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ABSTRACT 
 
 
This paper deals with the experimental control of an infrared drying process of a water based epoxy-
amine painting. This approach is based on a unidirectional diffusional modelling of infrared drying 
phenomena where both heat and mass transfers under shrinkage conditions are accounted for. The control 
problem is concerned with the tracking of any given trajectory for one of the characteristics (i.e. the 
temperature or the mean water content) during the drying cycle. This is solved using the well-known 
model predictive control framework where the non-linear diffusional model is directly used in the control 
formulation. Experimental results show the efficiency of the trajectory tracking. This method can be 
extended for more general constrained control problem. 
 
 

INTRODUCTION 
 
 
Reactive painting drying is an important industrial problem through its impact for the quality of the final 
aspect of products in many industries (cars, cans, etc.). The main difficulty encountered during this 
operation is the evacuation of the solvent. This solvent is needed to simultaneously build the painting film 
and to ensure the film polymerization but one should avoid trapping it in the final dried product. Until 
now, the use of volatile organic compounds (VOCs) allowed the control of this evacuation during the 
polymerization reactions. But the enforced laws concerning environment lead now to replace the use of 
VOCs by the use of water based solvent that evacuates less rapidly and at higher temperatures than 
VOCs. To overcome this problem, infrared drying has been widely developed in industrial processes. 
Some studies [1,2] deal with diffusion problems with both infrared and water used as solvent. 
The problem treated here is dealing with the on-line control of the drying cycle, which has recently 
become a need in drying. A control strategy has to be developed and has to be able to be implementable 
for on-line control, taking into account of natural physical limitations or specifications (constraints) 
inherent to any process. An advanced model based control strategy is well dedicated to solve this 
constrained problem: model predictive control (MPC). MPC or receding horizon control refers to a class 
of control algorithms in which a dynamic process model is used to predict and optimize process 
performance. The idea is to solve, at each sample time, an open-loop optimization problem over a finite 
prediction horizon in order to find the value of the manipulated variable that has to be implemented. The 
procedure is reiterated at the next sample time with the update of process measurements. Today, MPC has 



become an advanced control strategy widely used in industry [3]. Indeed, MPC is well suited for high 
performance control since constraints can be explicitly incorporated into the formulation of the control 
problem. Therefore, it is not a surprise to see that it is an important tool for control engineers where plants 
being controlled are sufficiently slow for its implementation: indeed, one has to be able to solve an on-
line optimization problem. Some applications of such optimization techniques in drying may be found in 
[4,5,6]. 
The paper is organized as follow: first, the first-principle diffusional model obtained in a previous work is 
briefly described. Then, the MPC strategy is detailed. Experimental results for both temperature and mean 
humidity trajectory tracking will be shown. 

 

KNOWLEDGE-BASED MODELLING 

 
 
Painting Formulation and Characteristics 
 
 
Due to the great complexity of industrial paintings, the experiments are realized using a water based 
epoxy-amine painting formulated in our laboratory. This permitted us to experimentally determine every 
physical, thermal and chemical properties [7]. The painting film is composed of two elements:  
 

� A resin constituted of an ``oil in water'' emulsion of DGEBA (Diglycidylether of Bisphenol A) 
which condensation index is equal to 0.15, 

 
� A hardener composed of a primary triamine soluble in water. Currently used in the painting 

industry, it is named Jeffamine T403. 
 

During the experiments, this painting film is coated in low controlled thickness (between 30 and 300 µm) 
on an iron substrate (also named the support) that has been first classically treated at its surface like in the 
automobile industry. The painting characteristics and support characteristics may be found in details in 
[7]. During the drying, two phenomena occur: the solvent vaporization (the water in the present case) and 
the reticulation. Given the dynamic of these phenomena (respectively about 100s for the vaporization and 
about 100 min for the reticulation in the present experimental conditions), the reticulation phenomena are 
not taken into account in this work. Thus, drying characteristics depend only on the temperature and the 
humidity. Moreover, a non-negligible deformation of the film happens during the drying due to water 
content (40% of the humidity in dry basis). Given the low sample thickness with respect to its surface, 
this deformation phenomena is characterized by the sample thickness variation. 
 
