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We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two
potential barriers. We realize this novel potential shape with a superconducting circuit comprised
of a loop interrupted by two Josephson junctions (dc SQUID), with near-zero current bias and flux
bias near half a flux quantum. We investigate escape out of the central well, which can occur via
tunneling through either of the two barriers, and find good agreement with a generalized double-
path macroscopic quantum tunneling theory. We also demonstrate that this system exhibits an
“optimal line” in current and flux bias space along which the oscillator, which can be operated as a
phase qubit, is insensitive to decoherence due to low-frequency current fluctuations.

PACS numbers: 85.25.Cp, 85.25.Dq, 03.67.Lx

Superconducting devices, based on the nonlinearity
of the Josephson Junction (JJ), exhibit a wide variety
quantum phenomena. During the last decade, inspired
by Macroscopic Quantum Tunnelling (MQT) studies [1],
quantum dynamics of the current biased JJ, dc SQUID
and the rf SQUID phase qubit have been extensively
studied [2–6]. In each of these devices, dynamics are
analogous to those of a quantum particle in a quadratic-
cubic potential. The flux qubit [7], realized by three or
four JJs in a loop, is described by a double well potential.

We study a new potential shape called hereafter a
“camel-back” double barrier potential, shown in Fig. 1c.
This potential is obtained using the dc SQUID circuit
shown in Fig. 1a in a new way. Characteristics including
depth and relative barrier height are controlled by the
SQUID current bias Ib and flux bias Φext. There is an
“optimal line” in the plane (Ib,Φext) along which the bar-
rier heights are equal and anharmonicity is quartic. We
investigate the dynamics of the quantum system formed
from the two lowest energy levels of the central well.

A dc SQUID circuit has two degrees of freedom cor-
responding to the phase differences φ1 and φ2 across its
two JJs. Dynamics are analogous to those of a particle
of mass m = 2C(Φ0/2π)2 in the 2-D potential [8, 9]

U(x, y) = U0[− cosx cos y − sx+ b (y − yb)
2

−α sinx sin y − ηsy].
(1)

Here x = (φ1 + φ2)/2, y = (φ1 − φ2)/2, U0 = (Ic1 +
Ic2)Φ0/2π, b = Φ0/πLIc is the junction to loop induc-
tance ratio, α = (Ic2 − Ic1)/Ic is the critical current
asymmetry, η = (L2−L1)/L is the loop inductance asym-
metry, Ic = Ic1 + Ic2, Ic1 and Ic2 are the critical currents
of the two junctions, L1 and L2 are the geometric induc-
tances of the two arms of the SQUID loop, L = L1 +L2,
C is the capacitance of each junction, and Φ0 = h/2e is
the quantum of flux. The external control parameters Ib

and Φext enter through yb = πΦext/Φ0 and s = Ib/Ic.
For our sample, Ic = 11.22 µA, C = 250.3 fF, b = 3.05,
η = 0.72, and α = 0.0072.

Stable, stationary states of the system correspond to
minima of U(x, y). There can exist one or more minima
families corresponding to distinct fluxoid states [nΦ0].
For each, when s exceeds a flux dependent critical value
sc[nΦ0](yb), the related local minima disappear. For
small values of b, the parabolic term in U(x, y) is shallow,
and there can be many fluxoid states. For b � 1/π, as
in our case, the parabolic term is steep and there is only
one stable fluxoid state except in a small region around
Φext/Φ0 ≈ 0.5(mod 1) where there are two states with
opposite circulating currents. Hereafter we will be focus-
ing on this region.

In general, dynamics is described by 2-D motion in
the potential. In our device, motion is well approxi-
mated as 1-D along the minimum energy path which con-
nects minima and saddle points (black line in Fig. 1b).
A large curvature in the orthogonal direction confines
the system to this path. For example, at the [0Φ0] min-
ima in Fig. 1b, the oscillation frequency along the path
is ωpx ≡

√
(∂2U/∂x2)/m = 2π × 15.4 GHz, whereas

ωpy = 2π × 104 GHz. We parametrize the path with the
phase length z. U(z) in Fig. 1c depicts the “camel-back”
potential shape we are investigating. In a typical exper-
iment, the system is initialized in the central well ([0Φ0]
state). The system can escape via tunneling through the
barriers in either of the two physically distinct directions
to the [-1Φ0] state.

