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Abstract. This paper introduces a new framework for two-phase image
segmentation, namely the Fuzzy Region Competition. A generic formula-
tion is developed that extends in a convex way several existing supervised
or unsupervised models. The method provides globally minimizing solu-
tions and can be solved with efficient convex optimization tools. We also
show by some classical examples that the results are in practice almost
insensitive to initial conditions. Motivated by medical applications, in
particular angiography, we finally derive a fast algorithm for segmenting
images into two non-overlapping smooth regions. Compared to existing
methods, this last model has the unique advantage of featuring closed-
form solutions for the approximation functions in each region based on
normalized convolutions. Results are shown in 2D and 3D.

1 Introduction

Several successful variational approaches to region-based image segmentation
are based on the minimization of a functional that includes both boundary and
region integrals [5, 8, 12, 17]. When a two-phase partition of an image I is con-
sidered, a general form of the optimization problem reads :

(P0) min
Σ⊂Ω

α∈A

{
F0(Σ, α) =

∫

Γ

g(Γ(s))ds +

∫

Σ

rα1
1 (x)dx +

∫

Ω\Σ

rα2
2 (x)dx

}

where Ω ⊂ IRn is the image domain, Σ ⊂ Ω the foreground region and Γ = ∂Σ
its boundary. The error functions rαi

i : Ω → IR encode the underlying model
of each region in terms of intensity properties. They may depend on a set of
region parameters α = (α1, α2), such as a couple of scalars [5], vectors [12, 17] or
functions [13, 14] (see Table 1). g is a positive boundary potential, usually chosen
to be a decreasing function of the image gradient. If the optimal α is known a
priori, (P0) is a supervised segmentation problem, constrained by the geodesic
length of the boundary [12]. Otherwise, the segmentation is unsupervised and α

has to be included in the optimization process. A natural approach is then to
perform successive minimization steps alternatively on Σ (the partition variable)
and on the components of α (the region parameters).



Table 1. Possible error functions ri and region parameters

Active Contours Without Edges [5] ri = λ (I − ci)
2 A = IR2

Region Competition [17]
Geodesic Active Regions [12]

ri = −λ log Pi

(
I |αi

)
A = (IRk)2

Mumford-Shah [10, 13, 14] ri = λ (I − si)
2 + µ |∇si|

2 A = (C1)2

Since the Region Competition1 algorithm [17], a popular way of solving (P0) is to
rewrite F0 as a functional that only contains boundary integrals, using Green’s
theorem. Gradient-descent evolution schemes can then be built upon optimality
conditions for Γ (Euler-Lagrange equations). The boundary evolution is most
often carried out numerically in the Level Sets framework [11] in which Γ is
represented implicitly by a real-valued function φ such that Γ = φ−1(0). This
boundary-oriented approach has intrinsic convergence limitations, since neither
the involved functional nor the optimization space - the set of curves - are con-
vex. In practice, this produces a dependency on initial conditions and prevents
the use of powerful tools from convex optimization theory.

A different perspective on (P0) is to rewrite F0 as a functional that only con-
tains integrals over the whole domain Ω. To that end, Level Sets have also proved
useful since the Active Contours Without Edges and related models [16, 5, 14].
The key idea is to replace in F0 the set Σ by the Heaviside function H(φ) and
derive Euler-Lagrange equations directly for φ, without explicit use of the bound-
ary. This approach inherits some aforementioned drawbacks. It is ill-posed2 in φ
and the optimization space - the set of characteristic functions - is still clearly
non-convex. This recently motivated very promising works [4, 2] that consider
alternative convex methods based on total variation regularization for the global
minimization with respect to φ.

