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Abstract Many complex cellular processes involve major changes in topology and
geometry. We have developed a method using topology-based geometric modelling in
which the edge labels of an n-dimensional generalized map (a sub-class of graphs)
represent the relations between neighbouring biological compartments. We illustrate
our method using two topological models of the Golgi apparatus. These models can be
animated using transformation rules which depend on geometric and/or biochemical
data and which modify both these data and the topology. Both models constitute
plausible topological representations of the Golgi apparatus, but only the model based
on a recent hypothesis about the Golgi apparatus is fully compatible with data from
electron microscopy. Finally, we outline how our method may help biologists choose
between different hypotheses.

Keywords Topology-based geometric modelling · Biological processes modelling

Introduction

Systems biology aims at understanding biological phenomena at different scales: intra-
cellular environments, cells, organs, multi-cellular individuals and populations. Using
computational tools to model and simulate such systems is therefore essential. This
entails recognition of the principal characteristics of the phenomenon, choice of the
appropriate level of abstraction, and comparison of different models. Compartmental-
ization is important in modelling biological systems and a spatial representation of the
compartments is often needed to describe both their static and dynamic characteristics
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[Presley et al., 2002]. In particular, the dynamics of the relations between neighbouring
compartments influence the evolution of system parameters (such as the concentration
of molecules).

A variety of approaches have been used to model cellular systems: differential
models have been used to study the evolution of concentrations (see Virtual Cell
[Eungdamrong and Iyengar, 2007]), Boolean or discrete modelling for genetic regula-
tory networks, and rule-based modelling for biochemical reactions (for which transfor-
mational rules are particularly suited). In the case of rule-based modelling, formal meth-
ods like model checking [Bernot et al., 2004] or symbolic execution [Mateus et al., 2007]
have been fruitfully applied to verify that the model satisfies a known property of the
biological system. However, many rule-based models ignore compartmentalization and
treat the system, unrealistically, as a homogeneous environment. Recent rule-based
modelling takes into account different compartments (see Brane calculi [Cardelli, 2005],
Bioambients [Regev et al., 2004] and BioCham [Calzone et al., 2006]). In these models,
the compartmentalization only captures static topology or simple topological modifica-
tions (resulting, for example, from endocytosis or exocytosis) but not geometric aspects
(such as the position and shape of the objects).

Topology-based geometric modelling [Lienhardt, 1989] is particularly adapted to
represent compartmentalization and is widely advocated for computer graphics. It
deals with the representation of the structure of objects (their decomposition into
topological units: vertices, edges, faces and volumes) and of the neighbouring relations
that exist between topological units. It treats topological structure and geometry sepa-
rately, and this means that the topological properties of objects can be studied without
knowledge of their geometry (this does not exclude a subsequent study of complex ge-
ometric shapes). Moreover, in topology-based geometric modelling, both objects and
the frontiers between objects can be manipulated in the same way (this facilitates
the modelling of the transport of molecules between biological compartments). Our
long term goal is to investigate those topology-based models of interest to biologists
who possess observation-based knowledge. In previous work [Poudret et al., 2007], we
formally expressed basic topological operations in terms of generic rules that can be
applied to a large family of topological objects and we illustrated this topology-based
approach using a simple interaction between two cells. In this paper, we evaluate this
approach in a case in which a more complex spatial representation is required.

The Golgi apparatus is the place in the cell where proteins remain during their
maturation phase before their excretion. It is widely accepted that excretion of pro-
teins is strongly linked to the spatial dynamics of the Golgi apparatus. However, the
topology of the apparatus is not fully understood. Three classes of hypotheses have
been proposed [Képès et al., 2004]. In pursuing the goal of evaluating our topology-
based approach, we first built two models to represent the Golgi apparatus based on
different topological principles. In one model, the apparatus consists of a stack of dis-
connected saccules surrounded by vesicles while in the other model the saccules are
connected by tubular structures and there are no vesicles. Analysis of 2-dimensional
sections show that only the second model (which implements a more recent hypothesis
about the Golgi apparatus) is fully compatible with the available biological observa-
tions. As both models are static, we add certain transformation rules to allow them to
deal with dynamics and to incorporate the essence of the Golgi apparatus hypotheses.