In the symmetric case, the potential near the central
minimum will be harmonic with a quartic perturbation.
More generally, the Hamiltonian for small oscillations in
U(z) is Ĥ = h̄ωp(P̂ 2+Ẑ2)/2−σh̄ωpẐ

3−δh̄ωpẐ
4. Here ωp

is the zero amplitude oscillation frequency in the direc-
tion of minimum curvature, and Ẑ = z

√
mωp/h̄ and P̂ =
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FIG. 1: Experimental setup. (a) Circuit layout. The two
small white squares in the central loop are the SQUID JJs.
Connected on the right are current bias and voltage leads.
These are heavily filtered at various stages of the cryostat,
including the on-chip low-pass filter formed by Loc = 10 nH
and Coc = 200 pF [10]. Fast flux pulses δΦ inductively cou-
ple via the on-chip loop to the left of the SQUID. Microwave
excitation is applied via an on-chip loop which couples in-
ductively to the current bias leads [11]. An off-chip coil pro-
vides a dc flux bias Φdc. The total externally applied flux is
Φext = Φdc + δΦ. The SQUID chip is enclosed in a copper
box thermally anchored to the mixing chamber of a dilution
refrigerator with a 30 mK base temperature. The cryostat
is surrounded by superconducting Pb, µ-metal, and soft iron
shielding. (b) Full 2-D potential for b = 3.05, η = 0.72, α = 0,
Φext = −0.508Φ0, Ib = 0, showing the families of minima as-
sociated with the [0Φ0] and [−1Φ0] fluxoid states. The black
line follows the minimum energy path. Note the difference in
the x and y scales. (c) Potential along the minimum energy
path, parameterized by the path length.

p/
√
h̄ωpm are the reduced position and corresponding

momentum operators. Treating the anharmonic terms
as perturbations, to second order the transition energy
between levels n − 1 and n is hνn−1,n = h̄ωp(1 − nΛ),
where the anharmonicity is Λ = 15

2 σ
2 + 3δ [12].

We have calculated the escape probability for the
camel-back potential with a double escape path in the
quantum limit using the instanton formalism [13]. For a
duration ∆t, it reads Pesc(Ib,Φext) = 1 − e−(ΓR+ΓL)∆t,
where ΓR,L = AR,Lωp

√
NR,L exp[−BR,LNR,L]. Here

R and L refer to the right and left barriers. NR,L =
∆UR,L/h̄ωp are the normalized barrier heights. The gen-
eral expressions for AR,L, and BR,L depend on the poten-
tial shape. In the symmetric case where σ(Ib,Φext) = 0,
the potential is quadratic-quartic, AR,L = 2

5
2π−

1
2 and

BR,L = 16/3. Far from this symmetric line the potential
is quadratic-cubic, the escape rate through one barrier
is dominant (e.g. ΓL = 0), and we retrieve the standard
MQT situation (δ = 0): AR = 6

3
2π−

1
2 and BR = 36/5 [1].

A schematic of our experimental setup is shown in

Fig. 1a. Our sample was fabricated at Physikalisch-
Technische Bundesanstalt using a Nb/AlOx/Nb trilayer
process with SiO2 dielectric [14]. The two 5 µm2 junc-
tions are embedded in a 10x10 µm2 square loop.

Fig. 2a shows the escape lines, I50% versus Φext. This
data was obtained with a standard technique in which
Ib pulses of varying amplitude are applied and a dc volt-
age detected across the SQUID when it switches to its
voltage state. With this scheme there is no direct indi-
cation of multiply stable flux states. In Fig. 2b we use a
novel technique to measure the overlapping escape lines
of [0Φ0] and [-1Φ0] flux states close to Φext/Φ0 = −0.5.
For |Ib| less than about 0.5 µA, these two interior escape
lines represent transitions between the two flux states,
rather than transitions to the voltage state.

We illustrate our escape measurement method by de-
scribing a sequence used to measure Pesc at a point, noted
M, near the left cusp of Fig. 2b. The sequence starts at
point S, with current bias Ib and Φext = Φdc. Here the
system is initialized in the [0Φ0] fluxoid state, if neces-
sary with an adiabatic pulse on the fast flux line. A
flux pulse δΦ is then applied via the fast line for a fixed
nanosecond-scale duration, bringing the total externally
applied flux Φext = Φdc + δΦ to point M close to the
critical line. This has the effect of reducing the heights
∆UR,L of the two potential barriers, greatly enhancing
Pesc, and the system may escape to the [-1Φ0] fluxoid
state. Φext drops back to Φdc (point S), where both flux-
oid states are stable. The fluxoid state is then read out
via a slow (∼ 10 µs) Ib pulse which brings the system
to point R outside the critical line of fluxoid state [-1Φ0]
but well within that of [0Φ0]. If the system is in state
[-1Φ0], the SQUID will switch, producing a voltage which
is detected [15]. If it is in state [0Φ0], it will not switch.
We achieve a one-shot discrimination between flux states
of 100% with this readout. The process is completed by
bringing Ib to zero for 100 µs where retrapping occurs
and heat generated by a switching event dissipates. Mul-
tiple repetitions, at a rate of about 5 kHz, yield Pesc at
point M. By varying points S, M, R, and the initial flux-
oid state, we are able to measure Pesc for each of the two
fluxoid states at any (Ib,Φext) point in this region. For
|Ib| > 0.5 µA, the system escapes directly to the voltage
state at point M, rendering point R unnecessary.