Along the same line, our present contribution is three-fold. In section 2, we first
propose a generic formulation that has a number of interesting properties, in-
cluding convexity with respect to the partition variable. This leads to a new
framework, namely the Fuzzy Region Competition, that can be applied to any
problem under the form (P0). We illustrate the supervised case by using a statis-
tical region term borrowed from the original Region Competition [17]. In section
3, we also apply our convex framework to the classical error function of the
cartoon Mumford-Shah functional [5, 10], assuming constant regions. In section
4, motivated by medical applications such as angiography, we finally propose,
develop and illustrate a new localized extension of this model that includes an
intrinsic notion of scale, namely the Smooth Region Competition. Built on win-
dowing and convolutions, this last segmentation method is very efficient and
gives qualitative results that are similar to existing piecewise-smooth models
based on Level Sets. Examples are shown in 2D and 3D.

1 The name illustrates the competition between two repulsive forces applied at the
boundary, depending on the competition function r = r1 − r2.

2 An infinite number of solutions φ are valid representations of a given optimal Σ.



2 Two-phase Fuzzy Region Competition

The crux of our general formulation is that (P0) can be solved by considering a
closely related problem that is at least convex in its partition variable. Indeed,
(P0) is not convex since the set of sub-domains Σ ⊂ Ω is not convex. Nonethe-
less, it can be expressed as an optimization problem in the set of characteristic
functions3 (still non-convex) so that it also reads

min
χ,α

{
F̃0(χ,α) =

∫

Ω

g(x) |∇χ(x)|dx +

∫

Ω

χ(x)rα1
1 (x)dx +

∫

Ω

(1 − χ(x))rα2
2 (x)dx

}

Under this form, we propose to extend (P0) into a problem that is convex in its
partition variable, replacing the characteristic function χ by a fuzzy membership
function u belonging to a convex set. A suitable choice for this set is the space
of functions of bounded variations taking their values in [0, 1], noted hereafter
BV[0,1](Ω). This extension leads to the new Fuzzy Region Competition problem:

(P) min
u∈BV[0,1],α

{
F (u, α) =

∫

Ω

g |∇u| +

∫

Ω

u(x)︸︷︷︸
P (x∈Σ)

rα1
1 (x)dx +

∫

Ω

(1 − u(x))︸ ︷︷ ︸
P (x∈Ω\Σ)

rα2
2 (x)dx

}

A physical interpretation of the variable u is that for any x ∈ Ω, u(x) is the
probability that x belongs to Σ (the foreground). Being convex in u, problem (P)

has only solutions globally minimizing F and can be solved (for fixed α) with
efficient algorithms. Furthermore, the interest of this formulation with respect
to the segmentation problem (P0) resides in the following claim :

Proposition 1. Fixing α, if u∗ is a global minimizer of F in BV[0,1](Ω) then
for almost every t ∈ [0, 1], the characteristic function4 x 7→ χu∗(x, t) of the set
Σt = {x ∈ Ω, u∗(x) > t} is also a global minimizer of F . In addition, Σt is a
global minimizer of F0.

Proof: For any functions u in BV[0,1](Ω) and r in L1(Ω), we have:

Coarea formula [7]:

∫

Ω

g |∇u| =

∫ 1

0

∫

Ω

g(x) |∇χu(x, t)| dxdt (1)

∫

Ω

ur =

∫

Ω

(∫ u(x)

0

dt

)
r(x)dx =

∫

Ω

(∫ 1

0

χu(x, t)dt

)
r(x)dx =

∫ 1

0

∫

Ω

χu(x, t)r(x)dxdt (2)

For sake of simplicity, we shall omit the fixed variable α in the following. Apply-
ing (1) and (2) to the minimizer u∗, we obtain F (u∗) =

∫ 1

0
F (χu∗(·, t))dt, which

is equivalent to
∫ 1

0
{F (χu∗(·, t)) − F (u∗)} dt = 0. Since ∀t, F (u∗) 6 F (χu∗(·, t)),

F (χu∗(·, t)) = F (u∗) for a.e. t ∈ [0, 1]. This means that the function x 7→ χu∗(x, t)

is also a minimizer of F (·, α) for almost every t ∈ [0, 1]. In addition, if Σ ⊂

Ω is such that F0(Σ) < F (u∗) then its characteristic function3 also satisfies
F0(Σ) = F (χΣ) < F (u∗), which is a contradiction. Since for a.e t ∈ [0, 1] F0(Σt) =

