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Abstract. Vibrated powders exhibit striking phenomena: subharmonic waves, oscillons, convection, heap-
ing, and even bubbling. We demonstrate novel rectangular profile subharmonic waves for vibrated granular
material, that occur uniquely in the two-phase case of grains, and a fluid, such as air. These waves differ
substantially from those for the gas-free case, exhibit different dispersion relations, and occur for specific
shaking parameters and air pressure, understandable with gas-particle flow models. These waves occur
when the gas diffusively penetrates the granular layer in a time comparable to the shaker period. As the
pressure is lowered towards P=0, the granular-gas system exhibits a Knudsen regime. This instability
provides an opportunity to quantitatively test models of two-phase flow.

PACS. 45.70.-n Granular systems — 47.20.-k Flow instabilities

1 Introduction

Vibrated powders are relevant to many practical pro-
cesses, such as transport of materials or fluidization of
pharmaceutical powders [1]. Previous studies on vibrated
granular media have evidenced different types of sur-
face instabilities: these instabilities are either gas depen-
dent [2-5] (i.e. convection, heaping or bubbling) or arising
solely from the interactions between grains [6-8] and pos-
sibly walls. Whereas the instabilities falling in the first cat-
egory generally induce a fluid-like behavior of the grains
(with for example large-scale mean motion or random bub-
bling), it has been observed that the purely granular insta-
bilities generally lead to subharmonic waves. In order to
better understand what makes the gas relevant to granu-
lar instabilities, we investigated what happens for reduced
gas pressure, at the frontier between both regimes. We dis-
covered for these conditions a distinctly different type of
subharmonic instability, in which grains are not fluidized
in the sense described above, but which is however gas
driven.

The paper is organized as follows: we present in the sec-
ond part a description of the experimental conditions for
which this new instability could be observed, and of ampli-
tude and wavelength measurements carried out on the in-
stability. In the third part, we model gas flow through the
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granular layer, and derive a relevant diffusive length for
our experimental conditions. In part four we confront the
results of this analysis with experimental measurements.

2 Experimental observations

Our experimental set-up consists of a closed Plexiglas cell
(interior horizontal dimensions 1cm by 4cm, and 6cm
vertical) driven vertically by an electromagnetic shaker.
The driving is harmonic: z = Ap coswt with dimension-
less acceleration I' = pr2 /g (g the gravitational acceler-
ation). We drive the cell in the range I" < 10, A, < lcm,
and w/2m < 500Hz. The top of the cell is connected
to a reservoir tank (volume V ~ 301) and to a differ-
ential pressure gauge. By connecting the cell and tank
system to a vacuum pump, we can vary the pressure in
the range 0.01 Torr < P < 100 Torr. The reservoir tank
ensures that pressure in the system remains stable over
the course of our measurements. We use relatively cohe-
sionless powders: glass spheres with diameters d in the
range 50 um < d < 100 gm. The layer heights span 1 mm
< H < 2cm, i.e. a thickness of 10 to more than 400 par-
ticles depending on particle size. We image flow patterns
by high-speed video, strobing and conventional video.
When the glass spheres are vibrated at atmospheric
pressure, classical heaping associated with convection is
observed. This is true for all values of the layer thickness
H. When the pressure, P, is decreased, heaping ceases and
we observe a subharmonic instability exhibiting a striking
aspect: rectangular blocks form standing waves oscillating
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Fig. 1. Top two images: standing waves observed for f = 35 Hz, P = 0.15 Torr. Bottom two images: same conditions, side view.
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Fig. 2. Values of pressure P and frequency f, for which
rectangular cross-section standing waves could be observed;
001 < H< 15cm; B 1.5 < H < 2cm. The waves are only
visible over a range of frequencies, which shifts towards larger
values with increasing P.