As shown by the fit in Fig. 2b, our generalized MQT
theory is accurately able to reproduce the data. Of the
parameters that go into this theory, b and α are treated
as free parameters in this fit, Ic, η, and the Φdc calibra-
tion are determined by the fit in Fig. 2a, the fast flux
pulse calibration is determined by matching Pesc(Φext)
curves obtained with different values of Φdc, and C is
determined by a fit to spectroscopic data.

Along the escape line of a given fluxoid state, for Ib
above or below the value Icusp

b , the potential (Fig. 1c) is
tilted to the right or to the left, and escape occurs pref-
erentially in that direction. At Icusp

b , the camel potential
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FIG. 2: Ground-state escape. (a) Escape lines of three fluxoid
states as measured by I50%, the amplitude of a 60 µs Ib pulse
that yields Pesc = 50% to the voltage state of the SQUID.
Data (symbols), and standard MQT theory fit (solid lines).
Here δΦ = 0,Φext = Φdc. The calculated Iop

b (Φext) for the
[0Φ0] state is indicated by the dash-dot line. (b) Overlapping
escape lines in the region Φext ' −Φ0/2. Data (symbols),
and generalized MQT theory fit (solid lines), as measured by
Φ50%, where Φχ% is the total applied flux Φext = Φdc + δΦ
that yields Pesc = χ% from the [−1Φ0] to the [0Φ0] state
(right cusp) or vice-versa (left cusp). δΦ is the amplitude of a
100 ns flux pulse. For |Ib| above about 0.5 µA, escape occurs
directly to the voltage state of the SQUID. The cusps occur
at a non-zero current bias Icusp

b ' ±αIc = ±81 nA due to
the critical current asymmetry α. The horizontal separation
of the cusps scales precisely with 1/b. The uppper (lower)
dash-dot line indicates the calculated Iop

b (Φext) for the [0Φ0]
([−1Φ0]) state. The points S, W, M, and R indicate the Start-
ing, Working, quantum Measurement, and Readout points
for a typical camel-back phase qubit experiment. (c) Width
of ground-state escape ∆Φ = |Φ80% − Φ20%|, measurements
(points+lines), and generalized MQT theory with (solid line)
and without (dash-dot line) 9 nA RMS low-frequency current
noise. The location of the dip near the maximum ∆Φ corre-
sponds to the point where symmetry leads to a reduction in
sensitivity to noise.

is symmetric around the minimum (σ = 0), the two po-
tential barrier heights are equal, and escape occurs with
equal probability in either direction. The cusps in Fig. 2b
correspond therefore to a double-path escape.

The width of the escape process contains additional in-
formation about the dependence of the potential on the
bias parameters, and on fluctuations in the bias parame-
ters [16]. In Fig. 2c, we plot the width as a function of Ib.
This plot peaks around Icusp

b , except that at this point
there is a sharp dip (see inset). This behavior is explained

by double-path MQT if we include low frequency current
fluctuations. In this circuit thermal fluctuations are ex-
pected in Ib, which we estimate to be on the order of 10
nA RMS by the equipartition theorem 1

2kT = 1
2LocI

2
RMS,

where k is Boltzmann’s constant, T ' 40 mK is the cir-
cuit temperature, and Loc = 10 nH is the series isolating
inductance. Because of this noise, Pesc(Ib,Φext) is con-
volved with the probability distribution of Ib, which we
assume to be Gaussian with standard deviation IRMS.
As shown in Fig. 2c, IRMS = 9 nA is accurately able to
explain both the increase in the overall width, and the
presence of a distinctive dip at Icusp

b , a result of sym-
metry in escape direction. The presence of the dip and
our ability to reproduce it with MQT theory is a striking
confirmation of double path escape and low frequency Ib
fluctuations in our sample.

