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Abstract

It is now recognized that model predictive control (MPC) is an interesting alter-
native for real-time control of industrial processes. In the meantime, some problems
do still remain in progress: for theoretical aspects, the a priori guarantee of the
stability and for the practical aspects, the guarantee of sufficient time to solve to
optimization problem at each sampled time positions. In this paper, we propose a

global method that aims to reduce the on-line calculation time due to the PDE
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model based optimization task resolution. It is addressed for a particular class of
systems not very often studied in this context: systems described by partial differ-
ential equations (PDEs) which are, in the present case, nonlinear and parabolic. In
order to decrease the computational burden, the nonlinear PDE system is solved off-
line. Then, a linearized PDE model around the previous off-line behavior is used to
find the optimal variations for the on-line predictive control. The real-time control

application given is concerned with a infrared drying process of painting film.

Key words:
Model predictive control, nonlinear partial differential equations, internal model

control, real-time control, drying process.

1 Introduction

The main objective of this paper is to extend MPC to systems modeled by non-
linear PDEs. Even with only one spatial dimension, these systems are not often
treated, especially in the nonlinear case. One has to point out that each time
that phenomena are taking place spatially and that one geometrical dimension
as more impact than others do, the hypothesis of unidimensionality becomes
realistic. Explicitly, transport reaction phenomena with significant diffusive
and convective phenomena are typically characterized by severe nonlineari-
ties and spatial variations, and are naturally described by partial differential
equations. Examples of such processes include tubular reactors, packed bed
reactors, absorption columns, drying or curing processes. The large number of

real applications that results in such PDE models constitutes the motivation
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for this work.

In control theory, due to the complexity of the problem, relatively few studies
are devoted to control of processes explicitly characterized by a PDE model.
Various methods are proposed for control of such distributed parameter sys-
tems but there is no general framework yet. Recently, Christofides developed
order reduction by partitioning the eigenspectrum of the operator of the PDE
system [8,12] and methods based on approximate inertial manifold for spa-
tial discretization of the PDE [7,2]. A comprehensive study of his work can
be found in his book [9]. Other works for controller synthesis of nonlinear
PDE systems are based on symmetry groups, infinitesimal generators and in-
variant conditions [23,15]. Concerning [16,31], finite dimensional controller are
obtained through model reduction based on various methods: singular value
decomposition, Karhunen-Loéve expansion or eigenfunction method. In [3],
stability conditions for closed loop control of linear PDE with finite dimension
controller are given in time domain and frequency domain through semigroup
analysis.

The framework presented here address the boundary control of nonlinear
parabolic PDEs systems characterized by complex nonlinearities in the spa-
tial domain and at the boundary as well. Moreover, this strategy has to be
able to be implementable for on-line control, taking into account of natural
physical limitations or specifications (constraints) inherent to many processes.
An advanced model based control strategy, developed for ordinary differential
equation systems, is well dedicated to solve this constrained problem: model
predictive control. MPC or receding horizon control refers to a class of control
algorithms in which a dynamic process model is used to predict and optimize
process performance. The idea is to solve, at each sample time, an open-loop

optimization problem over a finite prediction horizon in order to find the value



of the manipulated variable that has to be implemented. The procedure is re-
iterated at the next sample time with the update of process measurements.
Today, MPC has become an advanced control strategy widely used in indus-
try. Indeed, MPC is well suited for high performance control since constraints
can be explicitly incorporated into the formulation of the control problem.
Therefore, it is not a surprise to see that it is an important tool for control
engineers where plant being controlled are sufficiently slow for its implemen-
tation: indeed, one has to be able to solve an on-line optimization problem.
More details and references on MPC can be found in [1,21,19,27,26]. From
a practical point of view, the drawback of MPC is the computational time
aspect. Indeed, the model aims to predict the future dynamic behavior of the
process output over a finite prediction horizon and has to be solved during
the on-line constrained optimization problem resolution.

