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Toxicity of Copper(I)-NHC Complexes Against Human Tumor Cells:
Induction of Cell Cycle Arrest, Apoptosis, and DNA Cleavage

Marie-Laure Teyssot,”” Anne-Sophie Jarrousse,”' Aurélien Chevry,"!
Angélique De Haze,"' Claude Beaudoin,”” Mich¢le Manin,"™' Steven P. Nolan,©
Silvia Diez-Gonzilez,'”! Laurent Morel,*' and Arnaud Gautier*'"!

Compounds with wide structural diversity are often used
nowadays as therapeutic agents for cancer treatment. The
most familiar is the metallodrug cisplatin 1 that creates in-
trastrand links and, to a lesser extent interstrand links, in
DNA.U Cisplatin and its second generation analogues are
effective against a narrow spectrum of tumor cells and are
often associated with various toxicity issues, such as neuro-
toxicity or nephrotoxicity.!) Thus, the discovery of new or-
ganometallic complexes that are selectively active on cancer-
ous cells in an antiproliferative and/or pro-apoptotic manner
remains a challenge.

Since the first synthesis of stable N-heterocyclic carbenes
(NHC), a great interest in the preparation and applications
of these compounds has grown up.”) Although metal-NHCs
are well recognized as outstanding catalysts, investigations
in the therapeutic field remain limited. Most efforts have fo-
cused on the antimicrobial properties but studies of the anti-
cancer properties have recently been reported.® In this
area, a series of dinuclear homoleptic gold(I) complexes,
such as 2 (Scheme 1) from Baker and Berners-Price’s group,
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Scheme 1. Metal-NHC complexes reported for their anti-proliferative
properties.

is probably the first example of pro-apoptotic metal-NHC
compounds ever reported.'! Since then, Panda and Ghosh
have published a study devoted to palladium(IT}-NHC 3
This complex proved to be superior to cisplatin as an anti-
proliferative agent against HL60 (human promyelocytic leu-
kaemia) tumor cells, and provokes a cell cycle arrest at the
G2 phase.' Very recently, Youngs has reported the proper-
ties of the first anticancer silver(I}-NHC 4, which displayed
ICg (half-maximum inhibitory concentration) values similar
to cisplatin in OVCAR-3 (ovarian) and MB157 (breast) cell
lines."™ This preliminary study also described 4 as active in
vivo, provoking major cell death of the ovarian tumor but
not affecting major organs.

Considerable efforts have been devoted to copper(I) com-
plexes that act as Fenton-type reagents leading to DNA
strand breaking.®" These complexes may be roughly divid-
ed into two sets. The main set contains complexes of cop-
per(Il) that must be reduced in the vicinity of DNA by an
external reagent, whereas the smaller set contains a few ex-



amples of copper(ll) complexes capable of cleaving DNA
on their own (Tambjamine E, Prodigiosin, and the synthetic
[Cu"™Cl{pyrimol)] (pyrimol= 4-methyl-2-N-(2-pyridylmethy-
lene)amino phenol), for example).'™ An example of the first
egroup, the natural compound Bleomycin binds copper(Il)
(and iron) is further reduced in cells by glutathione
(GSH) "™ The same mechanism is evoked for the 2:1 1,10-
phenanthroling (phen)/Cu' complex and its clip-phen ana-
logues!™ Once copper(I) is formed, it may either trap mo-
lecular oxygen to form hydrogen peroxide or react directly
with H;O; generated in situ by the cellular machinery, which
leads to “oxo-copper”™ or “copper-hydroxyl” species. Oxida-
tive attack mediated by these reactive oxygen species leads
to the cleavage of DNA at several positions on the deoxyri-
bose moiety. Unfortunately, the Cu(phen)** system presents
an important drawback. Indeed, the small association con-
stant of the second phenanthroline limits its utilization in a
physiological medium (and furthermore for therapeutic pur-
poses).® We reasoned that metal-NHC complexes, recog-
nized for their high stability and good lipophilicity!*! could
offer a excellent alternative to the copper—phenanthroline
couple. Indeed, we presumed that NHC—copper(l) com-
plexes would be stable enough to reach a biological target
in cellulo and disrupt the cellular machinery in such a way
that apoptosis would ensue.

For this purpose, we selected a copper(I)-NHC complex
with a heteroleptic nature, [CuCl{8IMes)| (SIMes: 1,3-bis-
(2,4 6-trimethylphenyl)imidazolin-2-ylidene) 5, that we com-
pared with the benchmark metallodrug cisplatin 1. We fo-
cused on the cytotoxic and apoptotic properties of 5 and its
influence on the cell cycle. Effects of 5 on DNA were com-
pared with other metal-NHC complexes differing in the
nature of the metal and/or the number of carbene ligands
(6-8).