at half the excitation frequency (see Fig. 1 for a picture
of these blocks). A closer look shows that the blocks are
actually wider at the top than at their base. Their sur-
face is slightly concave when they reach their maximum
amplitude, and slightly convex when they are at their low-
est position (Fig. 1). The unique feature of this instability
resides in the very sharp edges of the blocks, even when
the standing waves have an amplitude small compared to
their wavelength (top and bottom left pictures of Fig. 1).
The grains visible at the surface of the layer only have
a vertical motion, and there is no visible sloshing motion
as in other instabilities observed for larger grains [6-8]. If
P is further decreased, the pattern disappears, indicating
that the gas plays a crucial part in the instability. For a
given P, there always exists a window of frequencies for
which this instability can be observed, but this window
depends on pressure: when P is increased, the instabil-

ity is observed for larger frequencies (see phase diagram
of Fig. 2). The pressure-frequency relation also depends
on the thickness of the granular layer: for a given P, the
frequency has to be decreased to recover the instability if
the layer thickness H is increased. We note that for very
thin layers of grains (H < 20 d) this new instability could
not be observed: in this case we observe either heaping (if
P > 0.01 Torr), or if the pressure is lowered enough, the
subharmonic sloshing instabilities observed in systems of
larger grains [6-8], and their associated geometrical pat-
terns (typically for P < 0.01 Torr).

Hereafter, we will focus on the rectangular cross-
section standing waves of Figure 1. These waves occur for
accelerations of the bottom plate larger than I, ~ 3, and
they can persist up to I' ~ 5. When the waves occur, the
granular layer is divided into alternately expanding and
contracting bands: the sketches of Figure 3 represent the
motion of the blocks relative to the bottom plate position.
A thin gap can be observed at the bottom of the layer for
part of a period: this gap is maximum when the bottom
plate reaches its maximum descending velocity. The gap
is always much smaller than the amplitude of the waves,
and is spatially uniform: the amplitude of the waves be-
ing of the order of the layer thickness, this suggests that
from band to band, there are strong horizontal variations
of the density of the granular layer when the waves occur.
In order to describe more precisely the wave motion, we
have measured the positions of the surface of the waves
and of the bottom of the layer as a function of time, and
we compare them with the plate position. The results,
shown in Figure 4, indicate how the subharmonic motion
of the waves is synchronized with the motion of the bot-
tom plate. The bottom gap (bottom graph of Fig. 4) is
zero only during half a period of plate motion, when the
plate is going up (v, > 0).

We could observe that for low frequencies (f < 50 Hz)
waves were in most cases oriented as in Figure 1: they
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Fig. 3. a-f) Sketches showing the motion of the waves as a
function of the bottom plate position. The period T' is the
period of the shaker motion; it corresponds to half the period
of the wave motion. The largest gap between the granular layer
and the shaker is observed when the plate is moving down
(positions a and e).

01 Plate position

) W ]
0.1 L . N . .
0 0.02 0.04 0.06 0.08 0.1 0.12
time (s)
Wave 1
02F T T T T .
b) 0 M 4
-0.2¢ . . . . . 7
0 0.02 0.04 0.06 0.08 0.1 0.12
time (s)
Wave 2
02 F T T T T .
c) 0_/\/\/—\/\/_\/— |
-0.2¢ . T . . . 3
0 0.02 0.04 0.06 0.08 0.1 0.12
Bott time (s)
02 otlom Zap T T
d) 0.1 '/\ A /—\
0 A . . .
0 0.02 0.04 0.06 0.08 0.1 0.12

time (s)
Fig. 4. Simultaneous variations as a function of time of:
a) plate position; b) and c¢) surface of two adjacent waves in
lab frame; d) thickness of the bottom gap. Lengths are in cm,
time in s. Experimental conditions are f = 36 Hz, particle di-

ameter 60 mm, P = 0.15 Torr, dimensionless plate acceleration
I'=3.5.