The contribution of this paper is to provide a MPC framework for such PDE
systems to reduce the on-line resolution time at 3 levels, as applied in [10] for
the control of a catalytic reverse flow reactor. First, the control structure is
an adaptation of MPC with internal model control (IMC) structure where the
nonlinear PDE system (solved off-line) and a linearized PDE system (solved
during the on-line optimization task) are both used in order to decrease the
computational burden. Among other things, use of IMC structure permits to
use numerical resolution methods less accurate than methods in other MPC
formulations. Secondly, the control strategy is concerned with on-line resolu-
tion that aims to correct off-line structure results. In the third part, for the
class of constraints considered here, methods of transformation and penaliza-
tion are proposed, hence allowing the use of optimization algorithm faster and
less restricting than others. Finally, the last part of the paper is concerned

with the experimental IMC-MPC for infrared drying process of painting film.



2 IMC-MPC formulation

2.1 Class of continuous time model considered

The class of single input single output (SISO) one dimensional nonlinear

parabolic PDEs with boundary control considered is:

22 = Fy(x(z,t) V2€Q, t>0
Fy(z(z,t),u(t)) =0 V2ze€0Q, t >0
(SNL) \ (1)

z(2,0)=2z; VzeQUOIN

Ym(t) = Cz(2,t) V2€QUIN, t>0

where z is the independent space variable, ) is the spatial domain and 0f2 its
boundary, ¢ is the independent time variable. z is the state vector in a Hilbert
Space, u is the control or manipulated variable (MV) in R, v, is the model

output in R. F; and F, are nonlinear operator [4]. C is a linear operator [24].

Assumption 1 The solution for (Sni) is unique and depends continuously

on the initial value.

Moreover, the control of process described by such model is simultaneously

subject to:

e constraints on the magnitude and velocity of the MV:



Umin < U(t) < Umax VE>0

(2)

amin S u(t) S umaa: Vi>0

e n general process output constraints on the controlled variable (CV) y,
related to operating conditions, safety, quality:

9i(yp(t),u(t)) <0 Vt>0, VieI! =A{1, .., n} (3)

Assumption 2 There exists u(t) = ug(t) leading to the particular representa-
tion (So) of (Snr) described by the triplet {u(t) = uo(t), z(z,t) = 2o(2,1), ym(t) =

Yo(t)}-

Variations around this triplet are given by:

ym(t) = yO(t) + Aym(t)

\

where sufficiently small variations are described by the time-varying linearized

model (Sry ) obtained about (Sp):

(

082:) — Ay(t)Az(2,t) V2€Q, t>0

AF(t)Az(z,t) + Ap(t)Au(t) =0 Vze€09, t>0
(Stvie) S (5)

Az(z,0)=0 VzeQUOIN

Ay, (t) = CAz(z,t) Y2€QUIN, t>0

where the time-varying linear operators A,(t), A7(t) and A}(t) are obtained



from the linearization of (Sy) about the behavior described by (So) [14].

Assumption 3 The solution for (Srvy) is unique and depends continuously

on the initial value.

2.2 Discrete time MPC formulation

One of the advantage of MPC formulation as a constrained optimization prob-
lem is that a large number of control problems can be stated. It covers trajec-
tory tracking for a CV, minimization of any economic function, minimization
of energy supply under technical specifications, etc [11]. Therefore, one can
consider the following general task of minimizing, under some constraints, the

cost function J (also named performance index):

min J(@) = 3 g(yres (7), 4(5), u(i—1) Vi € T7 "= {k+1, ... k+N,} (6)

where k is the actual discrete time index, j is the discrete time index, N, is
the receding horizon and JlN” is the future discrete time window. y,.; contains
the description of reference behavior, @ is the sought sequence of the future

MYV u of the process that is classically tuned as follow:

d=[..ug)..1" Vieg =k, ..k+N,—1} (7)

where N, is the control horizon and where:

u(@) =uk+N,—~1)Vje Ty '={k+N, ...k+N,—1} (8)