The Golgi apparatus and the current hypotheses on its topology, our rule-based
topological approach and a topology-based implementation of the Golgi apparatus
hypotheses are presented in Sections 1, 2 and 3, respectively. Finally, in Section 4, we
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briefly present our computer-aided methodology for helping biologists to understand
and choose hypotheses about the topology and dynamics of the Golgi apparatus.

1 The Golgi Apparatus

1.1 General description

Discovered by Camillo Golgi in 1898, the Golgi apparatus (or dictyosome in plants) is
an organelle whose role includes the transport of proteins synthesised by the cell from
the endoplasmic reticulum to the plasma membrane or to lysosomes. Not only the
Golgi apparatus sorts the proteins in order to transport them into adapted locations,
but it is also the place of protein maturation by the means of loss of peptidic sequences
and addition of sugars (glycosylation) or sulfate (sulfatation). The Golgi apparatus is
located near the nucleus and the centrosome. By electron microscopy (see Fig. 1), it
generally appears as a stack of 5 or 6 disconnected cisternaes (the saccules) bounded
with a phospholipidic membrane (see S on Fig. 1(a)). This stack is usually surrounded
by small vesicles that bud out from the saccules (see V on Fig. 1(a)). Notice that on
some pictures, the saccules appear perforated (see P on Fig. 1(b)). At last, the Golgi
apparatus is a polarised object: the cis face is directed to the endoplasmic reticulum
while the opposite trans face is often directed to the plasma membrane.

(a) (b)

Fig. 1 Electron micrograph showing a cross-section of the Golgi apparatus in mouse en-
dothelial cell 1(a), courtesy of Jean-Marc Verbavatz (IBITEC-S Institute, CEA-Saclay) and
an oblique view of the Golgi apparatus in a rat Sertoli cell 1(b), from [Rambourg et al., 1979]

1.2 Three hypotheses on the Golgi apparatus

Because of observation limitations, the complete structure of the Golgi apparatus is
not precisely known. Indeed, with optical microscopy techniques, biologists observe
the dynamics at the cost of a small resolution that does not allow them to observe
the structure. By contrast, electron microscopy provides high resolution pictures but
the observation is done on thin and inert section of the Golgi apparatus. Last but not
least, those thin sections lead to many interpretation mistakes when a 3-dimensional
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reconstruction is performed (for instance, both spheres and tubes section can appear
as discs on a picture).

In particular, the path that proteins follow from the endoplasmic reticulum to the
plasmic membrane or lysosomes is not well known. Consequently, three main hypothe-
ses exist [Képès et al., 2004]. The two first hypotheses appear quite similar since they
both suppose that vesicles play a major role in the excretion of proteins. In the vesic-
ular secretion hypothesis (see Fig. 2(a)), an aggregate of endoplasmic reticulum (ER)
fragments generates disconnected saccules (S). Proteins migrate through the stack by
means of vesicles (V) that jump from one saccule to another. They are finally evacuated
by the means of secretory granules (G) that bud out from the trans face. We know that
enzymes in charge of the activation and the maturation of proteins are located near the
cis face of the Golgi apparatus. In this first hypothesis, those enzymes may stay in the
first saccules that are motionless by definition. In the second hypothesis, namely the
saccule maturation (see Fig. 2(b)), saccules are still disconnected but follow an antero-
grade movement which supports the transport of proteins. Here, vesicles move along a
retrograde flow in order to return enzymes that function early in the pathway to the
cis region. It must be said that while the two previous hypotheses are well anchored
in the biological knowledge, none of them take the perforation that appears in some
pictures into account. The third hypothesis, which promotes a continuous Golgi appa-
ratus, takes into consideration the saccules perforation. The representation introduced
in Fig. 2(c) results from discussions we had with biolologists and give a first topology-
oriented insight of this new hypothesis. This continuous hypothesis does not rely on
any vesicle transportation. On the contrary, it considers a continuous membranes flow
(see Fig. 2(c)) emerging from the endoplasmic reticulum. Indeed, observed endoplasmic
reticulum fragments and vesicles are interpreted in this hypothesis as small sections of
a tubular network that connects the saccules (T). In this case, proteins may follow the
membrane flow and diffuse from one saccule to another along the tubes while enzymes
may diffuse following a retrograde movement. Moreover, in this last hypothesis, the
saccules perforation may explain the creation of the secretory granules by the rupture
of the junctions resulting from the perforation.

