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ABSTRACT

This paper deals with the experimental control ofirdfrared drying process of a water based epoxy-
amine painting. This approach is based on a umitimeal diffusional modelling of infrared drying
phenomena where both heat and mass transfers simiigkage conditions are accounted for. The control
problem is concerned with the tracking of any givesjectory for one of the characteristics (i.ee th
temperature or the mean water content) during tiyengl cycle. This is solved using the well-known
model predictive control framework where the noreér diffusional model is directly used in the coht
formulation. Experimental results show the efficgrof the trajectory tracking. This method can be
extended for more general constrained control erabl

INTRODUCTION

Reactive painting drying is an important industpabblem through its impact for the quality of tieal
aspect of products in many industries (cars, catts). The main difficulty encountered during this
operation is the evacuation of the solvent. Thigest is needed to simultaneously build the pagmfim

and to ensure the film polymerization but one stiauoid trapping it in the final dried product. Unt
now, the use of volatile organic compounds (VOQkwed the control of this evacuation during the
polymerization reactions. But the enforced lawsceoning environment lead now to replace the use of
VOCs by the use of water based solvent that evasuass rapidly and at higher temperatures than
VOCs. To overcome this problem, infrared drying lbaen widely developed in industrial processes.
Some studies [1,2] deal with diffusion problemshaabth infrared and water used as solvent.

The problem treated here is dealing with the oa-loontrol of the drying cycle, which has recently
become a need in drying. A control strategy hasetaleveloped and has to be able to be implementable
for on-line control, taking into account of natunalhysical limitations or specifications (constraint
inherent to any process. An advanced model basattotcstrategy is well dedicated to solve this
constrained problem: model predictive control (MPKIPC or receding horizon control refers to a class
of control algorithms in which a dynamic processdelois used to predict and optimize process
performance. The idea is to solve, at each sanmpks an open-loop optimization problem over a @nit
prediction horizon in order to find the value oétmanipulated variable that has to be implemeritkd.
procedure is reiterated at the next sample timie thi¢ update of process measurements. Today, MBPC ha



become an advanced control strategy widely usaddustry [3]. Indeed, MPC is well suited for high
performance control since constraints can be efglincorporated into the formulation of the cauitr
problem. Therefore, it is not a surprise to seéitha an important tool for control engineers whelants
being controlled are sufficiently slow for its ingphentation: indeed, one has to be able to solvenan
line optimization problem. Some applications oflsoptimization techniques in drying may be found in
[4,5,6].

The paper is organized as follow: first, the fipsiaciple diffusional model obtained in a previousrk is
briefly described. Then, the MPC strategy is dethiExperimental results for both temperature aadm
humidity trajectory tracking will be shown.

KNOWLEDGE-BASED MODELLING

Painting Formulation and Characteristics

Due to the great complexity of industrial paintingise experiments are realized using a water based
epoxy-amine painting formulated in our laboratoFis permitted us to experimentally determine every
physical, thermal and chemical properties [7]. Paating film is composed of two elements:

= A resin constituted of an "oil in water" emulsiohDGEBA (Diglycidylether of Bisphenol A)
which condensation index is equal to 0.15,

= A hardener composed of a primary triamine solublevater. Currently used in the painting
industry, it is named Jeffamine T403.

During the experiments, this painting film is cahte low controlled thickness (between 30 and 360 p
on an iron substrate (also named the supporthémbeen first classically treated at its surfdaeih the
automobile industry. The painting characteristing aupport characteristics may be found in details
[7]. During the drying, two phenomena occur: thlveot vaporization (the water in the present case)
the reticulation. Given the dynamic of these phesoan(respectively about 100s for the vaporizatiwh a
about 100 min for the reticulation in the presetgeximental conditions), the reticulation phenomara
not taken into account in this work. Thus, dryifg@acteristics depend only on the temperature laad t
humidity. Moreover, a non-negligible deformationtbe film happens during the drying due to water
content (40% of the humidity in dry basis). Givéxe fow sample thickness with respect to its surface
this deformation phenomena is characterized bganeple thickness variation.