 
Infrared Dryer 
 
 
The near infrared panel-curing dryer used during the experiments (Fig. 1) was previously described in 
details [8]. The instrument part is composed of a pyrometer that allows the on-line temperature 
measurement of the sample at the upper surface and a precision balance that allows the follow-up of the 
sample and support set mean mass. The accuracy of the chosen balance is 0.001g since the water loss 
mass is in the order of 0.4g for a total mass about 100g (painting plus support). The infrared panel (see 2 
on Fig. 1) is composed of 9 quartz lamps with a tungsten filament used in the wave length about 1.2 µm 



that allows to obtain over the sample flow densities that range between 0 and 12 kW/m². A low 
convective airflow is produced by a fan (see 3 on Fig. 1) to eliminate the water vapour due to the drying. 
 
 
Drying Modelling 
 
 
The dynamic model of the painting film sample infrared drying is characterized by the humidity in dry 
basis X and by the assumed uniform temperature T. The temperature is assumed to be constant due the 
low thickness of the sample and due to the thermal characteristics of the support. This assumption has 
been experimentally checked. The partial differential equation (PDE) model NLS  is deduced from the 

following mass and energy balances. 
 
 
Mass transfer 
 
 
In the case of shrinking material, assuming an unidirectional transfer along the thickness z, the transfer of 
the solvent is diffusional and convective. In an eurelian (fixed) framework (z,t), this transfer is function of 
the solid deformation rate. By introducing a lagrangian (mobile) framework (ξ,t), this leads to write the 
diffusion equation of the solvent as follow [8]: 
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One has introduced the new independent space variables ξ  to account for the shrinkage phenomena 
assumed to be characterized by a linear relation: 
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, the drying rate, is expressed by the film theory [9] and Χ  is the mean humidity in dry 
basis. As reported in the literature for polymeric solutions [1], it is assumed that the mass diffusion 
coefficient varies with the temperature and with the humidity content according to the relation: 
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where 0D  represents the pre-exponential factor, Ea  is the activation energy and a is the humidity 

parameter. 
 
 
Heat transfer 
 
 
Due to the small painting film thickness and due to the great thermal heat diffusivity of the iron support, 
the temperature of the whole system (painting film + support) is assumed to be uniform. Consequently, 
and neglecting the heat due to the reaction, an overall heat balance accounting for the radiative and the 
convective heat losses and the evaporation losses (Fig. 2) leads to: 
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with the initial condition T(t=0)=Ti and where the infrared flow )(tqɺ  is the manipulated variable. 

 

PROCESS CONTROL STRATEGY 

 
 
Control Problem 
 
 
At the end of the drying cycle, the final product obtained as to be usable: bubbles and fissures phenomena 
that may happen during the polymerization reaction have therefore to be avoided. To ensure the final 
product quality, paint producers propose to track a reference temperature trajectory during the drying 
cycle in order to extract water as best as possible before polymerization reactions starts. Therefore, the 
control problem considered here is to allow the process controlled variable (i.e. the temperature or the 
mean humidity in dry basis) to track any kind of time-variant reference trajectory. This leads to 
determine, on-line, the process manipulated variable (i.e. the infrared flow) to apply during the drying 
cycle. Moreover, process physical limitations concerning the magnitude and the velocity of the 
manipulated variable have to be taken into account in the problem resolution. Experimental results for 
temperature and mean humidity trajectory tracking will be shown. 
 
 
Model Predictive Control Strategy 
 
 
In previous works [10,11], we have introduced the MPC strategy to solve this trajectory tracking. The 
control problem is stated as an on-line optimization problem over a receding horizon Np where the 
performance index J to be minimized reflects the trajectory-tracking task. Since the problem will be 
solved numerically, a mathematical discrete time formulation is given. The tracking objective can be 
written as the initial constrained optimization problem at the actual discrete time k: 
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In this formulation, it is first to notice that in the performance index J expression, the knowledge of the 
process output py  is required over the prediction horizon Np (i.e. for future times). These informations 

are obviously not available at the present time k, but this problem can be overcome using the IMC 
structure. In this structure, the manipulated variable is applied to both the process and its model. This 
structure allows to reformulate the tracking problem as:  
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Assumption: [12] 
The error e between the process output py  and the model output my  remains constant over the 

prediction horizon Np. The error value is updated at each sampled time k thanks to new measurements 
from the plant. 
 