It seems clear that among the numerous features involved in the Golgi apparatus
(from the precise shape of the object to the different molecule flows), the role played
by the topology is decisive. Thus, a relevant abstraction of the previous Golgi Appa-
ratus hypotheses must handle this component. In [Poudret et al., 2007], we proposed
a topology-based abstraction illustrated on a simple biological process inspired by the
gap junction phenomenon [Alberts, 2002]. Here, we want to show that our framework
is well-adapted to the modelling of complex biological systems where, like in the Golgi
apparatus, the neighbouring relations that exist between compartments are relevant
features.

2 Topology-based geometric modelling for biological cellular processes

2.1 Topology-based geometric modelling

In order to take into account the biological compartments into our model, we rely on
the topology-based geometric modelling (topological modelling for short). This field
of the computer graphics deals with the representation of the objects structure (their
decomposition into topological units: vertices, edges, faces and volumes) and of the
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Fig. 2 Three hypotheses on the Golgi apparatus

neighbouring relations that exist between topological units. Among numerous topolog-
ical models, we choose the n-dimensional generalised map [Lienhardt, 1989] (n-G-maps
for short). It defines the topology of an n-dimensional space subdivision and allows the
representation of a large class of objects1. This topological model has the advantage of
providing a homogeneous mathematical definition for all dimensions. This genericity
allows one to easily develop robust softwares.

On Fig. 3, a 2-dimensional object (see Fig. 3(a)) is successively decomposed into
topological units: faces (see Fig. 3(b)), edges (see Fig. 3(c)) and vertices (see Fig. 3(d)).
These vertices, also called darts, are the basic elements of the n-G-maps. Labelled graph
edges are used in order to recover the neighbouring relations (see Fig. 3(e)). The label
of an edge depends on the nature of the neighbouring relation that is symbolised by
the edge. For instance, the α2-edge between v and v′ illustrates the sticking of the two
faces (2-dimensional topological units) that include v and v′ on the original picture
(see faces f and f ′ on Fig. 3(a)). Here is the mathematical definition of an n-G-map:

Definition 1 (n-G-map) Let n ≥ 0. An n-G-map is an edge-labelled graph G =
(VG, EG) with labels in ΣE = {α0, . . . , αn}, such that:

- for all v ∈ VG, l ∈ ΣE , there exists a unique v′ ∈ V such that (v, l, v′) ∈ EG;

1 Quasi-manifolds, orientable or not.
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Fig. 3 2-G-map intuition

- for each v ∈ VG, for all αi, αj ∈ ΣE such that 0 ≤ i < i + 2 ≤ j ≤ n, there exists
a cycle (αi, αj , αi, αj) that reaches v.

On the border of the objects, some darts do not have all possible neighbours. For
instance, on Fig. 3(e) the dart v′′ is not linked to another dart by an α2-edge. However,
according to the first point of definition all darts must have one incident label for each
dimension. Thus, if a dart is not linked to another dart by an αi-edge (0 ≤ i ≤ n),
it exists an implicit αi-loop that links the dart to itself. For instance, on Fig. 3(e),
there is an implicit α2-loop incident to vertex v′′. The second point of the definition
means that if two i-dimensional units are stuck, they must be stuck along a (i − 1)-
dimensional unit (this is a quasi-manifold condition). For instance, on Fig. 3(a), the
faces (2-dimensional units) f and f ′ are stuck along an edge (1-dimensional unit). In
the corresponding 2-G-map, this property is translated into the presence of a cycle
(α0, α2, α0, α2) that reaches v on Fig. 3(e). Thus, since darts v and v′ are linked with
an α2-edge, then darts u and u′ are linked with an α2-edge as well.