In Fig. 3 we investigate the operation of a phase qubit
composed of the |0〉 and |1〉 levels of the anharmonic cen-
tral well of the camel-back potential. We use the same
procedure as for the ground-state escape measurements,
except δΦ is split into two steps. The first takes the sys-
tem from point S to W, where the qubit is manipulated
by microwave (MW) pulses applied to the fast current
line. The system is then taken to point M for 5 ns, which
projects the qubit state onto the flux state of the SQUID.
This is possible because Pesc depends exponentially on
the excitation level of the qubit. This flux coordinate of
M is tuned such that escape will occur with high prob-
ability if the qubit is excited, and low probability if it
is not. This measurement step thus projects the quan-
tum states |0〉 and |1〉 of the qubit to the classical fluxoid
states [0Φ0] and [−1Φ0] of the SQUID, which are stable
at point S. Readout of the fluxoid state at point R reveals
the projected qubit state. Repetition yields Pesc, giving
the probability of finding the qubit in its excited state
with a contrast of about 50%.
Pesc was measured as a function of Ib and the frequency

ν of a single 800 ns duration MW pulse applied to the
qubit. Because the duration is much longer that the re-
laxation time T1 ' 100 ns, the qubit reaches a steady
state. Pesc is enhanced when ν matches the qubit transi-
tion frequency ν01 (Fig. 3a). The maximum in ν01 occurs
at Iop

b (Φext), which corresponds to the camel potential
symmetric point. Note that this optimal line (see Fig 2b)
is a function of flux, and is terminated by the cusp at the
critical line. Apparent in this spectroscopic image are
avoided level crossings with what are likely microscopic
two-level fluctuators, as first observed by Ref. [3]. We
observe on average 20 crossings per GHz. In Fig. 3b, the
spectroscopic width ∆ν01 of the ν01 transition , obtained
from Fig. 3a, is plotted as a function of Ib. A sharp min-
imum is observed at Ib = 108 nA, corresponding to the
flat maximum in ν01.

We find that we can accurately model ∆ν01(Ib) with
a combination of low-frequency current and flux fluctua-
tions. Because ν01 depends on the bias parameters, fluc-
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FIG. 3: Camel-back potential phase qubit. (a) Spectroscopy
Pesc(Ib, ν) at Φext = −0.503Φ0 in the [0Φ0] fluxoid state.
Dark and bright grayscale correspond to high and small Pesc.
Pesc is enhanced when ν matches ν01. Inset: Rabi oscillations
on the optimal line. (b) Width of the ν01 resonance on a
semi-log scale. The dashed line is the predicted contribution
due to 9 nA RMS low-frequency current noise. The dotted
line is for 40 µΦ0 RMS low-frequency flux noise. The sum of
these two contributions, the solid line, accurately reproduces
the data (symbols).

tuations cause ν01 to vary from repetition to repetition,
smearing out the observed resonance. Assuming a Gaus-
sian fluctuation distribution, the predicted variance in
ν01 is (∆νI/2)2 = (∂Ib

ν)2I2
RMS + (∂2

Ib
ν)2I4

RMS/2, for cur-
rent fluctuations alone, and (∆νΦ/2)2 = (∂Φextν)2Φ2

RMS

for flux fluctuations alone. Here ∂xν ≡ ∂ν01/∂x. ∆νI

has been expanded to second order in IRMS since ∂Ib
ν is

zero at the optimal line. In Fig. 3b, the predicted ∆νI is
plotted as a dashed line for IRMS = 9 nA, precisely the
same current fluctuation amplitude used in Fig. 2c. The
dotted line plots ∆νΦ for ΦRMS = 40 µΦ0. The solid line
is the combined prediction ∆ν =

√
∆ν2

I + ∆ν2
Φ. The

dashed line is obscured behind the solid line except in
a small region around the optimal current. This plot
vividly demonstrates the idea of the optimal line: the
effects of current bias fluctuations, which accurately ac-
count for the spectral width away from the optimal line,
are rendered negligible on the optimal line. The residual
spectroscopic width, about 15 MHz, can be explained by
a flux noise of 40 µΦ0 RMS.

Since the decoherence time T2 scales inversely with
∆ν01, Iop

b (Φext) is optimal for qubit operations. We mea-
sured Rabi oscillations on this line by varying the dura-
tion of a resonant MW excitation pulse, as shown in the
inset to Fig. 3a. We find a typical Rabi decay time of
TRabi = 67 ns for this sample. The anharmonicity is
large enough and the applied power small enough that
excitation beyond the first excited state is negligible, as
we have verified by the linearity of Rabi frequency versus

power. The system is confined to its lowest two levels
and can therefore be considered a qubit.

In conclusion, we have studied the quantum dynamics
of a novel quadratic-quartic “camel” potential created in
a dc SQUID circuit with Ib ' 0, Φext ' 0.5Φ0. Ground-
state escape exhibits critical line cusps and a dip in the es-
cape width versus bias-current. We explain these two ef-
fects with a generalized double-path MQT escape theory.
Moreover due to the particular potential symmetry, the
quantum dynamics is insensitive in first order to current
fluctuations along an optimal line Iop

b (Φext). Along this
line, the dc SQUID can be used as a phase qubit whose
main decoherence source is residual flux noise. Future
optimization and exploitation of the unique properties of
this system will aid in the understanding of decoherence
mechanisms in quantum circuits and has the potential to
yield a competitive phase qubit.
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