This optimization problem has also to account for discrete time versions of

the continuous time version constraints (2) and (3):



e constraints on the magnitude and velocity of the MV:

Umin < U(]) < Umax Vj € ]ONp_l ={k, .. k+N,—1}

Aumin S U(_]) - ’U,(_] - 1) S Aumax v] € t70Np_1

e n general output constraints for the CV:

ilYrer(3),wp(3),u(j — 1)) <0 Vj e T, Vie I (10)

In the performance index given in (6) and in the output constraints formulated
in (10), one needs, at the current discrete time k, the value of the future
measurements ¥y, over the prediction horizon N,. This impossibility can be
handled using the internal model control (IMC) structure [20,29] with MPC
as depicted Fig. 1. In this structure, the MV is applied to both the process

and the model.

In this control structure combined in the MPC structure, the error e is:

e(d) = ¥p(J) = Ym(9) (11)

In our approach, the difference e between process and model CV is fed back
into the controller, but also is the model CV. Two feedback loops are therefore
used in this IMC-MPC structure to adjust process performances: not only
using the classical feedback error but also with the correction of modeling

errors introduced in the model-based on-line optimizer.

Assumption 4 [18,20] At each sample time k, the error e(j) between the
process output and the model output remains the same over the prediction

horizon Ny. The error value is updated at each time k.

This assumption and Eq. (11) allow to introduce the model (Syy) and the



feedback term e(k) into the constrained optimization problem:

mﬁln J(’LNL) = X g(yref(j)aym(j)au(j - 1):€(k))

jeg)®
G=1[.u(j) ..]" Vje gl
u(j) =ulk+N.—1) Vje Ty
| e < u() < U Vi € T3P (12)
Atgin < u(f) = u(j = 1) < Mumax Vi € To"

CZ(yTef(j)ay’m(])vU’(] - 1)76(k)) S 0 V] € lep7 VZ € I{l

and subject to the resolution of the model (Syyz.).

\

Remark 2.1 y,,(j) is the sampled value obtained from the resolution of the

continuous model (Syr).

2.8  Off-line and on-line IMC-MPC structures

On-line computational time is dealing with the resolution of the optimization
problem that includes the model resolution. Discretization of the PDE model
can lead to a large amount of algebraic differential equations (DAES) that
increases the computational burden, especially in the nonlinear case. In order
to reduce the on-line computational time, the IMC-MPC structure is used off-
line for the system (Syz,). As previously described, given small input variation
Au, small state variations Az and small output variation Ay, about (Sp) can

be represented through the time-varying linearized model (Syyp). Finally,



the off-line solved nonlinear model (Sp) and the on-line solved time-varying
linearized model (Sty 1) replace the initial nonlinear model (Syr) in the IMC-

MPC structure as depicted Fig. 2.

The control objective is now to find the variation Au of the manipulated
variable u about a chosen trajectory ug leading to a better on-line optimization
result. According to the time-varying linearized IMC structure, the control

problem is now equivalent to the following constrained optimization problem:

mﬂln J(’l]) = X g(yref(j)’ Aym(])’ Au(] - 1),6(l€))

N
jeT?

Ad=1[.. Au(j) .. |7 Vje TN

Au(j) = Au(k+ N, —1) Yje Iy

Unnin — Uo(§) < Au(]) < tUmax — uo(j) Vi € Jo*

Np—1 (13)

Au i < Au(j) — Au(j —1) < Au,. Vi€ T,

Aty = Dty = (o(f) = o(j = 1)) Vi€ Jy""
Aul = Atmax — (u(G) —uo(j — 1)) Vjie Jp»

maXx

¢i(Yrer(5), Aym(5), Au(j — 1), e(k)) <0 Vje J™», VielIr

and subject to the resolution of the model (Sry ).

\

The next step now developed is concerned with methods to handle constraints

during the on-line optimization problem resolution.