F (χu∗(·, t)) = F (u∗), we finally have ∀Σ ⊂ Ω, F0(Σt) 6 F0(Σ).�

3 The characteristic function of a set Σ ⊂ Ω is the function χΣ(x) = 1 if x ∈ Σ, 0
otherwise. The perimeter of its boundary is given by Per(∂Σ) =

∫
Ω
|∇χ|.

4 χu is the function defined in Ω × [0, 1] by χu(x, t) = 1 if u(x) > t, 0 otherwise.



In other words, we proved that the set of solutions of (P) is stable under thresh-
olding and it is clear that every solution of P0 corresponds to one of these thresh-
olded functions. We can now develop an efficient optimization strategy capable
of solving any two-phase segmentation problem that can be expressed through
the general formulation (P0), as the classical models listed in Table 1. Indeed,
being convex in u, problem (P) can be solved through powerful tools from convex
optimization theory [6]. In the general unsupervised setting, F can be minimized
iteratively by alternating the following two steps:

(A) Considering u fixed, optimize and update the region parameters α,
(B) Considering α fixed, minimize w.r.t the partition variable and update u.
When a steady state u∗ is found, simply threshold it.

Step (A) depends on the specific choice of error functions (see sections 3 and 4).
Step (B), however, can be realized by applying a generic minimization scheme
for the variable u: Fixing α, minimizing F with respect to u in BV[0,1] is equiv-
alent to minimizing

∫
Ω

g |∇u| +
∫

Ω
ur in BV under the constraint 0 6 u 6 1,

where r = rα1
1 − rα2

2 is the competition function. Based on [4], this constrained
problem has the same set of minimizers than the unconstrained problem (P̃)

of minimizing F̃ (u) =
∫

Ω
g |∇u| +

∫
Ω

ur + βν(u), with the exact penalty term
ν(ξ) = max(0, |2ξ − 1| − 1) and β > 1

2
|r|∞. Even though (P̃) can be numerically

solved using a gradient-descent scheme based on the Euler-Lagrange equation,
no advantage would be taken of the convexity of F̃ . We thus choose to follow [1]
and exploit the fast duality projection algorithm of Chambolle [3]. To that end,
we add an auxiliary variable v and consider the following weak approximation:

(P̃θ) min
(u,v)∈BV

{
F̃θ(u, v) =

∫

Ω

g |∇u| +
1

2θ

∫

Ω

|u − v|2 +

∫

Ω

rv + βν(v)

}
,

where θ is chosen to be small enough so that the two components of any minimiz-
ing couple (u∗, v∗) are almost identical w.r.t. the L2 norm. Note that this approx-
imation is still componentwise convex in u and v. Moreover, u being fixed, it is
easy to check that the optimal v is directly given by v = max (min (u − θ r, 1) , 0)).
Now, v being fixed, the projection algorithm of [3] can be applied for the mini-
mization of F̃θ with respect to u. Hence, u = v − θdiv(p) where5 the vector field
p ∈ C1

c (Ω, IRn) is the solution of ∇(θdiv(p) − v) − |∇(θdiv(p) − v)|p = 0. This can
be solved using a fixed point algorithm, iterating on n > 0

taking τ > 0, p
0 = 0, p

n+1 =
p

n + τ∇(div(pn) − v/θ)

1 + τ |∇(div(pn) − v/θ)| /g
.

where τ is chosen to ensure stability (in the isotropic 2D case, τ ≤ 1
8

[3]). In prac-
tice, this algorithm is numerically very stable. Note that contrary to gradient-
descent schemes, it does not rely on the explicit computation of the curvature
of u. We also observed that decoupling u and v has a relaxation effect on the
regularization and a very positive impact on the overall convergence.