2.2 Topological transformation rules
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(b) i-sew meta-rule

Fig. 4 rules and meta-rules
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In order to edit topological objects, computer scientists have defined many topolog-
ical operations on the n-G-maps. Moreover, it has been established that all of these op-
erations can be decomposed into four basic operations: dart addition, dart suppression,
dart i-sew and dart i-unsew (these two last operations consist in, respectively, stick-
ing and unsticking two i-dimensional topological units along two isomorphic2 (i − 1)-
dimensional topological units).

In [Poudret et al., 2007], we have formally expressed the basic operations as graph
transformation rules [Ehrig et al., 2006]. Classical rules are sufficient to express the dart
addition (see Fig. 4(a)) and dart suppression (this new rule is obtained by swapping
the left-hand and right-hand sides of the dart addition rule). Nevertheless, they are
not sufficient to represent the dart i-sew and i-unsew operations. Indeed, the graph
transformation to perform for sticking (resp. unsticking/separating) two topological
units together depends on the size of these units. For instance, sticking two triangular
faces together implies adding 6 α2-edges while sticking two square faces together implies
adding 8 α2-edges. As it is clearly unreasonable to introduce as many rules as all the
potential sizes of the topological units, we introduce the notion of graph transformation
meta-rule that abstracts this infinite set of classical rules.

Definition 2 (meta-rule definition) Let us consider ΣE a set of labels and β /∈ ΣE

a new label. A graph transformation meta-rule on β, noted L ← K → R, is a graph
transformation rule where L, K and R are edge-labelled graphs with labels in ΣE ∪{β}
and satisfying both following properties:

– for each edge in L (resp. R) of the form (v, β, v′), then v = v′;
– there exists at least in L an edge of the form (v, β, v). Graphically, β-edges are

noted with dotted lines.

In [Poudret et al., 2007], we define the translation of such a meta-rule into a set of
classical rules. The dart i-sew meta-rule is introduced in Fig. 4(b) (the i-unsew meta-
rule is obtained by simply swapping the left-hand and right-hand side of the i-sew
meta-rule). On this figure, the β-edges represent the topological units that parameterise
the meta-rule. In short, the i-sew meta-rule may be understood as follows. It matches
two isomorphic i-dimensional topological units (abstracted with β-edges) such that all
αi-edges are loops. Then, it links the vertices of both units with an αi-edge.

2.3 Embedding

In order to model biological cellular processes we may want to attribute different kinds
of information to the topological units, that is to say to embed them. For instance,
we may want to attach types, biochemical data, geometric data (when the biological
observation allows it), etc. to the volumes that abstract the biological compartments.
Thus, we may want to write transformation rules whose application depends on embed-
ding and that modify embedding information. In [Poudret et al., 2007], we introduced
a language in order to write embedding expressions. Here is an example of expressions
(here, we give a simplified syntax whose meaning can be easily understood from the
usual convention) which can be related to the 3-sew meta-rule (see Fig. 4(b), with

2 Roughly speaking, two topological structures are said to be isomorphic if they are super-
posable.
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i = 3):

(3 distance(d1, d2) ≤ ε) ∧ (3 type(d1) = V esicle) ∧ (3 type(d2) = Saccule) (1)

3 update position(d1) (2)

Pre-condition (1) is used to restrict the application of the rule. The prefix 3 of 3 distance
means that we consider the distance between 3-dimensional topological units (i.e. vol-
umes). Thus, this condition means that the volumes which contain the darts d1 and
d2 may be glued only if they are sufficiently close to each other (according to a small
distance, denoted ε here) and if the volume that contains d1 (respectively d2) is of type
V esicle (respectively Saccule). Finally, the post-condition (2) updates the position of
the volumes that abstract the vesicles (to geometrically stick it on the saccules).

3 Topology-based abstraction of Golgi Apparatus hypotheses

3.1 Topological models of the Golgi Apparatus

In Section 1.2, we introduced three hypotheses that may explain the behavior of the
Golgi apparatus. Two of these hypotheses are well-known and implicate vesicles in the
transport of proteins while the third hypothesis is more recent and involves a contin-
uous membrane flow in a tubular network. In this section, we use our topology-based
approach to model on one hand one of the vesicle hypotheses and on the other hand
the continuous membrane flow hypothesis. In the case of the vesicle hypotheses, we fo-
cus on the saccule maturation hypothesis, which involves several different phenomena
(both saccule and vesicle movements) and is therefore more subtle than the hypothesis
that simply involves excretion of vesicles. Moreover, the two vesicular hypotheses are
strictly identical from the topological point of view (only the dynamics differ) while
the continuous membrane flow introduces significant topological differences (connected
and perforated saccules).