Infrared Dryer

The near infrared panel-curing dryer used durirg ékperiments (Fig. 1) was previously described in
details [8]. The instrument part is composed of yaometer that allows the on-line temperature
measurement of the sample at the upper surface g@nelcision balance that allows the follow-up of th
sample and support set mean mass. The accuratye ahbsen balance is 0.001g since the water loss
mass is in the order of 0.4g for a total mass athbQy (painting plus support). The infrared pasek(2

on Fig. 1) is composed of 9 quartz lamps with gsten filament used in the wave length aboutub?



that allows to obtain over the sample flow densitthat range between 0 and 12 kW/m2. A low
convective airflow is produced by a fan (see 3 mn E) to eliminate the water vapour due to thardyy

Drying Modelling

The dynamic model of the painting film sample inéG drying is characterized by the humidity in dry
basis X and by the assumed uniform temperatureh&.t€mperature is assumed to be constant due the
low thickness of the sample and due to the thewhatacteristics of the support. This assumption has
been experimentally checked. The partial diffeenéiquation (PDE) mode$,, is deduced from the

following mass and energy balances.
Mass transfer

In the case of shrinking material, assuming anivgstional transfer along the thicknesgshe transfer of
the solvent is diffusional and convective. In anedian (fixed) frameworkZ,1), this transfer is function of
the solid deformation rate. By introducing a lagjian (mobile) framework{t), this leads to write the
diffusion equation of the solvent as follow [8]:

X@EH_0( D X}
ot 9F\ 1+ B X)?2 0

One has introduced the new independent space iewmigbto account for the shrinkage phenomena
assumed to be characterized by a linear relation:

a1
dz 1+8X

)

The initial condition is, at t=0 and for< { <9, ,X(¢,t) = X, and the two boundary conditions are:

ry ?

= [Jt>0andaté =0:
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where m(YT) the drying rate, is expressed by the film the@lyand X is the mean humidity in dry

basis. As reported in the literature for polymesmutions [1], it is assumed that the mass diffusio
coefficient varies with the temperature and with lumidity content according to the relation:

D = D, exp(—%) exp(-—2) 5)



whereD, represents the pre-exponential fact@a is the activation energy ana is the humidity
parameter.

Heat transfer

Due to the small painting film thickness and dué¢h® great thermal heat diffusivity of the iron pog,

the temperature of the whole system (painting firaupport) is assumed to be uniform. Consequently,
and neglecting the heat due to the reaction, amabieeat balance accounting for the radiative trel
convective heat losses and the evaporation loEsgs?) leads to:

dT(t) _
(ppcppdp + pscpsds)T -

a, (X)a-h,(T-T,)-o(T*-T)) - h, (T -T) —a.o(T* - T*) -1, (T)M(X,T) (6)

with the initial conditionT (t=0)=Ti and where the infrared flo(t i$ the manipulated variable.

PROCESS CONTROL STRATEGY

Control Problem

At the end of the drying cycle, the final produbtained as to be usable: bubbles and fissures pieEmo
that may happen during the polymerization reactiame therefore to be avoided. To ensure the final
product quality, paint producers propose to tradefarence temperature trajectory during the drying
cycle in order to extract water as best as pos$ibfere polymerization reactions starts. Therefthe,
control problem considered here is to allow thecpss controlled variable (i.e. the temperatureher t
mean humidity in dry basis) to track any kind ahétvariant reference trajectory. This leads to
determine, on-line, the process manipulated varidbé. the infrared flow) to apply during the drgi
cycle. Moreover, process physical limitations congey the magnitude and the velocity of the
manipulated variable have to be taken into accaunhe problem resolution. Experimental results for
temperature and mean humidity trajectory trackinglve shown.