are perpendicular to the largest side of the cell (4cm),
and parallel to its shorter side (1 cm). For larger frequen-
cies, the alignment tends to be less systematic. Tests car-
ried out with other cells of different dimensions showed
the same trend, with waves generally aligned parallel to
the smaller side of the cell for low frequencies. The wave
nearest to the end wall tends to have a slightly smaller
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Fig. 5. Dispersion relation A (cm) vs. f (Hz) a) 60 pm particles:
x: P = 04Torr; A: P = 1.6 Torr; LJ: P = 4.2Torr; o: 6.6 <
P < 99Torr; »: P = 18 Torr; V: P = 37 Torr. Inset: power
law fit; b) 80 um particles: A: P = 2.7 Torr; B: P = 5.2 Torr;
*: P =10 Torr; e: P = 12 Torr; « P = 21 Torr; v: P = 39 Torr;
+: P =70 Torr.

amplitude, likely due to friction. It must be noted that
the position of the first wave edge does not seem to be
affected by the distance to the end wall: when averaged
over several experiments, different configurations can be
encountered, with sometimes the first wave edge very close
to the wall and sometimes this first edge distant from half
a wavelength from the wall. This suggests that the wave
pattern is not resonant.

The wavelength A, of the standing waves was mea-
sured as a function of frequency by visualization from top
of the cell. The results of these measurements for several
values of the pressure P are shown in Figure 5. Figure 5a
shows the wavelength for 60 um particles; A decreases with
increasing frequency. It can be seen that except for the
largest pressure investigated (P = 37 Torr, symbol V),
A depends only weakly on pressure. In Figure 5b, mea-
surements show that the wavelength is larger for 80 um
particles than for 60 um particles. As for the smaller par-
ticles, A for the 80 um particles decreases with increasing
frequency. Also, for P < 10 Torr the wavelength is rela-
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Fig. 6. Data for the wave amplitude A (in cm), as a function
of the driving amplitude A, (in cm), for f = 40Hz and for
different values of the pressure; x: P < 8 Torr; A: P = 16 Torr;
o: P = 25Torr; J: P = 33 Torr. The dotted line goes through
the origin. Particle diameter is 60 microns. Wave amplitude is
proportional to driving amplitude.

tively independent of pressure (symbols A and B), but for
P > 10 Torr, A depends significantly on P; specifically, it
increases with increasing pressure. A fit of the low-pressure
values for the 60 um particles, using the data for which the
wavelength is independent of P, gives a dispersion relation
AMw) satistying A oc w™", with 1/2 < v < 3/4 (see inset of
Fig. 5a). This exponent is markedly different from the one
observed in classical P = 0 subharmonic instabilities [6]
where v ~ 2.

We also carried out measurements of the amplitude,
A, of the waves. In Figure 6, we present data for A, as
a function of the driving amplitude, A,, for various pres-
sures and a fixed frequency of 40 Hz. A is taken here as the
maximum vertical distance between the tops of two adja-
cent blocks. These measurements, in particular the values
for P = 16 Torr fitted by the dotted line, indicate that
A is proportional to the driving amplitude of the shaker.
The data of Figure 6 also show that A increases when
the pressure is increased. In addition, for this frequency
and range of pressures, A is of the same order of magni-
tude as the wavelength, A (for instance, as in the images
of Fig. 1). However, when the frequency is increased, the
amplitude strongly decreases; for frequencies larger than
60 Hz, A becomes much smaller than A\, and we could not
carry out amplitude measurements in this range.

3 A model for gas flow

What is the physics underlying this instability? Although
a complete analysis of two-phase grain-gas flow [9] is be-
yond the scope of this study, we can discuss the different
mechanisms at the origin of grain motion, and try to offer
a scenario for the instability. We argue that the granular
medium is mainly subject to two different forces:
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— The contact force exerted by the bottom plate. This
force can only act when the bottom gap is zero. Its
corresponding acceleration is of order a; ~ A,w? with
A, the amplitude of plate motion. When the instability
occurs, a; ~ 3¢g or larger.

