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RetroSpat: a Perception-Based System for
Semi-Automatic Diffusion of Acousmatic Music

Joan Mouba, Sylvain Marchand, Boris Mansencal, and Jean-Michel Rivet
SCRIME / LaBRI – CNRS, University of Bordeaux 1, France

Abstract—We present the RetroSpat system for the semi-
automatic diffusion of acousmatic music. This system is
intended to be a spatializer with perceptive feedback. More
precisely, RetroSpat can guess the positions of physical
sound sources (e.g. loudspeakers) from binaural inputs, and
can then output multichannel signals to the loudspeak-
ers while controlling the spatial location of virtual sound
sources. Together with a realistic binaural spatialization
technique taking into account both the azimuth and the
distance, we propose a precise localization method which
estimates the azimuth from the interaural cues and the
distance from the brightness. This localization can be used
by the system to adapt to the room acoustics and to the
loudspeaker configuration. We propose a simplified sinu-
soidal model for the interaural cues, the model parameters
being derived from the CIPIC HRTF database. We extend
the binaural spatialization to a multi-source and multi-
loudspeaker spatialization system based on a static adap-
tation matrix. The methods are currently implemented in a
real-time free software. Musical experiments are conducted
at the SCRIME, Bordeaux.

I. I NTRODUCTION

Composers of acousmatic music conduct different
stages through the composition process, from sound
recording (generally stereophonic) to diffusion (multi-
phonic). During live interpretation, they interfere deci-
sively on spatialization and coloration of pre-recorded
sonorities. For this purpose, the musicians generally use
a(n un)mixing console. With two hands, this becomes
hardly tractable with many sources or speakers.

The RetroSpat system supports artistically interpreta-
tion and technically room calibration. It includes a multi-
source and multi-loudspeaker spatializer, that adapts to
different loudspeaker configurations by “listening to the
room”. This involves source localization and spatialization
in azimuth and distance. Here, we focus on the case of a
single source with speakers in the horizontal plane.

First, we enhance the binaural model proposed by
Viste [1]. We propose to simplify the spatial cues model,
resulting in a new sinusoidal model with better mathe-
matical properties and comparable errors using the CIPIC
database [2]. Second, we also consider the distance of the
source, with a localization based on the brightness.

Last but not least, we extend the binaural spatializa-
tion to a multi-loudspeaker spatialization system. In the
classic VBAP [3] approach, the control of the interaural-
level difference (ILD) is done in a frequency-independent
and pair-wise way that was previously used for source
panning. But this method is suitable only for frequencies
up to600Hz. The RetroSpat system also operates on loud-
speakers in a pair-wise manner. But the computation of
the coefficients for each channel is based on an adaptation
matrix of head-related transfer functions (HRTFs), leading
to complex and frequency-dependent coefficients.

This paper is organized as follows. In Section II, we
present some generalities in acousmatic music and we
highlight some practical weaknesses to be improved. After
an extensive presentation of the model in Section III,
we describe the associated spatialization and localization
methods in Sections IV and V, respectively. Section VI is
dedicated to the presentation of the RetroSpat software.

II. A COUSMATIC MUSIC

A. History

Over centuries, the music has continuously undergone
various innovations. In1948, Schaeffer and Henry at
the “Radio Télévision Française” were interested in the
expressive power of sounds. They used microphones to
capture sounds, discs as supports, and transformation
tools. Themusique concr̀etewas born.

In 1949, Eimer gave birth toelectronic musicin the
studios of the German radio “Nordwestdeutscher Rund-
funk” in Cologne. This music was produced by frequency
generators. Koenig and Stockhausen were among the first
to use it.

The merge ofmusique concr̀ete and electronic music
gave rise toelectro-acoustic musicor acousmatic mu-
sic. Today, many musical pieces are created worldwide.
Acousmatic has become a discipline that is taught in
universities and conservatories.