Fig. 5 illustrates 3-G-map topological representations of both hypotheses. The plate
stack model (see Fig. 5(a)) represents the saccule maturation hypothesis and the tower
model (see Fig. 5(b)) represents the continuous membrane flow hypothesis.

The topology-based geometric modelling allows one to easily abstract geometry and
to focus on pure topology which is, as we said, the most relevant distinction between
studied Golgi apparatus hypotheses. When it is necessary, geometric shapes can be
embedded on the topological units. On Fig. 5, the geometry is basic (here, the object
are said to be polyhedric) but the topological differences between hypotheses are cap-
tured. The first distinction is the connection between the saccules (S). The proteins are
transported through vesicles (V) in the plate stack while they diffuse into tubes (T)
that connect the saccules in the tower model. As we see, we choose to abstract both
saccules and vesicles with volumes on which we embed concentrations that abstract
proteins (concentration gradients are modelled by subdividing volumes and associat-
ing different concentrations on each subdivision). Moreover, from a topological point
of view, a tube between two saccules is represented with a volume stuck between the
connected saccules. Because topological models allow one to handle border of volumes,
we abstract the transport of proteins associating permeability on faces that connect
saccules to tubes. The second topological distinction concerns the creation of the se-
cretory granules. In the plate stack, the secretory granules (G) bud out from the trans



9

(a) Plate stack model

(b) Tower model

Fig. 5 3-G-map topological representation of Golgi Apparatus

face (see arrows of Fig. 5(a)) while in the tower model, they are constituted of saccule
pieces that result from the rupture (framed on Fig. 5(b)) of the bee nest structure that
abstracts the perforation (according to the biologists, the perforation appears progres-
sively from the cis face to the trans face). Finally, small parts of the endoplasmic
reticulum aggregate into saccules in the first model, while the endoplasmic reticulum
is connected to the cis face in the second one.
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Fig. 6 Vertical section of the tower model

Both models have been elaborated by following a loop of topological model re-
finements. Biologists have deeply analysed intermediate models by proposing many
topological updates. This is particularly true for the continuous membrane flow for
which the tower model presented in Fig. 5(b) gives a first insight of its precise topo-
logical structure. The vertical section of tower model presented in Fig. 6 has played
an important role in the biologists validation process. On this figure, we observe sec-
tions of the six saccules (indicated with arrows) of Fig. 5(b) and we notice that some
sections show irregularities. For instance, the section indicated with the grey arrow
presents alternately plain regions (A) and empty regions (B). According to the biolo-
gists, this observation is certainly correlated to the light and dark regions that appears
on the saccule sections of electron micrographs (see Fig. 1(a)). Moreover, we see that
a dark region on the border of the saccule stack (C) may be easily confused with the
vesicles that surround the stack (see V on Fig. 1(a)). Finally, like in some electron
micrographs, the tower section presents some bridges (D) that connect the saccule
section (here, they are remains of the tubular network). These remarks show that our
tower model, which has been initiated by the biologist observation of perforations (see
Fig. 1(b)) and by the interpretation of vesicles as small sections of tubes, is fully com-
patible with the electron micrographes that are usually used to promote the classical
vesicular hypotheses. Let us point out that the plate stack model, that abstracts one
of the classical Golgi apparatus hypotheses, cannot really explain (by construction)
the irregularities (light regions, perforations and connections between saccules) that
appear one electron micrographes. Thus, the tower model is the first contribution of
our topological abstraction process since it has been shown to be consistent with the
biological observations.

3.2 Animating the topological models

In Section 2, we have introduced a means to write rules that transform topological
objects. In order to animate the plate stack and the tower model, we have to write the
rules that capture their dynamics. In this section, we give two examples of such rules.
They are introduced in Fig. 7 and Fig. 8.