— The drag force due to gas flow: we model the gas
flow in the vertical direction, z, by taking into ac-
count gas diffusion in a fixed granular matrix. The
gas velocity v relative to the grains is described by
Darcy’s law: v = —(v/pu)0P/Jz, with p the gas vis-
cosity and y the permeability; v is well described by
v = d?¢?/[150(1 — ¢)?], where ¢ is the porosity. We
consider a fixed granular matrix through which gas
flows at speeds that are typical of the shaker veloci-
ties, v ~ A,w. This estimate is based upon the data of
Figure 4 showing that the different phases of the waves
are not in phase with the plate: for at least the up-
per part of the layer the relative speeds are not vastly
different from the overall shaker speed. The resulting
pressure gradient would then be | grad P| =~ A,wp/7,
and this Darcian drag would result in an acceleration
as = |grad P|/py = Apwp/vpg with pg the density of
the granular layer. For d = 80 um, p, = 1.5 g/cm?,
Apw = 50cm/s, and p = 1.8107% g/cms (viscosity
of air), this gives an estimate of acceleration as larger
than 5g. The magnitude of this acceleration is one rea-
son why the subharmonic waves seen here differ sub-
stantially from those reported by Melo et al. [6].

We expect gravity and friction with the walls to be
weak compared to the above contributions. The grains ap-
pear to move collectively only in the vertical direction, no
sloshing or circulating motion is observed, and relative ve-
locities between grains are small. These observations could
be made by fast imaging visualization at the surface of
the material and for grains close to the transparent walls
of the cell: we assume that the absence of sloshing and
circulation can be extended to the bulk of the material.
Based upon the apparent motion of the grains, we there-
fore assume that the effect of collisions between grains is
not among the principal driving forces. Put differently, the
difference between the present waves, and those reported
by Melo et al. [6] is that in our case, gas flow and drag
(acceleration aq), rather than inter-granular collisions are
the dominant physical processes.

In order to go further and quantitatively compare the
experimental acceleration of the granular layer with ac-
celerations a; and ag, we first need to model gas flow. In
the following simplified analysis, only the effect of grains
on the gas is modelled: the granular layer is assimilated
to a fixed porous medium through which an oscillating
gas flow is taking place. Grain motion due to the result-
ing drag on the porous layer will be discussed in Sec-
tion 4. We therefore investigate time, length and pres-
sure scales for oscillatory Darcian flow in a rigid porous
layer, subject to periodically forced flow, with vertical ve-
locity v(H,t) = ugexp(iwt) at the upper boundary (we
take uyg = Apw) and an opposing impermeable boundary.
The gas dynamics are contained in Darcy’s law, plus the
mass continuity equation for the gas: 9;(¢pp) + V.(pv) = 0,
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where p is the gas density. In line with experimental ob-
servations showing a vertical motion of the grains, we as-
sume that gas velocity is vertical (normal to the layer),
and neglect the horizontal component of velocity in this
analysis. Pressure variations are related to density varia-
tions through the compressibility, x : dp = prdP. Here,
we do not distinguish between the case of isothermal or
adiabatic compressibility, which both vary as C,, P~!, and
which differ only by an O(1) constant, C,. Then, both v
and P satisfy a diffusion equation [4,10],

DO*v — 9w = 0, (1)

where the Darcian diffusivity, D = ~/(ku¢) ~ d*P/u,
grows with pressure and with particle size. We carry out
a spatial analysis of the problem (in the vertical direction),
and look for normal mode solutions of this equation oscil-
lating at a frequency w and with a wave number k(w). The
dispersion relation derived from (1) is Dk? = —iw, which
gives k = (1—14)(w/2D)Y/? = (1 —i)(wrud/2v)"/?. Taking
boundary conditions into account, we find solutions for
the gas flow which have the form

sinhkz
t) = 1wt
v(zt) = uo sinh kHe
The origin of z has been taken at the bottom plate. This
analysis yields a penetration depth A, given by

Ap =1/Re(k) = (2D/w)'/? = (2y/kugw)/?. ()

This length represents the typical depth to which gas
penetrates in the granular layer during oscillations: it log-
ically increases with the permeability « (i.e. with particle
size), and decreases with increasing frequency. This points
to a necessary condition for grain-gas coupling: one ex-
pects the waves to be strongest when the diffusion length
Ap is of the order of the granular layer thickness H. If A,
is small relative to H, the gas does not pass through the
layer but only diffuses at its surface; if A, is large relative
to H, there is little coupling between the grains and gas.