B. Actual Practices

Composers of acousmatic music use both electronic and
natural sounds recorded close to a microphone, such as
wind noise, voices, wrinkling paper, etc. The sounds are
then processed by a computer and organized by editing
and mixing. The result is amusical composition.

However, the creation gets its full value when it is
played in concert using anacousmonium: an orchestra of
loudspeakers. The acousmonium consists of a highly vari-
able number of loudspeakers with different characteristics.
The interpreter of the piece controls the acousmonium
from a special (un)mixing console.

The originality of such a device is to map the two stereo
channels at the entrance to 8, 16, or even hundreds of
channels of projection. Each channel is controlled indi-
vidually by knobs and equalization systems. The chan-
nel is assigned to one or more loudspeakers positioned
according to the acoustical environment and the artistic
strategy.

C. Expected Improvements

Behind his/her console, the interpreter of acousmatic
music acts in real time on various sound parameters such
as spatial location, sound intensity, spectral color. He/She
broadcasts a unique version of the music fixed on a
medium. The acousmatic diffusion requires some skills.



RetroSpat intends to facilitate the work of the interpreter
by improving the following embarrassing practices:

• two wheels needed to spatialize one source;
• stereo sources as inputs;
• no individual source path, only one global mix path;
• the distance spatialization requires some expertise.

III. B INAURAL MODEL

We consider a punctual and omni-directional sound
source in the horizontal plane, located by its(ρ, θ) co-
ordinates, whereρ is the distance of the source to the
head center andθ is the azimuth angle. Indeed, as a
first approximation in most musical situations, both the
listeners and instrumentalists are standing on the (same)
ground, with no relative elevation.

The sources will reach the left (L) and right (R)
ears through different acoustic paths, characterizable with
a pair of filters, which spectral versions are called
Head-Related Transfer Functions (HRTFs). HRTFs are
frequency- and subject-dependent. The CIPIC database
[2] samples different listeners and directions of arrival.

A sound source positioned to the left will reach the
left ear sooner than the right one, in the same manner
the right level should be lower due to wave propagation
and head shadowing. Thus, the difference in amplitude or
Interaural Level Difference (ILD, expressed in decibels –
dB) [4] and difference in arrival time or Interaural Time
Difference (ITD, expressed in seconds) [5] are the main
spatial cues for the human auditory system [6].
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Fig. 1. Frequency-dependent scaling factors:α (top) andβ (bottom).

A. Interaural Level Differences

After Viste [1], the ILDs can be expressed as functions
of sin(θ), thus leading to a sinusoidal model:

ILD(θ, f) = α(f) sin(θ) (1)

whereα(f) is the average scaling factor that best suits our
model, in the least-square sense, for each listener of the
CIPIC database (see Figure 1). The overall error of this
model over the CIPIC database for all subjects, azimuths,
and frequencies is of4.29dB. The average model error
and inter-subject variance are depicted in Figure 2.
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Fig. 2. Average ILD model error (top) and inter-subject variance
(bottom) over the CIPIC database.

Moreover, given the short-time spectra of the left (XL)
and right (XR) channels, we can measure the ILD for
each time-frequency bin with:

ILD(t, f) = 20log10
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∣
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∣

∣

. (2)

B. Interaural Time Differences

Because of the head shadowing, Viste uses for the
ITDs a model based onsin(θ) + θ, after Woodworth
[7]. However, from the theory of the diffraction of an
harmonic plane wave by a sphere (the head), the ITDs
should be proportional tosin(θ). Contrary to the model by
Kuhn [8], our model takes into account the inter-subject
variation and the full-frequency band. The ITD model is
then expressed as:

ITD(θ, f) = β(f)r sin(θ)/c (3)

whereβ is the average scaling factor that best suits our
model, in the least-square sense, for each listener of the
CIPIC database (see Figure 1),r denotes the head radius,
andc is the sound celerity. The overall error of this model
over the CIPIC database is0.052ms (thus comparable to
the 0.045ms error of the model by Viste). The average
model error and inter-subject variance are depicted in
Figure 3.