First, the effects of 5 and cisplatin on cancer cell growth
were compared on five different human cancer cell lines
(KB: oral carcinoma; HLO0D: promyelocytic leukaemia;
MCF-7 and MCF-7R: breast cancer; LNCaP: prostatic
cancer). The results are depicted in Figure 1 and Table 1.

To our delight, 5 exhibits higher cytotoxicity than the ref-
erence metallodrug. This is best illustrated by the [Cg, value
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Table 1. 1Cy, [pM] of compounds 1 and 5.

Entry Cell ling 1 5 1:5

1 KB 2202 012000 18
2 HL&0O 6.78 L0.08 0.04L001 150
3 MCF-TR 4.49 £0.03 0381003 27
4 MCF-7 104402 0.075£0002 140
5 LNCaP 294+01 0431001 7

of 5 being 130 fold lower than that of cisplatin in the HL60O
cell line (Table 1, entry 2). This higher cytotoxicity was pre-
served regardless of the nature of the cell line. Also of im-
portance is that 5 exhibits submicromolar cytotoxicities that
compare well with the literature data for [Cu"Cl-
{pyrimol)] ™! [Cu'Cl{phen),] and its clip-phen analogues, ™
and the gold{I-NHC 2! palladium(IT-NHC 3.%! and sil-
ver([I-NHC 4! complexes.

The nature of the cellular effects of 5 and 1 was then com-
pared at the cell cycle and apoptotic levels by focusing on
the breast tumor cell line MCF-7. In this view of the cell
cycle progression, we paid particular attention to the fates
of P21 and cyclin D1, which are two regulators of the Gl
phase (Figure 2), and the phosphorylation of the protein
cdc2, which indicates a G2 phase arrest (Figure 3)." Re-
garding apoptotic effects, we investigated the fate of PARP
and P53 (Figure 4).""" PARP, poly-{ ADP-ribose)-poly-
merase, is a highly conserved nuclear enzyme that recogniz-
es DNA strand breaks and is implicated in the apoptotic re-
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Figure 2, Cell cycle study: comparative western blot analysis of cisplatin
and [CuCl{SIMes)] in MCF-7 cells
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Figure 3, G2 phase study: comparative western blot analysis of cisplatin
and [CoCl{SIMes)] in MCF-7 cella
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Figure 4. Apopiosis study: comparative western blot analysis of cisplatin
and [CuCl{SIMes)] in MCF-7 cells
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sponses of cells and P53 is a protein involved in cell cycle
regulation, apoptosis and DNA repair.

The effect of 5 on the cell cycle is evidenced by the slight
dose-dependent accumulation of P21 while the expression of
cyclin D1 is strongly down-regulated. These two correlated
effects indicate a stop at the G1 phase of the cell cycle that
occurs at concentrations that are at least ten times lower
than those of cisplatin. It has been demonstrated that cispla-
tin induces a cell cycle arrest at the G2 phase™ To defini-
tively assess that [CuCl{SIMes)| differs from 1 in terms of
its biological response, we investigated the phosphorylation
of protein kinase cde2 (pedc2), a marker of the G2 phase
arrest (Figure 3).1

As expected, exposing MCE-7 cells to 1 results in a dose-
dependent production of pede? (Figure 3). Exposure to 5
does not reveal this expression. This enables us to definitely
rule out a G2 phase arrest induced by 5.

In light of results that demonstrate that a lack of pede2
expression and a decrease in cyclin D1 occurs concomitantly
with an increase in P21, we conclude that the effects pro-
moted by [CuCl{SIMes)| differ from those of cisplatin and
provoke a G1 phase arrest of the cell cycle progression.

Figure 4 shows that P53 accumulates rapidly in cisplatin-
treated cells but not in cells treated with [CuCl(SIMes)].
Additionally, both compounds induce the proteolytic cleav-
age of PARP into its characteristic inactive 85 kDa frag-
ment. Importantly, [CuCl{SIMes)] induces the cleavage of
PARP with greater efficiency than cisplatin.

The lack of correspondence of the marker patterns for
cell cycle progression and apoptosis induced by [CuCl-
(SIMes)| and cisplatin indicates different mechanisms.