According to this assumption and with the IMC structure, the performance index J to be minimized can 
be expressed as:  
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where the model is introduced into the control algorithm. From a practical point of view, the second 
problem is the computational time aspect. Indeed, as it can be seen in the new performance index 
formulation, the model aims to predict the future dynamic behaviour of the process output over a finite 
prediction horizon Np and therefore has to be solved on-line. To reduce the on-line non-linear PDE model 
resolution time, we use a linearization method [13] of the non-linear model NLS  about a similar non-

linear model 0S  computed off-line by choosing its input 0u  [11]. Finally, the off-line solved nonlinear 

model 0S  and the on-line solved linearized model LTVS  replace the initial nonlinear model NLS   as 

depicted Fig. 3 [11]. The control objective is now to find the variation ∆u   of the manipulated variable u 
about a chosen trajectory 0u  leading to the best optimisation result. A constrained optimization problem 

including an on-line resolution of the linear model LTVS  has therefore to be solved. The last point is 
concerned with the way to handle input constraints: this is done replacing the constrained parameter 
sequence u~∆  by an unconstrained parameter sequencep~∆  through a simple hyperbolic transformation 
[14] that uses the constraints bounds. Output constraints may also be accounted for through an exterior 
penalty method [14]. The optimiser argument is now an unconstrained argument and any unconstrained 
optimisation algorithm can be used to solve the final on-line penalized optimisation problem: widely 
known and used for its robustness and convergence properties, we apply the Levenberg-Marquardt’s 



algorithm [14] where the parameter sequence p~∆ are determined at each sample time k using the model 
prediction and the process measurement [11]. 
 
 
EXPERIMENTAL RESULTS 
 
 
In this first attempts, the control horizon Nc is tuned to 1: It allows to minimize the on-line computational 
time. Experiments have been realized to point out the influence of the control tuning parameter Np over 
the tracking performance.  
 
Operating Conditions 
 
The operating conditions are the following one: 
 

� the linearization about 0S  is performed with 0u =5000 W/m² and with the initial conditions 

iT  = 36 °C and iΧ =0.4  kg/kg, 
� the value for the sampling period Ts is 1s, 
� constraints bounds are: maxu =12,000 W/m², minu =0 W/m², maxu∆ =500 W/m², minu∆ =-500 W/m², 

� atmospheric conditions are: airΧ  =  20 %,  uT  = 52 °C, lT  = 20 °C, 

� the control algorithm, written in Fortran code, has been combined to C code in order to realize the 
interface with the sensors and the actuator, 

� the processor rate is 400 MHz.  

In order to compare results for any value of Np, one introduces the normalized cost function
Np

J
J =' . 

 
Temperature Reference Trajectory Tracking 
 
 
From Fig. 4 and Fig. 5, one can see that the tracking objective is correctly achieved in all cases. 
Moreover, the intermediate value Np=6 for the horizon prediction gives the best result: 
 

� with a small prediction horizon (Np=3), the discontinuities handling (around t=80, 120 and 200s) 
is less efficient than with Np=6 as confirmed by the values taken by the normalized cost function. 
In this case, informations quantity available describing the future process behaviour are 
insufficient. In a way, with Np=3, the problem is badly stated for its resolution, as we can see on 
the applied control: when the three discontinuities points appear, the infrared flow is always either 
saturated in magnitude (Fig. 6) or in velocity (Fig. 7). The optimization procedure does not 
correctly capture the future behaviour of the process. Then, the algorithm tends too often to find a 
non-admissible solution and to do bang-bang control. This leads consequently to poor tracking 
performances ; 

 
� increasing the prediction horizon value to 6 and 12, the infrared flow becomes more and more 

smooth (Fig. 6), but with a big prediction horizon (Np=12), another problem appears for 
s80ts0 ≤≤ : the model, qualitatively true, is quantitatively false. Since more values calculated by 

the model resolution are taken into account in the optimization problem, the criteria minimization 
is less efficient than in the case where the prediction horizon takes an average value (Np=6). This 
is confirm when tuning Np to values higher than 12. 