The first rule is dedicated to the plate stack model. It models the gluing of a
vesicle with a saccule which initiates their fusion. Fig. 7(b) introduces a simplified
representation of the matched pattern, it contains a vesicle (V) close to a saccule
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Fig. 7 Gluing a vesicle with a saccule

(S). The transformation rule (see Fig. 7(a)) glues them (using a 3-sew operation) and
updates the position of the glued vesicle (see Fig. 7(c)). On the rule, V and S are
respectively darts of vesicle and saccule, and β-edges match volumes.
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Fig. 8 Perforating a saccule

The second rule is dedicated to the tower model. It provides a means to perforate
the saccules (which is one of the behavior at the root of the continuous membrane flow
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hypothesis). The matched pattern (see Fig. 8(b)) contains two close faces (Ft) and
(Fb) that belong to the same saccule (one is on the top, the other on the bottom).
The rule (see Fig. 8(a)) executes the perforation removing faces (Ft) and (Fb) and
linking their neighbours (see Fig. 8(c)). On the rule, Ft and Fb are respectively darts
of removed top and bottom faces, Ft′ and Fb′ are neighbour faces, and β matches
faces.

These two examples are well-representative of the transformation rules we need in
order to animate the plate stack and tower models. For instance, in the plate stack
model, most of the topological operations consist in sticking (it is the case of the
example rule) or unsticking topological objects. The stick operation is used to aggregate
the pieces of endoplasmic reticulum that constitute a new saccule while the unstick
operation is used to abstract the budding out of vesicles and secretory granules. In
these rules, only the embedding pre-condition and post-condition differ.

We should notice that geometry plays a decisive role in animation processes. The
geometric data that influence the biological function we are abstracting are handled in
the embedding condition associated to the rules. For instance, when a rule is applied
it can take the proximity of objects into account. Other phenomena, e.g. collision
dectection between vesicles or secretory granules, are ignored. In fact, many of them
only influence the visual rendering, and we do not consider this issue as significant in
our context.

4 Ongoing work: toward a topological discrimination of Golgi Apparatus
hypotheses

In section 3 we have used our framework in order to introduce a topology-based ab-
straction of two Golgi apparatus hypotheses: the saccule maturation and the continuous
membrane flow. For both of them, we have defined a topological model (respectively the
plate stack model and the tower model) and have given examples of rules that handle
their dynamics. Thus, we have shown that our framework is well adapted to the mod-
elling of biological processes that, like the Golgi apparatus, involve strong topological
features.

Nevertheless, the definition of graph transformation meta-rules is mandatory for
animating the topological models but is not sufficient to simulate such complex sys-
tems. The rules only define the syntactic part of the simulations, in other words, they
define what kind of transformations the simulator performs. Our ongoing work con-
sists in exploring what kind of strategies have to be taken into account when applying
transformation rules in order to play simulations. In order to help the biologists to
better understand a given biological complex system, we furthermore aim at introduc-
ing a computer-aided methodology for analysing topology and dynamics of different
hypotheses associated to the biological system. Our goal is not to build an accurate
model, but instead, we would rather discriminate between the different models and
choose the one which best approximates the observed phenomena. However, to prop-
erly define our discrimination methodology, we need at first to define the parameters
of the models.
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Table 1 Simulation parameters

Parameters Value Plate stack model Tower model

Membrane tickness 7ηm Yes Yes
Number of saccules 6 Yes Yes
Saccule thickness 30ηm Yes Yes
Saccule length 50 × 30ηm Yes Yes
Secretory granule diameter 120ηm Yes Yes
Number of proteins in a granule 600 Yes Yes

Vesicle diameter 60ηm Yes No
Tube diameter 60ηm No Yes

Membrane quantity OUT Yes Yes
ATP consumption OUT Yes Yes

4.1 Parameters

Table 1 gives example of parameters that have been discussed with biologists about
discrimination of Golgi apparatus hypotheses. The first column displays the name of
the parameters. An approximation of their value when they exist (according to the
biological state of the art) appears in the second column. A value OUT means that
the parameter is computed within the simulation. The third and fourth columns tell
whether a given parameter makes sense in respectively, the plate stack model and the
tower model. The given set of parameters is not exhaustive but contains the parameters
considered by the biologists as the most relevant for the comparison of the two models.