5 C1
c (Ω, IRn) is the set of compactly-supported C1 functions.



50

100

150

200

250

300

350

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Fuzzy Region Competition, supervised segmentation of the zebra image: (a)
The original image and patches used to learn the background (dashed) and fore-
ground (solid) histograms given in (b). (c) The corresponding competition function
r = log(P2/P1). (d) Final segmentation. Two different (e) initializations, (f)-(g) inter-
mediary states (step 10-20) and (h) final partition function u (step 300).

In figure 1, we show an immediate application of the above generic scheme in
a supervised segmentation experiment. The competition function r = r1 − r2

has been built a priori, following the statistical model given in [12] or [17].
Probability distributions Pi(I) have been estimated from both background and
foreground region patches, such that r = λ log(P2/P1), where λ is a regular-
ization parameter. In practice, we have observed that this supervised method
gives always the same binary partition function, regardless of initial conditions.
However, there exist ’pathological’ cases of r for which several minimizers of F ,
not necessarily binary, could solve the non strictly convex problem (P). Those
cases do not contradict proposition 1, neither do they easily show up in practice,
but it may be interesting to characterize them in a more in-depth study. In the
following sections, we apply the Fuzzy Region Competition to some unsupervised
cases, by first considering the classical two-phase constant model (section 3),
then extending it to a new smooth model (section 4).

3 Constant Region Competition

In [4], Chan et al. propose to solve the minimization involved in the Active
Contours Without Edges [5] by considering an auxiliary convex problem. They
show that if c1 and c2 are fixed and u∗ is a solution of

min
u∈BV[0,1](Ω)

{
F[4](u) =

∫

Ω

|∇u| + λ

∫

Ω

u
(
(I − c1)

2 − (I − c2)
2
)}

,



then the set Σt = {x ∈ Ω, u∗(x) > t} is for a.e. t ∈ [0, 1] a minimizer of the
following functional, considered in [5]:

F[5](Σ) =

∫

∂Σ

ds + λ

∫

Σ

(I − c1)
2 + λ

∫

Ω\Σ

(I − c2)
2

This result inspired the general formulation of section 2, and also guides its
first application. Solving the Active Contours Without Edges model using our
framework boils down to choosing rci

i = λ (I − ci)
2, α = (c1, c2) and g = 1 in

(P)6, such that the problem becomes

(Pc) min
u∈BV[0,1]

(c1,c2)∈IR2

{
Fc(u, c1, c2) =

∫

Ω

|∇u| + λ

∫

Ω

u(I − c1)
2 + λ

∫

Ω

(1 − u)(I − c2)
2

}

where λ is a parameter balancing the region error terms and the Total Variation
regularization. Applied to (Pc), Proposition 1 gives the result already obtained
in [4]. Nonetheless, although closely related by Fc(u, c1, c2) = F[4](u, c1, c2)+

∫
Ω

(I−

c2)
2, the two involved functionals lead to a slightly different perspective. F[4] is

not to be considered as a minimization on the triplet (u, c1, c2) but as a convex
alternative to obtain a minimizer of the original problem [5], when c1 and c2 are
fixed. Indeed, no optimization of those constants is involved in [4]. In practice,
this implies the choice of an arbitrary level set of u (e.g. 0.5) in step (A) of
the alternate minimization scheme. This may at first seem a minor issue since
any Σt should be a minimizer at convergence. However, full convergence of u is
rarely obtained in practice at each step (B), in particular in the first iterations,
and the levels of u are not equivalent. Hence the arbitrary choice of a level t for
the computation of c1 and c2 may introduce a bias in the optimization process.
On the contrary, in the proposed approach, the derivatives of Fc with respect to
scalars c1 and c2 give directly new optimality conditions that naturally involve
all levels of the fuzzy membership function7 u:

c∗1 =

∫
Ω

uI∫
Ω

u
, c∗2 =

∫
Ω

(1 − u)I∫
Ω

(1 − u)
(3)