10



2.4 Constraints handling

Two different kind of constraints are to be accounted for: constraints acting

only on MV and constraints acting on CV (and eventually on MV also).

2.4.1 Input constraints handling

Transformation method for variables allows to translate explicit constraints
on the optimization argument u (and only the optimization argument) as new
equations for new unconstrained argument p [13]. Here, we propose to enlarge
this method to cover magnitude constraints and velocity constraints as well
(acceleration rate constraints may also be accounted for). In order to be used in
the optimization algorithm, such a transformation must have a first derivative
different from zero and must be invertible. This leads to a transformation

equation (Fig. 3) like the transformation used in [25]:

where:

u(j) = F(P(§)) = frmoy + famptanh (2U=Lm) v e gt "
14

p(j)ER Vje it

with the time-varying coefficients fioy and famp updated at each time k:

11



4

f — fmax"’fmin
moy 2

f — fmax 7fmin
amp 2

Jmin = Max (Umin, u(j — 1) + Aumin) Vi € Tp el

fmax = Min (Umax, u(j — 1) + Aupax) Vj € JON”*I

\

Moreover, such time-varying coefficients fiax €t fmin ensure that the first
derivative is equal to one is the middle of the constrained range. Therefore,
in this zone, the optimization procedure is not disturbed by the sensitivity of

the transformation, which is not the case near the constraints bound.

2.4.2  Qutput constraints handling

In order to take account for output constraints as soft constraints (for which
violation may be allowed [26]), we adopt the exterior penalty method [13] used
in nonlinear programming where a positive defined weighted penalty term is

added to the initial cost function J:

Jtot =J+ Jezt
4 (16)

Jewt = E < E w; maxQ(Oaci(yref(j)a Aym(])a AU’(] - 1)’€(k))))

{ jeleZ’ iEI’{L

where w; is an adaptive positive defined weight: it increases when the related
constraint tends to be checked, otherwise it decreases. Roughly speaking, for
any constraint ¢; not checked (i.e when ¢;(Yres(j), AyYm(4), Au(j — 1), e(k)) >
0), a positive term penalize the minimization task. This enforces the optimizer

to minimize .J.,; and hence to enforce the violated constraint to be checked.

12



The penalty method transforms the problem into an unconstrained problem by
substituting a penalty function for the constraint. Therefore, the constrained
solution might be approached from the unfeasible side of the constraints: this
relative drawback can be an advantage in the case where, sometimes, no so-
lution for the constrained problem exists [10] and constraint violation has

therefore to be allowed.

2.5 Final penalized optimization problem

Finally, combining the transformation method for the constraints on the MV
and the exterior penalty method for the constraints on the CV, the final

penalized optimization problem to be solved on-line is the following one:

T)ZZI;TL Jtot(Aﬁ) = Z g(yref(j)7 Aym(.j)vAp(j - 1),6(1€))+

. N.
JjeET, P

ZN (gzjnwz mamQ(O, Ci(yref(j)a Aym(])a Ap(J - 1)5 e(k))
jeg \'

Ap=[.. fHAu®j)) ... " Vje JNt
) Ap(j) = Ap(k + N, — 1) Vj € Ty* !
Au(j) = u(j) —uo(j) = f(po(4) + Ap(5)) — f(po(4)) V5 € Tg= "

po(s) = f *(uo(j)) Vi € Tp

and subject to the resolution of the model (Syv ).

This penalized problem can now be solved by any unconstrained optimization

algorithm.

13



2.6 Control algorithm

Widely known for its robustness and convergence properties, we use of the
well-known Levenberg-Marquardt’s algorithm , where the argument Ap is de-

termined at each sample instant £ by the iteration procedure:

AP = AP — (Vi + M) v Ty, (18)

0

where 7 J, and \7?J%, are the criteria gradient and the criteria hessian with

respect to Ap™ at the iteration n. \/J}., is explicitly provided into the control

algorithm and the classical Gauss’s approximation for /2J

. as well.
This IMC-MPC resolution algorithm is now implemented for control of the

drying process and experimental results are given in next section.