The first six parameters are input parameters (their values are given by the biolo-
gists, according to the observations) and are used to initialize the topological models.
They are embedded on the topological units at the beginning of the simulation and
can be refined as we discuss in the next section. The vesicle and tube diameter are also
input parameters but fit to only one topological model (respectively the plate stack
model and the tower model). Let us remember that depending on the hypothesis we
are considering (vesicular or continuous membrane flow hypothesis), the same pieces
of an electron micrograph can be considered as vesicle or tube section. Thus, vesicle
and tube diameter must be the same. In other words, updating one of them implies to
update the other one. Finally, the last two parameters: membrane quantity and ATP
(it is the energetic unit of the cell) consumption have been chosen among others to
discriminate the topological models. Biologists think that the quantity of membrane
within the Golgi apparatus (vesicles and secretory granules take part of it) must be
constant in time. Thus, if reaching a wanted quantity of transported proteins within
the Golgi implies to break this property in one model, this could allow the discrimina-
tion of the two models. In the same manner, the fact that the quantity of consumed
ATP reaches a critical level could be discriminating too.

4.2 Discrimination methodology

The proposed methodology, which is based on successive simulations of the topological
models that implement the hypotheses, is illustrated on Fig. 9. The figure only takes
into account two topological models but can easily be extended. The different kinds
of parameters described in the previous sections are introduced. The input parameters
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Fig. 9 Models discrimination loop

(IN1 and IN2) are used to initialize the simulations of, respectively, topological models
M1 and M2 that implement the selected hypotheses. Note that, as discussed earlier,
some parameters can be specific to only one model, but are correlated to parameters
of the other model. This consistency between parameters of M1 and M2 is necessary
for the models discriminating process. OUT1 and OUT2 parameters result from the
simulations of, respectively, M1 and M2 (for instance, the flow of excreted proteins
are output parameters for both models). The results of the simulations are compared
with biological experimental observations (OBS on the figure). Our methodology then
consists in a refinement process, that is modifying the set of input parameters according
to the observations. Note that the models must not be refined independently: the
updates still guarantee the consistency between IN1 and IN2. Thereafter, we reiterate
the simulation, comparison and refinement processes. This loop aims at making both
models converge toward the experimental observations. We then select the model that
better approximates the observation or eliminate the one that do not converge toward
the desired output values. More precisely, a model is given up when one can no longer
update parameters in a satisfactory manner. If such a model is not consistent with
available biological data, it is refuted and only the other model is considered for further
analysis. Our methodology is intentionally simplistic. Our goal is to consider models as
simple and abstract as possible to be analysed by biologist experts. When necessary,
according to observation or in order to discriminate models, detailed elements are
gradually incorporated in the models under discrimination in order to make models
more complex, up until the moment biologist experts can discard one of the models.
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Thus, there is a trade-off between abstraction of the models and the need of information
to discriminate models. The development of finer models becomes useless even if these
finer models would be more plausible with respect to the real biological processes under
consideration.

Conclusion

In this paper we develop a method of modelling cellular processes that takes topology
into account. This method facilitates a better understanding of the dynamics of those
cellular processes that strongly depend on compartmentalization. It relies on topology-
based geometric modelling in order to represent compartments with their neighbouring
relations and on transformation rules that allow simultaneous simulation of topological,
geometric and biochemical mechanisms. This topology-based approach is applied to the
Golgi apparatus, a complex biological system where topology places a key (but poorly
understood) role. We first study two very different topological representations based
on two of the three principal hypotheses about the topology of the Golgi: in the plate
stack model, saccules are disconnected and proteins move from one saccule to another
via vesicles, while in the tower model (which is based on a new hypothesis about the
dynamics of the Golgi), saccules are connected with tubes that allow proteins to cross
the Golgi. A 2-dimensional section shows that only the tower model is compatible with
the available biological observations. Finally, these topological models can be animated
using transformation rules that are determined by the geometrical and biochemical data
and that determine both these data and the topology itself.
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