Model Predictive Control Strategy

In previous works [10,11], we have introduced thB®/strategy to solve this trajectory tracking. The
control problem is stated as an on-line optimizatproblem over a receding horizdfp where the
performance index) to be minimized reflects the trajectory-trackiragk. Since the problem will be
solved numerically, a mathematical discrete timenidation is given. The tracking objective can be
written as the initial constrained optimization lplem at the actual discrete tirke



j=k+

mind@ =" ¥ [Ver (1) - ¥,(0)]

j=k+1
0 = [u(k) = (k)...u(j) = ¢(j)-.u(k + Nc—1) = ¢(k + Nc-1)]
andlj Ofk + Nc,....k + Np=1}: u(j) =u(k + Nc—1) (7)
subject taconstrainson themanipulate variable
u,,, <u(j)<u,,00{k+1k+Np}
Au,,, <u(j)-u(j-1) < Au,, 0 Of{k +1k + Np}

In this formulation, it is first to notice that the performance indeX expression, the knowledge of the
process outputy, is required over the prediction horizdip (i.e. for future times). These informations
are obviously not available at the present tikndut this problem can be overcome using the IMC

structure. In this structure, the manipulated \@eds applied to both the process and its modeis T
structure allows to reformulate the tracking problas:

Yeet ) = Y, (0) = Ya() = Yi) = Vier 1) —€0) — ¥0)  (8)

Assumption: [12]
The error e between the process outpyt and the model outpuy,, remains constant over the

prediction horizon Np. The error value is updatddeach sampled time k thanks to new measurements
from the plant.

According to this assumption and with the IMC stuue, the performance indeixto be minimized can
be expressed as:

j=k+Np

@)= D1 rer() — (k) Y2 (9)

j=k+1

where the model is introduced into the control athm. From a practical point of view, the second
problem is the computational time aspect. Indeedjtaan be seen in the new performance index
formulation, the model aims to predict the futusgamic behaviour of the process output over adinit
prediction horizorNp and therefore has to be solved on-line. To retlue®n-line non-linear PDE model

resolution time, we use a linearization method [@B}he non-linear mode§,, about a similar non-
linear modelS, computed off-line by choosing its inpug [11]. Finally, the off-line solved nonlinear
model S, and the on-line solved linearized modgl, replace the initial nonlinear mod&l,, as
depicted Fig. 3 [11]. The control objective is ntawfind the variationdu of the manipulated variable
about a chosen trajectory, leading to the best optimisation result. A consgd optimization problem
including an on-line resolution of the linear modgl,,, has therefore to be solved. The last point is

concerned with the way to handle input constraitiigss is done replacing the constrained parameter
sequenceAu by an unconstrained parameter sequépcehrough a simple hyperbolic transformation
[14] that uses the constraints bounds. Output caings may also be accounted for through an exterio
penalty method [14]. The optimiser argument is rawunconstrained argument and any unconstrained
optimisation algorithm can be used to solve thalfion-line penalized optimisation problem: widely
known and used for its robustness and convergermeegies, we apply the Levenberg-Marquardt’s



algorithm [14] where the parameter sequeApeare determined at each sample tiknesing the model
prediction and the process measurement [11].

EXPERIMENTAL RESULTS

In this first attempts, the control horizdit is tuned to 1: It allows to minimize the on-linencputational
time. Experiments have been realized to point beatinfluence of the control tuning parametgy over
the tracking performance.

Operating Conditions

The operating conditions are the following one:

» the linearization abouS, is performed withu,=5000 W/m? and with the initial conditions
T, =36 °C andX,;=0.4 kg/kg,

» the value for the sampling period Ts is 1s,

= constraints bounds are;,,=12,000 W/m2u,_,;,=0 W/m?2, Au, ., =500 W/m?,Au,,;,, =-500 W/m?2,

= atmospheric conditions ar&_, = 20 %, T, =52 °C,T, = 20 °C,

= the control algorithm, written in Fortran code, leen combined to C code in order to realize the

interface with the sensors and the actuator,
= the processor rate is 400 MHz.

In order to compare results for any valueNgf one introduces the normalized cost funcﬂbnNi.
Y

Temperature Reference Trajectory Tracking

From Fig. 4 and Fig. 5, one can see that the tngckibjective is correctly achieved in all cases.
Moreover, the intermediate valbhgp=6 for the horizon prediction gives the best result

= with a small prediction horizorNfp=3), the discontinuities handling (around t=80, B2@ 200s)
is less efficient than witNp=6 as confirmed by the values taken by the norradlzost function.
In this case, informations quantity available diéseg the future process behaviour are
insufficient. In a way, witiNp=3, the problem is badly stated for its resolutias,we can see on
the applied control: when the three discontinuigests appear, the infrared flow is always either
saturated in magnitude (Fig. 6) or in velocity (Fi). The optimization procedure does not
correctly capture the future behaviour of the psscdhen, the algorithm tends too often to find a
non-admissible solution and to do bang-bang confrbis leads consequently to poor tracking
performances ;