Practically, our model is easily invertible, which is
suitable for sound localization, contrary to thesin(θ) + θ
model by Viste which introduced mathematical errors at
the extreme azimuths (see [9]).

Given the short-time spectra of the left (XL) and right
(XR) channels, we can measure the ITD for each time-
frequency bin with:

ITDp(t, f) =
1

2πf

(

6
XL(t, f)

XR(t, f)
+ 2πp

)

. (4)

The coefficientp outlooks that the phase is determined
up to a modulo2π factor. In fact, the phase becomes am-
biguous above1500Hz, where the wavelength is shorter
than the diameter of the head.
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Fig. 3. Average ITD model error (top) and inter-subject variance
(bottom) over the CIPIC database.

C. Distance Cues

The distance estimation or simulation is a complex task
due to dependencies on source characteristics and the
acoustical environment. Four principal cues are predomi-
nant in different situations: intensity, direct-to-reverberant
(D/R) energy ratio [10], spectrum, and binaural differ-
ences (noticeable for distances less than1m, see [11]).
Their combination is still an open research subject. Here,
we focus effectively on the intensity and spectral cues.

In ideal conditions, the intensity of a source is halved
(decreases by−6dB) when the distance is doubled,
according to the well-known Inverse Square Law [12].
Applying only this frequency-independent rule to a signal
has no effect on the sound timbre. But when a source
moves far from the listener, the high frequencies are
more attenuated than the low frequencies. Thus the sound
spectrum changes with the distance. More precisely, the
spectral centroid moves towards the low frequencies as
the distance increases. In [13], the authors show that
the frequency-dependent attenuation due to atmospheric
attenuation is roughly proportional tof2, similarly to
the ISO 9613-1 norm [14]. Here, we manipulate the
magnitude spectrum to simulate the distance between the
source and the listener (see Section IV). Conversely, we
measure the spectral centroid (related to brightness) to
estimate the source’s distance to listener (see Section V).

IV. SPATIALIZATION

A. Relative Distance Effect

In a concert room, the distance is often simulated by
placing the speaker near / away from the auditorium,
which is sometimes physically restricted in small rooms.
In fact, the architecture of the room plays an important
role and can lead to severe modifications in the interpre-
tation of the piece.

Here, simulating the distance is a matter of changing
the magnitude of each short-term spectrumX . More
precisely, the ISO 9613-1 norm [14] gives the frequency-
dependent attenuation factor in dB for given air temper-
ature, humidity, and pressure conditions. At distanceρ,
the magnitudes ofX(f) should be attenuated byD(f, ρ)

decibels:
D(f, ρ) = ρ · a(f). (5)

wherea(f) is the frequency-dependent attenuation, which
will have an impact on the brightness of the sound (higher
frequencies being more attenuated than lower ones).

More precisely, the total absorption in decibels per
metera(f) is given by a rather complicated formula:

a(f)

P
≈ 8.68 · F 2

{

1.84 · 10−11
(

T
T0

)
1

2

P0 +
(

T
T0

)− 5

2

[

0.01275 · e−2239.1/T /[Fr,O + (F 2/Fr,O)]

+0.1068 · e−3352/T /[Fr,N + (F 2/Fr,N)]
]}

(6)

whereF = f/P , Fr,O = fr,O/P , Fr,N = fr,N/P are
frequencies scaled by the atmospheric pressureP , and
P0 is the reference atmospheric pressure (1 atm), f is
the frequency in Hz,T is the atmospheric temperature in
Kelvin (K), T0 is the reference atmospheric temperature
(293.15K), fr,O is the relaxation frequency of molecular
oxygen, andfr,N is the relaxation frequency of molecular
nitrogen. See [13] for details.