Our Constant Region Competition algorithm follows the generic scheme pre-
sented in section 2: (A) u being fixed, compute the weighted averages c1 and c2

using equation (3). Then, (B) c1 and c2 being fixed, minimize w.r.t. u using the
weak formulation (P̃θ) and perform a few iterations of Chambolle’s projection
algorithm. At convergence, the final segmentation is obtained by thresholding u
at any level in [0, 1], as justified by Proposition 1. In figure 2, we give an example
of this simple unsupervised segmentation algorithm on a synthetic image. As in
the supervised case, at least above a reasonable value of λ, we observed that the
steady state is again always a binary function that is independent of the initial-
ization. This method can thus be a useful tool for segmenting two-phase images
corrupted by a gaussian noise of constant variance (the underlying assumption).

6 For sake of simplicity, g will be kept constant in the remainder (euclidian length).
7 If u is 0 almost everywhere (or 1 almost everywhere), c∗1 = c∗2 =

∫
Ω

I/ |Ω|.
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Fig. 2. Constant Region Competition : (a) A noisy synthetic angiography image where
only two intensity means are present. (b) Convergence plots for Fc, c1 and c2. (c)
Final approximation uc1 + (1 − u)c2. (d) Final segmentation. Two different (e) initial
conditions, (f)-(g) intermediary steps and (h) final partition functions u.

Unfortunately, this is hardly realistic for medical images, in particular in angiog-
raphy, since vessels usually exhibit a slowly varying contrast across the image
(figure 3.a). In addition, extending the model in order to handle more than two
phases would not necessarily be of any help if the observed variations are smooth.
In the next section, we derive a new segmentation model by adding in the region
error a localizing kernel, which explicitly provides an intrinsic notion of scale to
our two-phase separation problem.

4 Smooth Region Competition

Even though two-phase images that could be accurately approximated by a sin-
gle constant in each region are rarely encountered in practice, there are certainly
some applications for which the hypothesis may still hold locally, i.e. at a certain
scale. To that end, our purpose is to formulate a local extension of the previ-
ous model that would account for slowly varying intensities and still keep the
advantages of the convex general framework (P). A possible way to achieve this
localization is to introduce a symmetrical window function ω : Ω 7→ IR+, such
that ω(x) → 0 when |x| → +∞, and use it to design a continuous sum of local
Constant Region Competitions. In the previous section, the global contribution
of the foreground to the total error was E =

∫
Ω

u(I − c1)
2. Now windowing this

error with ω in a neighborhood of y ∈ Ω gives :

e(y) =

∫

x∈Ω

u(x)(I(x)− s1(y))2ω(x − y)dx



where the previously constant approximation c1 is now an integrable func-
tion s1(y) that is allowed to vary in space. Hence, the new contribution of the
foreground to the total error is

∫
y∈Ω

e(y)dy. Adding a similar background con-
tribution and switching the order of integrations finally exhibits our new region
error terms, which leads to the Smooth Region Competition problem:

(Ps) min
u∈BV[0,1]

(s1,s2)∈L1





Fs(u, s1, s2) =

∫

Ω

|∇u| + λ

∫

x∈Ω

u(x)

∫

y∈Ω

ω(x − y)(I(x)− s1(y))2 dydx

+ λ

∫

x∈Ω

(1 − u(x))

∫

y∈Ω

ω(x − y)(I(x)− s2(y))2 dydx

where λ is a parameter balancing the error terms and the Total Variation
regularization. (Ps) corresponds to the specific choices α = (s1, s2), A = L1(Ω)2

and rsi

i : x → λ
∫

y∈Ω
ω(x−y)(I(x)−si(y))2 dy in the general problem (P), such that

the generic scheme given in section 2 and Proposition 1 are still valid. Therefore,
we only need to specify how to minimize with respect to s1 and s2.