* increasing the prediction horizon value to 6 andth2 infrared flow becomes more and more
smooth (Fig. 6), but with a big prediction horiz§Np=12), another problem appears for
(s< t<80s: the model, qualitatively true, is quantitativélyse. Since more values calculated by
the model resolution are taken into account ingbggmization problem, the criteria minimization
is less efficient than in the case where the ptiegichorizon takes an average valbg€6). This
is confirm when tuningNp to values higher than 12.



Therefore, the prediction horizon valtyp=6 is the optimal” choice for this main parameteacking
results withNptuned to 5, 7, 8, 9, 10 or 11 were less intergstin

Mean Humidity Reference Trajectory Tracking

As mentioned previously, MPC strategy allows tockraany reference for any measured variables.
Tracking of the mean humidity in dry basis is noregented. For the operating conditions,has been

retuned to 500 W/m2. Tracking results are stillegetable (Fig. 8) and infrared flow determined bg th
control algorithm is still in agreement with infear panel physical limitations (Fig. 9). Influencetloe
horizon prediction can be seen as the intermediateng of Np to 8 gives best overall performance.
Moreover, robustness of the control algorithm carséen: an underestimation of 200% between the real
initial thickness of the sample and the initiac#triess fed into the model does not seem to affecking
results. However, overall tracking results are ress efficient: it is mostly due to the stronglyiseo
sensitive measure of mass used in the feedbackltgwTo overcome this problem, use of the receding
horizon observer using the unnoisy measure of teatye to estimate the mean humidity in dry basis
like in [6] is under investigation.

CONCLUSION

In this paper, an efficient approach for the omlgontrol of an infrared drying process has be&wah
The model predictive control approach uses a ddfud model leading to the knowledge of the drying
characteristics, i.e. the temperature or the mastent. To allow the on-line application of this thned,

the nonlinear diffusional model is first solved-tiffe. Adjustments in the infrared flow to applyeahen
computed on-line using a linearized model involwedhe constrained optimization problem. The final
tracking experimental results are very interestihghows that this two-phase MPC approach allaws t
determine a physically applicable infrared flow.eTimfluence of the MPC tuning parameter, i.e. the
prediction horizon, has been point out even ifrégults are acceptable is all cases. Moreoverg gime
balance measurements may be very noisy, a new agpis under study for a better humidity set points
tracking: it is concerned with a soft sensing applowhere both the model and the unnoisy temperatur
measurements are needed instead of the balanceinem®asits. Moreover, since any objective function
may be stated, one could introduce a new one taatlla directly the final properties of the product
through constraints during drying.

NOMENCLATURE

a exponential factor kg.Kg
Qlir infrared absorption coefficient -

e linear shrinkage coefficient -

¢  specific heat J.KCt
D water or organic solvent apparent diffusion casfnt nf.s?

D, water or organic solvent apparent diffusion par@me nf.s*

) coating thickness



Ea activation energy J.mbl

h.  convective heat transfer coefficient Wit
J performance index -

j, kK discrete time indexes -

ly latent heat of vaporization Jkg

m  drying rate kg.rhs?t

Np  prediction horizon -

Nc  controlhorizon -
unconstrained parameter

unconstrained parameter sequence

infrared flow W.nf
universal gas constant J.ihel™
material density kg.th
initial nonlinear system

nominal system computed off-line
linear time variant system computed on-line

emissivity coefficient W.ihK™
time S
temperature °CorK
manipulated variable, control

control sequence

coordinate (mobile frame) m
local moisture content (dry basis) kg'kg
mean moisture content (dry basis) ki.kg
signal

coordinate (fixed frame) m

WNn©° D og©
z

w W
2

NS s XM oS -~ Q

Subscripts

d, dry dry solid or desired
[ initial (at t=0)

I lower surface of the sample
m model

p process

ref reference

S support

u upper surface of the sample
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