3 Experimental control of a drying process

The aim of this section is to evaluate the IMC-MPC formulation for control
of a drying process. The drying procedure is first described and the control
problem is introduced. Then, experimental results to illustrate the proposed

IMC-MPC structure are shown and discussed.

3.1 Introduction

Reactive painting drying is an important industrial problem through its im-
pact for the quality of the final aspect of products in many industries (cars,
preglass plaint sheets, cans, etc.). The main difficulty encountered during this

operation is the evacuation of the solvent before the end of polymerization

14



reaction: this solvent is needed to simultaneously build the painting film and
to ensure the film polymerization but one should avoid to trap it in the final
dried product. Until now, the use of volatile organic compounds (VOCs) al-
lowed the control of this evacuation during the polymerization reactions. But
the enforced regulations concerning environment lead now to replace the use
of VOCs by the use of water based solvent. However, compared with VOCs,
they evacuate less rapidly and at higher temperatures. To overcome this prob-
lem, infrared drying has been widely developed in industrial processes. Some
studies [22,28,30] deal with diffusion problems with both infrared drying and
water used as solvent.

Within the framework of a previous study [6], an experimental drying process
has been built. It allows to dry a painting film sample coated on a car iron
support by supply of an infrared flow. The experimental plant is represented
Fig. 4 with the infrared part and with the instrumentation part. The sensors
are: a pyrometer that allows the on-line temperature measurement of the sam-
ple at the upper surface and a precision balance that allows the follow-up of
the sample and support set mass. The painting film sample mass is the sum of
the constant final dried mass of the sample with the time varying water mass
in the sample. Indeed, during the drying under infrared flow, this water mass
decreases since the water contained in the painting film sample migrates from

inside to the upper surface and vaporizes at this surface.

3.2 Control objective

In term of final quality of the film, painting formulation (and particularly

the solvent) does not alone lead to cope with the delicate balance problem

15



between water extraction as fast as possible and polymerization reaction to
get a acceptable final quality. Indeed, for real applications, the final product
obtained by the painting film sample drying has to be usable: bubbles and
fissures phenomena have therefore to be avoided. To ensure the final product
quality, paint producers propose to follow a reference temperature trajectory
during the drying cycle (temperature rising at constant velocity and upholding
at a given temperature). The control problem considered here is the tracking
of a reference trajectory y..; for the process temperature (CV), subject to

constraints on the infrared flow (MV).

3.8 Modeling

During the overall drying procedure, two phenomena are taking place: first
drying of the painting film and then polymerization reaction. Since polymer-
ization reaction dynamics is not important when the drying takes place, only
drying phenomena is accounted for in the model. Mass and temperature mea-
surements available during experimental drying kinetics have allowed to vali-
date the first principles model that is used in this paper [6]: the low thickness
painting film sample is characterized by its temperature assumed uniform 7°(¢)
and by its dry basis humidity x(z,¢) assumed to varying only according to the
thickness z of the sample. The drying leads to water losses which produces a
variation in the sample geometry. Considering the low thickness of the sample
with respect to the large surface size, one consider that the water extraction
leads only to the linear reduction of the sample thickness e, with respect to

the mean humidity in dry basis ¥:

ep = €sec(1+ $X) (19)

16



where e, is the final constant dried thickness of the sample and with :

() = 1Am3@¢tut>o (20)

6866

The model of the painting film sample infrared drying can finally be repre-
sented by the state variables T'(t) and x(z, t). It is deduced from the following
energy and mass balances (remaining expressions and coefficients value are

given in [17]).

