18)
Since, by hypothesis, t sn ≥ 1 and t mn+1 ≥ 1 for all n ≥ 1, we have:

n i ≤ 1 + ni-1 j=0 Q j (1). On the other hand, Q ni (1) ≤ β (m ni+1 -m ni + 1)
. Then, from (3.18) with taken equal to 1, we would have

n i ≤ 1+ ni-1 j=0 Q j (1) ≤ Q ni (1) (m ni+1 -m ni + 1) -1 ≤ β × m ni+1 -m ni + 1 m ni+1 -m ni ≤ 3 2 β .
(3.19) But the left-hand side member of (3.19) tends to infinity which is impossible. Contradiction.

Let us assume that (1.2) does not hold and show the contradiction ; that is, assume that lim inf n→+∞ (m n+1m n ) = +∞ and lim sup n→+∞ (s n+1 -

s n )/(m n+1 -m n ) > log(M(β))/ log(β) hold. Then 1 = β log(M(β)) log(β) M(β) < β s n i +1 -sn i m n i +1 -mn i M(β) (3.20)
for some sequence of integers (n i ) which tends to infinity. This proves that lim sup n→+∞ U n = +∞ since lim i→+∞ U ni = +∞ exponentially, by (3.15) and (3.20). By Lemma 3.2 there exists r > 0 such that W n ≥ r for all n large enough. Therefore, u n+1 /u n = U n W n ≥ rU n for all n large enough. Since lim sup n→+∞ U n = +∞ we conclude that lim sup u n+1 /u n = +∞, hence that lim sup u n = +∞. This contradicts (3.10) and proves (1.2). leads to a contradiction. Denote by K the algebraic number field Q(β), considered as a multivalued field with the product formula [C] [Sw] (see also [Lg]).

The present proof is merely an adaptation of that of Theorem 1 in [A], though the aims are different, and therefore does not merit publication. We simply point out a few hints for the interested reader.

The main result which is used is Corollary 1 of the Main Theorem in [C], as in [A]. This is a version of the Thue-Siegel-Roth Theorem given by Corvaja which is stronger than Roth Theorem for number fields [Le] [Sw] to the extent it allows us to introduce a missing proportion of places of K by considering the projective approximation of the point at infinity in P 1 (K). Since β is a Salem number, it is a unit [B-S]. Hence, this missing proportion has just to be chosen among the pairwise distinct Archimedean places of K.

5 On the class Q 0

Perron numbers

Let us give, after Solomyak ([So], p 483), the example of a Perron number which is not a beta-number and therefore which is not in the class C 2 , without knowing whether it is in the class Q 0 . This example allows us to estimate the sharpness of the upper bound log(M(β))/ log(β) in (1.1). Recall that a real number β > 1 is a beta-number if the orbit of x = 1 under the transformation T β : x → βx (mod 1) is finite [Lo] [PF]. The set of all conjugates of all betanumbers is the union of the closed unit disc in the complex plane and the set of reciprocals of zeros of the function class {f (z) = 1 + a j z j | 0 ≤ a j ≤ 1}. The closure of this domain, say Φ, is compact and was studied by Flatto, Lagarias and Poonen [F-P] and Solomyak [So]. After [So], the Perron number

β = 1 2 (1 + √ 13), dominant root of P β (X) = X 2 -X -3, is not a beta-number, though its only conjugate β = 1 2 (1 - √ 13 
) lies in the interior int(Φ). We have M(β) = 3. By Theorem 1.1 the "quotients of the gaps" are asymptotically bounded above by log(3)/ log(β) = 1.3171 . . ., a much better bound than the degree d = 2 of β (see Lemma 5.1). This does not suffice to conclude that 1 2 (1 + √ 13) belongs to Q 0 . Do all Perron numbers belong to Q 0 ? Let β > 1 be a Perron number of degree d ≥ 2 and denote by β (1) , β (2) , . . . , β (d-1) the conjugates of β = β (0) , roots of the minimal polynomial P β (X) of β. Let K β := max{|β (i) | | i = 1, 2, . . . , d -1}.

Lemma 5.1. Let n = n β (with 2 ≤ n β ≤ d) be the number of conjugates of β of modulus strictly greater than unity (including β). Then

log(M(β)) log(β) ≤ n - n -1 (dβ) 6d 3 log β . (5.1) Proof. Obvious since (Lemma 2 in [Li2]): K β < β 1 - 1 (dβ) 6d 3 .
The upper bound (5.1) does not allow us to give a positive answer to the question and has probably to be improved.

Transcendental numbers

Let us show that the Komornik-Loreti constant [KL] [AC] belongs to Q

(1) 0 .

Theorem 5.2. There exists a smallest q ∈ (1, 2) for which there exists a unique expansion of 1 as 1 = ∞ n=1 δ n q -n , with δ n ∈ {0, 1}. Furthermore, for this smallest q, the coefficient δ n is equal to 0 (respectively, 1) if the sum of the binary digits of n is even (respectively, odd). This number q can then be obtained as the unique positive solution of 1 = ∞ n=1 δ n q -n . It is equal to 1.787231650 . . .. This constant q is named Komornik-Loreti constant. Allouche and Cosnard [AC] have shown the following result.

Theorem 5.3. The constant q is a transcendental number, where the sequence of coefficients (δ n ) n≥1 is the Prouhet-Thue-Morse sequence on the alphabet {0, 1}.

The uniqueness of the development of 1 in base q given by Theorem 5.2 allows us to write d q (1) = 0.δ 1 δ 2 δ 3 . . . , the coefficients δ n being the digits of the Rényi q-expansion of 1. Since the strings of zeros and 1's in the Prouhet-Thue-Morse sequence are known (Thue, 1906(Thue, /1912;;[AS]) and uniformly bounded, the constant q belongs to the class Q

(1) 0 .

As second example, let us show that Sturmian numbers in the interval (1, 2) (in the sense of [CK]) belong to Q Let us consider all the Sturmian numbers β ∈ (1, 2) for which the twoletter alphabet is {0, 1}. For such numbers gappiness appears in d β (1) (in the sense of Theorem 1.1). By Theorem 3.3 in [CK] strings of zeros, resp. of 1's, cannot be arbitrarily long. This gives the claim. discussions and remarks. The author would like to thank Catriona MacLean for her careful rereading of the manuscript.

  those β which give ultimate periodicity in d β (1) and those for which d β (1) is not ultimately periodic ? Schmeling ([Sc] Theorem A)
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  A direct proof of Corollary 1.2 Let β > 1 be a Salem number such that β ∈ C 1 . Using the notations of Theorem 1.1 we show that the

  β > 1 is called a Sturmian number if d β (1) is a Sturmian word over a binary alphabet {a, b}, with 0 ≤ a < b = β . Chi and Kwon [CK] have shown the following theorem. Theorem 5.4. Every Sturmian number is transcendental.
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