In order to emphasize this point we introduce @Q =
H/\, = (ku¢wH?/27)'/? as the key parameter. The mean
pressure difference across the layer can be calculated from
the gas velocity profile: AP = [ug/kDr¢]tanh(kH/2) =
[upH/QDr¢] tanh(Q/2). If Q@ < 1, then A, > H: the gas
easily moves into the layer, and AP o @? is small. In this
case the gas velocity decreases linearly inside the granular
medium; we have v(z,t) ~ ug(z/H)e™t. As Q grows, AP
also grows; when Q > 1, AP varies as Q. When Q > 1,
Ap < H, the flow penetration is slight, leading to gas pen-
etration and waves that are limited to the surface. In this
case, the gas velocity inside the granular layer decreases
exponentially:

v(z,t) = ug cos [wt — (H — 2) /) e~ (H=2)/A\p_

Since @ increases as w/ P, equivalent values of () occur
for higher frequencies at higher pressures. More precisely,
the condition that waves are best observed if A\, ~ H
is equivalent to setting ) ~ 1. This indicates that the
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effects of diffusive penetration will be strongest around
w ~ 2yP/udH?, i.e. around a frequency increasing with
P. This trend is observed experimentally for the standing
waves of Figure 1 (see the data of Fig. 2), although the
experimental increase of P with the frequency suggests
a steeper increase than a linear dependence. The scal-
ing w ~ H~2 shows that when the thickness is increased
the frequency is shifted to lower values. This tendency is
consistent with experiments: for a fixed pressure, larger
thicknesses lead to waves occurring at smaller frequencies
(comparison between empty and filled symbols of Fig. 2).

It is interesting to ask if the diffusive length scale, A,,
is related to the observed wavelength. If the instability
is caused by the drag generated by air flow (acceleration
a2), the distance between blocks should not be much larger
than Ap: if two descending blocks were separated by a dis-
tance larger than A,, a third descending block could be
expected to appear between them. If on the contrary two
descending blocks were separated by much less than A,,
gas would diffuse laterally in the block separating them
and the descending blocks would then merge. If A, pro-
vides an appropriate scale factor for the wavelength A\ of
the waves, we expect A < A,  (D/w)'/? « (P/w)'/?. An
increase of the wavelength with pressure, as well as a de-
crease with the frequency is indeed observed for the larger
particles in Figure 5b.

However, the experimental data of Figure 5a show that
for the smaller particles, and in particular smaller pres-
sures, the wavelength becomes independent of pressure.
We interpret this as the signature of a crossover to a Knud-
sen regime, as the mean free path of a gas molecule [ be-
comes of the order of particle size d. Then, gas molecules
become increasingly more likely to collide with a grain
than with other gas molecules, an effect that has been pro-
posed [4] to limit heaping at low (but not zero) pressure.
For instance, at P = 100 Torr we estimate that [ ~ 0.7 ym
while at P = 1Torr we have [ ~ 70 um, which is typi-
cally our particle size. If diffusion is set by collisions of
molecules with grains rather than with each other, the
diffusivity used previously would no longer be valid. D in
the Knudsen regime should vary as Dxg = Cuvpd, where
vp is the thermal velocity of the gas molecules, and C' is
a constant [4].