3.3.1 Energy balance

One assume that the car iron support is a sufficiently good thermal conductor
to consider that the temperature 7" is uniform on the sample and support set:
T is therefore only time dependent. Taking into account of the different losses

P; as well as the absorbed infrared flow represented Fig. 5,
the energy balance leads to, Vt > 0,Vz € [0, ese|:

T
%: ho(Th = T) + on(T} — T
4 ho(Ty — T) + oy o(TE — TY)

= L(T)m(x, T) + air(X)pur (21)

(ppCP(Xa T)ep + pscses)

where p,Cp(x,T)e, and psCses are respectively the surface thermal capacity
of the painting film sample and the surface thermal capacity of the support.
The four first terms on the right-hand side of Eq. (21) are natural convection
and radiation phenomena on both upper and lower surfaces. The fifth term on
the right-hand side of Eq. (21) deals with the loss of water due to evaporation
at upper surface. The MV is the infrared flow ¢;,(¢) and acts the boundary

Z = €gec-

17



Remark 1 According to the spatial uniform property assumption on the tem-
perature, the temperature evolution is described by an nonlinear ordinary differential-

integral equation.

3.3.2 Mass balance

Since there is no macro-porous structure, we consider that the water migrates
only by diffusion phenomenon. It allows to write the mass balance using the

Fick’s law:

e Vi>0, z € Q=|0,esel:

ox 0 ox
=y (Dt ) )

with the effective diffusion coefficient D¢y depending on the humidity, the

temperature and the linear reduction of the thickness:

Doexp(%)emp(%)
Deff(Xa T) = (1 + ¢X)2

(23)

e Vt>0,at z=0 (i.e. at the painting film sample lower surface), there is no
mater transfer:

ox

2 24
P (24)
e Vit >0,at z = eg (i.e. at the painting film sample upper surface), the

outgoing flow is linked to the drying velocity m through:

ox _ m(x,T
—Dey(X T)& = % (25)
D

with the drying velocity given by [5]:

kmmv 2 P — XairP'Usat (Th)

P, l
R LT olp = 0P, (1),

m(x, T) =

18



The reader is referred to [17] for more details about the expressions of

P'Usat (T) and Ay (X)'

Finally, the model is composed of two coupled equations : a nonlinear ordinary

differential-integral equation and a nonlinear parabolic PDE.

3.4 Model Predictive Control formulation

In the MPC framework previously described, the mathematical discrete-time

formulation is written here as the following constrained optimization problem:

min J(@) = 3 (ees () = (0))’ (27)

. N.
jeg; ®?

with magnitude and velocity constraints for the MV.

3.5  FExperimental results

In this first attempt, the control horizon NV, is tuned to 1: even if it tends to give
less interesting solution, it allows to minimize the on-line computational time.
Experiments have been realized to point out the prediction horizon influence

over the tracking performance.

3.5.1 Operating conditions
The operating conditions are the following one:

e the linearization about (S;) is performed with uy = 5000 W.m 2 and with

the initial conditions T; = 36 °C and x; = 0.4 kg.kg™" ;

19



e the models (Sp) and (Sryy) are solved by the finite volumes method (6
volumes) using the subroutine ddaspg from IMSL library ;
e the value for the sampling period 7, is 1s ;

e constraints boundaries are:

Umax = 12,000 W.m ™2
Umin =0 W.m ™2
AUy = +500 W.m ™2

Atpmin = —500 W.m =2

e atmospheric conditions are:

Xair = 20% (32)
T, =52 °C (33)
T, =20 °C (34)

e the control algorithm, written in Fortran code, has been combined to C code
in order to realize the interface with the sensor and the actuator ;

e the processor rate is 400M H z.

In order to compare results for any value of NV,, one introduces the normalized

cost function Jj,, = Zet.
p

3.5.2  Temperature reference trajectory tracking

From the reference tracking and the tracking error results (resp. depicted Fig.

6 and Fig. 7), we can see that the tracking objective is correctly achieved.