Finally, to ensure that DNA is a possible target, we exam-
ined the genotoxicity in vitro by using the pcDNA4TO plas-
mid™¥ The first experiments were conducted in aerobic con-
ditions in water/DMSO (9:1, DMSO: dimethyl sulfoxide)
without any reducing reagents, for 24 h, with complexes 1,
5-8 (Figure 5).

In Figure 5, ling 4 shows the conversion of the supercoiled
form into an open circular conformation in the presence of
5. Comparisons with lincarized plasmid (line 2) and cisplatin
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Figure 5. Aerobic cleavage of plasmid DNA (1.0% agarose pel). Line 1:
supercoiled plasmid; line 2: plasmid linearized by using the endonuclesse
BamH1; line 3 cisplatin; line 4: [CuCl(SIMes)] 5; line 5: [AgCl{SIMes)]:
line 6: [Cu{SIMes),|PF: line 7: [PACl IMes) . Concentration of all com-
plexes: 10 pw; supercoiled plasmid: 1.6 pg.

action (Figure 5, ling 3) enable us to rule out the possibility
of a double strand break and a crosslink under aerobic con-
ditions. Also of importance is the lack of activity displayed
by [AgCl(SIMes)| (6), [Cu(SIMes),|PF; (7), and [PdCl.-
(IMes),| (8) complexes (Figure 5, lines 5, 6, and 7). The pas-
sivity of the silver(l)— and palladium(II-NHC complexes
highlights the necessity of a copper(I) atom for nuclease ac-
tivity and reinforces the hypothesis of a Fenton-type reac-
tion. This copper aerobic activity is strictly restricted to a
complex in which the metal/carbene ratio is 1:1, as demon-
strated by the inactivity of the homoleptic copper(I-NHC
(7; Figure S, line 6).17

We then used a known inhibitor and reducing agents to
ensure  that the reaction involves a radical process
(Figure 6).

In figure 6, lines 3 and 4 highlight the rate of the process
under free reducing conditions. A small amount of super-
cotled plasmid was converted into the open circular form in
3 h, the process being complete in 24 h. The addition of sin-
glet oxyegen scavenger MNaN; led to a complete collapse of
the nuclease activity (Figure 6, line 5)1! All reactions were
performed in the presence of hydroxyl radical scavenger
DMSO" and its inability to inhibit the reaction argues
against the involvement of a free, diffusible HO radical.
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Figure 6. Effect of additives on DNA cleavage. Line 1: supercoiled plas-
mid; ling 2: plasmid linearized by using the endonuclease BamH1; line 3:
[CuClSIMes)] (5), 3 h: line 4: 5, 24 h; line 5: 54+ Nal;, 24 h: line 6: 54
ascorbic acid, 3h: line 7: 54 GSH, 3 h; line 8: Cu(phen)™ +GSH, 3 h:
line 9: 54+ GSH, 24 h; line 10: 54+ GSH, 48 h. Concentration of all com-
plexes: 10 v ; supercoiled plasmid: 1.6 pg.

These results suggest that the activation of oxyzen by 5
leads to the production of hydrogen peroxide.®

The reducing reagents GSH and ascorbic acid both re-
vealed a pronounced accelerating effect (Figure 6, lines 6, 7
compared with lines3, 4) and allowed a complete conver-
sion in 3 h. Inspection of lines 6 and 7 also reveals the for-
mation of a minor lower band below the open circular one.
Comparison with Cu(phen)®* (Figure 6, line 8) enables us to
attribute this new band to the linearized plasmid (see also
Figure fi, line 2). 5 operates more slowly than Cu(phen)**;
after 24 h (Figure 6, line 9), the nuclease activity of 5 is still
inferior to a 3h treatment of Cu(phen)** and a 48 h expo-
sure is necessary to achieve significant linearization of the
plasmid (Figure 6, line 10).

In conclusion, we have demonstrated that using [CuCl-
{SIMes)| as a source of copper(l) in human cancer cells is a
valuable strategy. Its cytotoxicity compares well with that of
cisplatin and copper(l)-phenanthroline complexes and other
metal-NHCs. Unlike cisplatin, 5 arrests the cell cycle pro-
eression at the G1 phase and induces apoptosis at a lower
concentration. We assume that an aerobic radical process
leading to a DNA strand break is responsible for the ob-
served cytotoxicity. Importantly, the nuclease activity is con-
siderably enhanced by the ubiquitous tripeptide GSH. On-
going research in our laboratories is focused on completing
the identification of the intimate biological mechanisms of
action that involve copper—carbene complexes.
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