Proposition 2. Fixing the partition variable u, the couple of functions (s∗1, s
∗

2)
that minimize Fs(u, s1, s2) satisfy for almost every y ∈ Ω the following equations:

s∗1(y)

∫

Ω

u(x)ω(x− y)dx −

∫

Ω

u(x)I(x)ω(x− y)dx = 0

s∗2(y)

∫

Ω

(1 − u(x))ω(x− y)dx −

∫

Ω

(1 − u(x))I(x)ω(x− y)dx = 0

Consequently, as soon as there is a measurable set M0 (resp. M1) where ∀x ∈

M0(resp. M1), u(x) 6= 0 (resp. u(x) 6= 1) and if ω is a positive function, optimal
closed-form solutions are given by the following normalized convolutions8:

s∗1 =
w ∗ (uI)

w ∗ u
and s∗2 =

w ∗ ((1 − u)I)

w ∗ (1 − u)
(4)

Proof: With fη(t) = Fs(u, s1 + tη, s2), the functional derivative of Fs with respect
to s1 in the direction η (a compactly supported C∞ function) is given by

dfη

dt

∣∣∣∣
t=0

= −2λ

∫

x∈Ω

u(x)

∫

y∈Ω

(I(x)− s1(y))η(y)ω(x− y)dydx

= −2λ

∫

y∈Ω

η(y)

∫

x∈Ω

(I(x)− s1(y))u(x)ω(x− y)dxdy

A necessary condition for s∗1 to be a minimizer of Fs is : ∀η, dfη/dt|
t=0 = 0.

Thus s∗1 must satisfy for almost every y ∈ Ω:
∫

x∈Ω
(I(x)−s∗1(y))u(x)ω(x−y)dx = 0.

Similar derivations with respect to s2 complete the proof. �

The smooth case can be interpreted by analogy to the constant case of section
3, where the weighted averages c1 and c2 have been replaced by the normalized
convolutions s1 and s2. They should be considered as smooth approximations

8 The convolution between f and g is function f ∗ g : x →
∫

Ω
f(y)g(x − y)dy.



of the image within each fuzzy region. Indeed, even though no regularity con-
straint is explicit in Fs, the resulting functions are as regular as the window ω,
provided that the latter is positive. We remind that the theory of normalized
convolution, introduced in [9], is a simple and useful extension of convolution
that accounts for uncertain or missing image samples. Here, normalized convo-
lutions naturally appear to create smooth approximations for each phase, taking
into account the fuzzy membership functions u and (1−u) as certainty measures.

Our Smooth Region Competition algorithm follows again the generic scheme pre-
sented in section 2: (A) u being fixed, compute the normalized convolutions s1

and s2 using equation (4). Then, (B) s1 and s2 being fixed, compute the com-
petition function r = rs1

1 − rs2
2 (this also involves convolutions9) and perform a

few iterations of the dual projection algorithm . When a steady state is found,
the final segmentation is obtained by thresholding u at any level in [0, 1]. The
function S = us1 + (1 − u)s2 gives then a piecewise-smooth approximation of
the original image (see figure 3.c). Indeed, a binary u prevents the smoothing of
s1 and s2 across the boundary. In this respect, our approach relates to segmen-
tation methods assuming a piecewise-smooth underlying model, such as those
based on the Mumford-Shah functional [10]. However, it also features an essen-
tial practical advantage. Indeed, for instance in [13, 14, 2], the approximation
functions si are defined as solutions of second-order differential equations, only
defined inside each phase10. Although theoretically sound, this has two draw-
backs in practice. First, diffusion equations with conditions on the boundary
of an arbitrary-shaped domain (the current contour/surface) must be solved at
each step (A) of the alternate minimization scheme. This is tedious since the
domain is moving between each iteration. Second, both approximation functions
are only defined in their respective domain, but need to be extended in order
to compute the competition function, at least in a local vicinity. The construc-
tion of the extension is arbitrary and needs the exact location of the boundary
separating the phases at all times. For 3D volumes in particular, those steps
involve quite heavy computations. In contrast, step (A) of the Smooth Region
Competition algorithm is much lighter since smooth closed-form solutions for s1

and s2, defined everywhere in Ω, are directly constructed from u.

