#### This document must be cited according to its final version which was presented as:

P. Dufour<sup>1</sup>, S. Bhartiya<sup>1</sup>, P.S. Dhurjati<sup>1</sup>, F.J. Doyle III<sup>1</sup>,

"A neural network approach
for the diagnosis of the continuous pulp digester",

Digester Workshop,

Annapolis, MD, USA, june 28, 2001.

All open archive documents of Pascal Dufour are available at: <a href="http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008">http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008</a>

The professional web page (Fr/En) of Pascal Dufour is: <a href="http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal">http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal</a>

1 University of Delaware, Department of Chemical Engineering, Newark, DE 19716, USA http://www.udel.edu



# A Neural Network Approach for Diagnosis in a Continuous Pulp Digester

Pascal Dufour, Sharad Bhartiya,

Prasad S. Dhurjati, Francis J. Doyle III

Department of Chemical Engineering University of Delaware

http://fourier.che.udel.edu/~Agenda2020/



#### Outline

- Motivation for diagnosis in the pulp digester
- Overview of fault methodologies
- Neural network approach and features
- Training set design discussion and results
- Features of the moving horizon estimation for a comparison study



# Feedstock Properties Variation: Motivation for Diagnosis

# Moisture content variations (Ts=1 day)

- + 5 <u>unmeasured</u> densities for the chips
  - high reactivity lignin
  - low reactivity lignin
  - cellulose
  - galactoglucomman
  - araboxylan
- + 2 <u>unmeasured</u> densities for the white liquor:
  - EA
  - HS

= <u>disturbances</u> in the control loops





# Feedstock Properties Variation: Motivation for Diagnosis





Chips Densities



Kappa Number

• No plant data are available: necessity of model based approach



#### Classification of Fault Methodologies

[over 140 references]

People Experiences

First Principles

Data Based

Model Based

Neural Network Residual and statistic approach

Principal Component Analysis Gross Error Detection

**Qualitative Trend Analysis** 

Moving Horizon Estimation

**Expert Rules** 

Extended Kalman Filter

Fuzzy Rules Observers

**Decision Tree** 



06/28/01

#### Neural Network Approach





#### Neural Network Features

- Training (off-line): determination of the weight and the biases
  - > Drawback: need rich data
  - ➤ Since <u>no plant data</u> are available for this training, an accurate model to simulate each fault scenario is needed: <u>importance of modeling</u>
  - > Advantage: <u>ease</u> of <u>modeling/retraining</u>
- Use of the neural network:
  - ➤ Advantage: on-line <u>algebraic determination</u> of the neural network output
  - > Drawback: <u>poor</u> extrapolation for <u>untrained</u> situations



#### Training Set Design: Case Study 1

#### Step 1: Variations Set Design

- Combination of <u>step changes</u> for:
  - Moisture content
  - > 5 wet chips densities
  - > 2 white liquor densities
- with <u>8 possible magnitudes</u> from 92% to 108% around each nominal value with a step of 1%

Step 2: Data generation

4096 simulations

#### Step 3: Get Training set

Measurements set includes variations set (<u>fault cause</u>) and EA and HS at the upper extraction in the digester (<u>fault effect</u>)



#### Use of Neural Networks: Case Study 1



**Moisture Content** Moisture Content 1.05 1.05 26.0 0.9 2.5 3.5 2 3 4.5 Time (days) Cellulose Density Density 0.95 0.9 0.5 1.5 2 2.5 3 3.5 4.5 Time (days)

Trained behaviors

Untrained behaviors



### Case Study 1 Observations

- Result: <u>moisture content, cellulose density</u> and possibly <u>araboxylan density</u> and <u>HS density</u> can be inferred
- Extrapolation issue: <u>how to choose</u> the <u>variations set</u> of the 8 parameters to construct the training set?
  - > Key: the training set has to be sufficiently <u>representative</u> such that <u>interpolation</u> can be done
  - > Solutions:
    - □ use of <u>co-centered polyhedrals</u> (case study 2)
    - □ choose <u>magnitudes randomly</u> among all the discrete possibilities (case study 3)



# Training Set Design: Use of Co-centered Polyhedrals



- To <u>reduce the size</u> of the variations set, the 3 most sensitive signals that gave previously good results for the interpolation are chosen: moisture content, carbohydrate and HS densities
- •Training set design: <u>all 13 combinations</u> from 94% to 106% around each nominal value with a step of  $1\%:13^3 = 2197$  runs



#### Case Study 2 Observations





Untrained behavior (0.02% discretization step)

Untrained behavior (with increase of 3% in the upper extract flowrate)

- Very good interpolation properties
- Poor extrapolation properties: include MVs in the training set design



### Training Set Design: Introduction of MVs

- Variations set design: 3 manipulated variables (2 flow rates and the cook temperature) that affect the measurements fed in the neural network and one of the signal that can be inferred
- Training set design: all 9 combinations from 92% to 108% around each nominal value with a step of 2%:  $9^4 = 6561$  runs
- 2000 runs chosen randomly create the training set
- Only step variations are used
- Possible issue: neural network behavior vs. others variations in the property?



#### Case Study 3







Changes in MVs

Neural Network

- Very good extrapolation properties to new signal shapes
- Insensitivity to MVs changes



# Case Study 3: Robustness Analysis

- Disturb neural network with an impulse train from the first to the last components of properties
- Good extrapolation to signals and good robustness
- The NN outputs can be combined to correct the remaining errors





#### Neural Network vs. Residual Approach





# Future Work: Horizon Based Control and Estimation





### Future Work: Moving Horizon Estimation

[Gatzke & Doyle III, JPC 2000]

- Qualitative constraints:
  - Limit system to S simultaneous faults
  - Disturbances variation signifies a fault
- Multiple impulse response models used:
  - Models developed from step response
  - Multiple models used in parallel



#### Conclusions & Future Work

- 3 unmeasured disturbances + moisture content can be inferred
- Importance of the model since no plant data are available
- Importance of the training set design based
- Evaluation of the neural network approach in a closed loop control structure and in open loop at the plant
- Development of the MHE framework



#### Acknowledgments

• Funding:



• Collaboration: Westvaco