 
Therefore, the prediction horizon value Np=6 is the ``optimal'' choice for this main parameter: tracking 
results with Np tuned to 5, 7, 8, 9, 10 or 11 were less interesting. 
 
 
Mean Humidity Reference Trajectory Tracking 
 
 
As mentioned previously, MPC strategy allows to track any reference for any measured variables. 
Tracking of the mean humidity in dry basis is now presented. For the operating conditions, 0u  has been 

retuned to 500 W/m². Tracking results are still acceptable (Fig. 8) and infrared flow determined by the 
control algorithm is still in agreement with infrared panel physical limitations (Fig. 9). Influence of the 
horizon prediction can be seen as the intermediate tuning of Np to 8 gives best overall performance. 
Moreover, robustness of the control algorithm can be seen: an underestimation of 200% between the real 
initial thickness of the sample and the initial thickness fed into the model does not seem to affect tracking 
results. However, overall tracking results are now less efficient: it is mostly due to the strongly noise 
sensitive measure of mass used in the feedback law [11]. To overcome this problem, use of the receding 
horizon observer using the unnoisy measure of temperature to estimate the mean humidity in dry basis 
like in [6] is under investigation. 
 

CONCLUSION 

 
 
In this paper, an efficient approach for the on-line control of an infrared drying process has been shown. 
The model predictive control approach uses a diffusional model leading to the knowledge of the drying 
characteristics, i.e. the temperature or the mass content. To allow the on-line application of this method, 
the nonlinear diffusional model is first solved off-line. Adjustments in the infrared flow to apply are then 
computed on-line using a linearized model involved in the constrained optimization problem. The final 
tracking experimental results are very interesting. It shows that this two-phase MPC approach allows to  
determine a physically applicable infrared flow. The influence of the MPC tuning parameter, i.e. the 
prediction horizon, has been point out even if the results are acceptable is all cases. Moreover, since the 
balance measurements may be very noisy, a new approach is under study for a better humidity set points 
tracking: it is concerned with a soft sensing approach where both the model and the unnoisy temperature 
measurements are needed instead of the balance measurements. Moreover, since any objective function 
may be stated, one could introduce a new one that handle directly the final properties of the product 
through constraints during drying. 
 
 
NOMENCLATURE  
 
 
a exponential factor       kg.kg-1 

αir infrared absorption coefficient     - 
*β  linear shrinkage coefficient       - 

cp specific heat        J.kg-1.°C-1 
D water or organic solvent apparent diffusion coefficient  m2.s-1  

0D  water or organic solvent apparent diffusion parameter  m2.s-1 

δ coating thickness       m 



Ea activation energy       J.mol-1 
hc convective heat transfer coefficient     W.m-2.K-1 

J performance index       - 
j, k discrete time indexes       - 

lv latent heat of vaporization      J.kg-1 
mɺ  drying rate        kg.m-2.s-1  
Np prediction horizon       - 

Nc control horizon       - 
p unconstrained parameter 
p~  unconstrained parameter sequence 
qɺ  infrared flow        W.m-2 

R universal gas constant       J.mol-1.K-1 

ρ material density       kg.m-3 

NLS      initial nonlinear system 

0S  nominal system computed off-line  

LTVS     linear time variant system computed on-line 

σ emissivity coefficient       W.m-2.K-4 

t time         s 
T temperature        °C or K 
u manipulated variable, control       
u~  control sequence 
ξ coordinate (mobile frame)      m 
X local moisture content (dry basis)     kg.kg-1 
X  mean moisture content (dry basis)     kg.kg-1  
y signal 

z coordinate (fixed frame)      m 
 
 
Subscripts 
 
 
d, dry dry solid or desired  
i initial (at t=0) 
l lower surface of the sample  
m model 
p process 
ref reference 
s support 
u  upper surface of the sample 
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