A very suitable choice for the window function is the normalized isotropic Gaus-
sian kernel ω(x) = (2πσ2)−n/2 exp(− |x|2 /2σ2). The standard deviation σ explic-
itly provides the model with an intrinsic notion of scale, related to the intensity
variations that are expected to arise in each region. Note that when σ → ∞, we
recover the constant model. Furthermore, being positive, non-compactly sup-
ported and C∞, the Gaussian window guarantees the regularity of si functions
everywhere in the domain Ω. As for the implementation, very efficient recursive
filters that approximate the convolution and simulate the non-compact support
with a computation cost that is independent on σ are also available [15]. In fig-

9 The competition function here reads r(x) = [ω∗(s2
1−s2

2)](x)−2I(x)[ω∗(s1−s2)](x).
10

∫
Σ
|∇s1|

2 +
∫

Ω\Σ
|∇s2|

2 is typically added in the functional.
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Fig. 3. Smooth Region Competition: (a) A noisy synthetic image of a vessel of smoothly-
varying intensity on a smooth background. (b) Final s2. (c) Final smooth approxima-
tion us1 + (1 − u)s2. (d) Segmentation. Two different (e) initial conditions, (f)-(g)
intermediary steps and (h) final partition functions u. The circle radius in (e) is 2σ.

ures 3 and 4, we show the application of this algorithm on a 2D synthetic image
and on real 3D volumes.

5 Conclusion

We introduced a new framework for two-phase image segmentation, namely the
Fuzzy Region Competition. It generalizes some existing supervised and unsuper-
vised region-based models, if only two phases are considered, and can be used in
all applications where a distinction foreground / background is meaningful, in
2D or 3D. The functional formulation we proposed is convex in its bounded vari-
ation partition variable u. The convexity guarantees to obtain in the supervised
case a globally optimal solution. Although this property does not hold in the
unsupervised setting, for which the region parameters have also to be optimized,
it still produces very stable algorithms that turn out to be weakly sensitive to
initial conditions. Furthermore, those algorithms can be very fast, in particular
by using convex optimization tools and recent developments in total variation
regularization. We believe that the use of a fuzzy membership function in region-
based segmentation models leads to easy implementations that are more efficient
and stable than their existing curve evolution Level Sets counterparts. This mo-
tivates the need for further work, in particular by including some a priori shape
knowledge within the model in order to increase robustness.

Based on this framework, a new consistent model for the partition of an image
into two smooth components was also derived. It is extensively built around



(a) (b) (c) (d)

(e) (f)

Fig. 4. 3D Applications : We show here typical results of the Smooth Region Compe-

tition applied to 3D vessel segmentation. In both experiments, a segmentation mask
of the involved organs (liver, lungs) was available, such that the two-phase hypothesis
(vessels + tissue) was approximately valid. In (a),(b),(c),(d), we show in volume ren-
dering two evolutions of the partition function segmenting a liver vessel structure from
a 294x215x101 CT angiography. Computation time is about 20 sec. on a standard PC
platform (depending on the initial conditions). (e) shows the resulting mesh in surface
rendering after the final thresholding. (f) is the result of the same algorithm applied
to a pulmonary vessel structure, illustrating the topological complexity that the model
can handle.

windowing principles, convolutions, and features closed-form approximations in
each region. Thus, it can be faster than some of the existing variational meth-
ods that give qualitatively similar results. It also provides an intrinsic notion of
scale, depending on the intensity variations expected to arise in the objects to
be segmented. However, from a segmentation perspective, scale also intuitively
relates to other geometrical quantities such as the smoothness of the boundary
or the allowed size of foreground objects. Both are presently dependent on the



chosen balance between the error terms and the TV regularization. This would
probably need also to be better understood and studied in the future.
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