We construct a simple cross-over expression between
the Darcian and Knudsen regimes by writing the diffu-
sivity D = v/(ku¢) as a function of the mean free path
[ through the expression for the viscosity u = nmilvr/3
(n=number of molecules per unit volume, m = molecule
mass and vy = thermal velocity). After simplification, we
obtain

D = [r¢?/(150(1 — ¢)*)] vrd?® /L. (3)

As [ grows, the ordinary expression for [ must be mod-
ified to account for collisions of molecules with grains
rather than with each other. We estimate the generalized
mean free path I, by noting that lg’l is the scattering area
per unit volume for a gas molecule, hence

1,0 ~ 2 2no + G(3/2)(1 — ¢)/d,
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where o is the cross-section for molecular collisions [11],
and G is an O(1) constant. The first term accounts
for collisions with other gas molecules, and the sec-
ond term accounts for collisions with grains of diame-
ter d in a granular material of porosity ¢. The general-
ized diffusivity D, follows by replacing d/l in (3) with
d/ly ~ 2?nod + (3/2)G(1 — ¢). The precise numerical
factors in this expression, in particular GG, would require
a more detailed calculation, but for the present purposes
this simple expression is adequate. The generalized dif-
fusive length scale is then given by \, = (2D,/w)"/2.
This length scale behaves as \,(P,w) ~ (P/w)'/? for
pressures in the Darcian regime, but as the system en-

ters the Knudsen regime it becomes independent of P:
Mp(Pw) ~w™1/2,

4 Comparison with experimental data

We see in Figure 7 that when the wavelength A\ of Fig-
ure 5 is scaled by A, the wavelength data for all pressures
collapse reasonably well on a single curve. In addition,
the data for different particle sizes also collapse on the
same curve, indicating that the scaling A\ ~ D'/? is ade-
quate. Here, we use a value of G = 10 for the Knudsen
contribution, a value consistent with a related estimate in
studies of heaping at low P [4]. However the dependence
on w is not completely captured in the scaling by w=1/2:
rather, the experimental data exhibit a scaling A oc w=3/4
(Fig. 5b). This is not surprising, since temporal behaviour
in our model is only controlled by gas dynamics: grain mo-
tion, which has not been considered, might significantly
affect the scaling of the dispersion relation. In spite of
this discrepancy, the fact that pressure and particle di-
ameter effects are taken into account and that the ratio
A/A, remains in the range 1-4 support our hypothesis
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that the diffusive length scale A, is the correct scale for
this instability.

In order to test if the variations of the amplitude of
the waves with pressure are consistent with the change
of diffusive length A,, we plot in Figure 8 the ratio of
the wave amplitude to A, as a function of the driving
amplitude. This Figure shows that )\, captures well the
variations of the amplitude with pressure, with the data
of Figure 6 falling on a single curve. This scaling can be
interpreted as indicating that the diffusive length controls
the depth affected by diffusion, and therefore the height
of granular material expected to take part in the waves.
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With this modelling of gas flow and values for the dif-
fusivity in the Knudsen and Darcian regime, we can now
take a closer look at the physics of the instability and eval-
uate its driving forces. In order to abandon the approxima-
tion that grains are fixed, we first need to determine how
grains will be set in motion by the diffusive gas flow and
the bottom plate. Figure 9a shows the acceleration of the
surface of the layer, as obtained from the experimentally
measured position of Figure 4c. As argued in section 3, the
main forces contributing to the motion of the layer are the
impulsive force exerted by the bottom plate (acceleration
a1 ), and the force due to air flow (acceleration az). We first
look at the role played by the acceleration of the bottom
plate; we can neglect this contribution when the bottom
gap is non zero (i.e. when the layer does not touch the
plate, see Fig. 4d). In addition, we only consider positive
values of the acceleration, since contact with the bottom
plate can only push the grains upwards, and not pull them.
The result is the acceleration apqt. of Figure 9b. Its max-
imum value is about 3g for the experimental conditions
of Figure 4 (f = 36 Hz, P = 0.15 Torr). The acceleration
as contributed by air flow to grain motion is a function of
the velocity of grains relative to the cell velocity, Av: this
relative velocity gives a pressure gradient as a function of
the medium diffusivity D,. The resulting acceleration is

Qair flow — grad P/pg = *A’U/R(,ZSDgpg.