Moreover, the intermediate value 6 for the horizon prediction gives the best

result:

e with a small prediction horizon (N, = 3), the handling of the slope variation

of the reference signal (around £ = 80, 120 and 200) is less efficient than

20



with N, = 6 as one can see for the values taken by the normalized cost
function (Fig. 8). In this case, informations quantity available describing the
future process behavior is insufficient. In a way, with NV, = 3 the problem is
badly stated for its resolution, as we can see on the applied control: when the
three slope variations appear, the infrared flow is always either saturated in
magnitude (Fig. 9) or in velocity (Fig. 10). The optimizer does not correctly
capture the future behavior of the process. Then, the algorithm tends too
often to find a non admissible solution and to do bang-bang control. This
leads consequently to poor tracking performances ;

increasing the prediction horizon value to 6 and 12, the infrared flow be-
comes smoother (Fig. 9), but with a large prediction horizon (N, = 12),
another problem appears for 0 < £ < 80: in term of variation, the model
output, which trend is similar to the process output, is quantitatively too
different from the process output (Fig. 11). This is a limitation due to mod-
eling errors and therefore to related linearization errors. Since more values
calculated by the model resolution are taken into account in the optimiza-
tion problem, the criteria minimization is less efficient than in the case where
the prediction horizon take an average value for (N, = 6) as clearly depicted
for the normalized cost function (Fig. 8). This is confirm when tuning N,

to values higher than 12.

Finally, the prediction horizon value N, = 6 is the optimal choice for this

main parameter: experiments with N, tuned to 5, 7, 8, 9, 10, 11 or more

were giving less interesting results. Moreover, one of the property of the IMC

structure (integral action), and the interest of this IMC-MPC strategy, is con-

firmed by these experimental results: the tracking is effective in spite of the

model output used in the control algorithm does not track quantitatively the
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temperature reference trajectory (Fig. 11). Concerning the hyperbolic trans-
formation, relative lost of sensitivity near the constraints bound does not affect

overall performance during the real-time application.

4 Conclusion

This paper is dealing with the control of systems described by nonlinear
parabolic partial differential equations. The idea is to developed a general
MPC framework combined with IMC structure that can be used for a large
amount of practical applications. Two feedback loops are used in this IMC-
MPC structure in order to correct process performances and modeling errors
introduced in the model-based on-line optimizer. IMC structure allows to use
less accurate and therefore less time consuming resolution method for the op-
timization problem. Moreover, in order to decrease the on-line computational
time needed to solve the final penalized optimization problem, a linearization
method of the model is used. Input constraints due to natural actuators limi-
tations are handled through a transformation law that allows to always check
these constraints. Soft constraints, for which violation may be allowed, are
handled through an exterior penalty method. This control strategy is applied
for a painting film drying process where a trajectory tracking under input con-
straints is stated. Interesting performance are shown for experiments and the
influence of the MPC tuning parameter, i.e. the horizon prediction, is pointed
out. Is also allows to see the relative robustness property of the IMC-MPC

structure with respect to modeling errors.
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Fig. 1. General IMC-MPC structure.

Yres (k) Optimization Au(k) +_ u(k) Process yp(k)
algorithm
+
uo(k) Nonlinear | %o(k) +1 e(k)
Model (So) &
+ ym(k)
+
Time Varying Lineariz Ay (k)
Model (STv L)

Fig. 2. General Linearized IMC-MPC structure.
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Fig. 3. Mapping from unconstrained variable p into constrained variable w.
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Fig. 5. Thermal flows occurring during the drying procedure.
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Fig. 8. Normalized criteria value sequence for N, = 3, 6, 12.

14000

12000 f-

10000

8000

6000

Flow (Watt.m-2)

4000

2000

Time (seconds)

Fig. 9. Control magnitude for N, = 3, 6, 12.
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Np=3 ——
Np=6

Np=12 -----
200 F Reference------

150

100

50

0 50 100 150 200 250 300
Time (seconds)

Fig. 11. Model output for N, = 3, 6, 12.

30