This expression shows a strong dependence of the drag
with porosity, with aair fow ~ (1 — ¢)?/¢3 in the Darcian
regime and Gair flow ~ (1 — ¢)/¢> in the Knudsen regime.

The impact of grain motion has so far been neglected
in the gas flow analysis: however the large variations of
porosity between when the layer is compressed and when
it is expanded (Fig. 1) suggest that the feedback of grain
motion on the drag associated to a@air ow might not be
negligible. The drag will be larger for lower porosity, i.e.
when the waves are compacted, than when the waves are
expanded. Porosity at time ¢ is therefore expressed as a
function of the height of the granular layer h, in order to
take into account the large variations of ¢ with time: we
take (1 — &(t))/(1 = Pmin) = PAmin/h(t). The minimum
value of the porosity is taken to be ¢, = 0.3 when the
waves reach their maximum compaction. Given the vari-
ations of h with time (measured from the data of Fig. 4c)
this sets an average porosity value of ¢, = 0.45, and a
maximum value ¢4, = 0.55 when the waves are at their
maximum expansion. The acceleration caused by air flow
is then plotted in Figure 9c: it is positive when the ve-
locity of the cell is larger than the velocity of the granu-
lar layer, i.e. when the grains are going down in the cell
frame. This acceleration is of order 4g for the experimen-
tal conditions of Figure 4. The diffusion regime is mostly
a Knudsen regime for the conditions of this Figure. Note
that the use of a Darcian diffusivity would yield much
larger values for this acceleration (a ~ 25g). The total
acceleration is shown in Figure 9d, the sum of the plate
and air flow contributions. It exhibits a rather good agree-
ment with Figure 9a, with positive and negative regions of
acceleration coinciding. This indicates that in spite of all
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the approximations, our modelling of gas flow efficiently
captures the physics of the problem.

Horizontal variations have not been considered in our
modelling. The strong influence of porosity on the drag
evidenced in the expression for @i fow may provide a
mechanism for the horizontal destabilization of the sur-
face: Suppose that there is an initial wavy perturbation
of the surface of the layer. A spatial porosity variation
will correspond to this surface variation, with a smaller
porosity (higher compaction) when the surface is lower.
During the part of oscillations when air is flowing down-
wards drag will then be higher on the lower regions than
on the higher ones, causing them to go down faster. The
surface perturbation will therefore be amplified. On the
contrary when air is going up this mechanism predicts
that an initial wavy perturbation will be stable. A gen-
eralization of our model taking into account both spatial
horizontal variations and porosity variations might then
capture the unstable nature of the system.

Another aspect not covered by our model is the sub-
harmonic response to the forcing by the bottom plate. We
propose an explanation based on the combined effects of
the force exerted by the plate and the air drag. It can be
seen that the impulsive force from the plate at ¢ ~ 0.04s
in Figure 9b corresponds to a region of upwards gas veloc-
ity (Fig. 9¢). The wave starts to rise at this moment (see
Fig. 4c at t = 0.04s). The following plate impulse, around
t = 0.065s, corresponds to a much smaller gas velocity
(Fig. 9c), possibly because of the lesser compaction at
this moment. The resulting total acceleration (about 2g)
is then much smaller than for the previous impulse (about
5¢g). The next impulse, at ¢ = 0.095 s, again coincides with
a large and positive gas velocity. This enhancement of the
bottom plate accceleration every two cell oscillations may
be seen as driving mechanism for the subharmonic nature
of the instability.

5 Conclusion

To conclude, we have shown that novel subharmonic waves
with a rectangular cross-section occur in vertically shaken
granular materials, and depend in an essential way on
the presence of gas. We understand the parameter range
where these waves occur in terms of gas diffusion through
a porous medium, including both Darcian (viscous) and
Knudsen regimes. These waves differ from the much-
studied purely granular subharmonic waves [6-8], of which
oscillons [7] may be the best known state. Significant
challenges remain: what are the details of the gas flow
within/near the material; how does this couple to dilation
and compaction of the grains; and finally, what causes
the formation of the distinctly rectangular profile of the
waves?
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