B. Binaural Spatialization

In binaural listening conditions using headphones, the
sound from each earphone speaker is heard only by one
ear. Thus the encoded spatial cues are not affected by any
cross-talk signals between earphone speakers.

To spatialize a sound source to an expected azimuthθ,
for each short-term spectrumX , we compute the pair of
left (XL) and right (XR) spectra from the spatial cues
corresponding toθ, using Equations (1) and (3), and:

XL(t, f) = X(t, f) · 10+∆a(f)/2e+j∆φ(f)/2, (7)

XR(t, f) = X(t, f) · 10−∆a(f)/2e−j∆φ(f)/2 (8)

(because of the symmetry among the left and right ears),
where∆a and∆φ are given by:

∆a(f) = ILD(θ, f)/20, (9)

∆φ(f) = ITD(θ, f) · 2πf. (10)

The control of both amplitude and phase should provide
better audio quality [15] than amplitude-only spatializa-
tion1 (see below).

Indeed, we reach a remarkable spatialization realism
through informal listening tests with AKG K240 Studio
headphones. The main problem which remains is the
classic front / back confusion [16].

C. Multi-Loudspeaker Spatialization

In a stereophonic display, the sound from each loud-
speaker is heard by both ears. Thus, the stereo sound is
filtered by a matrix of four transfer functions (Cij(f, θ))
between loudspeakers and ears (see Figure 4). Here, we
generate the paths artificially using the binaural model.
The best panning coefficients under CIPIC conditions for
the pair of speakers to match the binaural signals at the
ears (see Equations (7) and (8)) are then given by:

KL(t, f) = C · (CRRHL − CLRHR) , (11)

KR(t, f) = C · (−CRLHL + CLLHR) (12)

1see URL:http://dept-info.labri.fr/˜sm/SMC08/



with the determinant computed as:

C = 1/ (CLLCRR − CRLCLR) . (13)

In extreme cases where|C| = 0 (or close to zero)
at any frequency, the matrixC is ill-conditioned, and the
solution becomes unstable. To avoid unstable cases, atten-
tion should be paid during the loudspeakers configuration
stage, before live diffusion.

During diffusion, the left and right signals (YL, YR) to
feed left and right speakers are obtained by multiplying
the short-term spectraX with KL andKR, respectively:

YL(t, f) = KL(t, f) · X(t, f), (14)

YR(t, f) = KR(t, f) · X(t, f). (15)

In a setup with many speakers we use the classic pair-
wise paradigm [17], consisting in choosing for a given
source only the two speakers closest to it (in azimuth):
one at the left of the source, the other at its right.
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Fig. 4. Stereophonic loudspeaker display.

D. Analysis of Panning Coefficients

We used the speaker pair(−30◦, +30◦) to compute
the panning coefficients at any position (between the
speakers) with the two techniques: our approach and the
classic vector-based amplitude panning (VBAP) approach
[3]. VBAP was elaborated under the assumption that the
incoming sound is different only in amplitude, which
holds for frequencies up to600Hz. In fact, by controlling
correctly the amplitudes of the two channels, it is possible
to produce resultant phase and amplitude differences for
continuous sounds that are very close to those experienced
with natural sources [16]. We restrict our comparisons to
the [0, 800]Hz frequency band.

1) Comparisons of Panning Coefficients:The panning
coefficients of the two approaches are very similar until
600Hz (see Figure 5), and can differ significantly above.
In fact, our coefficients are complex values, and their
imaginary parts can contribute in a significant way (see
Figure 6).
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Fig. 5. Amplitude of the panning coefficients from VBAP (plain) and
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the panning pair for−15◦, in the [0, 800]Hz band.
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Fig. 6. Phase of the panning coefficients from our approach, for the
left (dotted) and right (plain) channels of the panning pairfor −15◦,
in the [0, 800]Hz band.

2) Comparisons of the Ratio of Panning Coefficients:
Generally, inter-channel differences are perceptually more
relevant (e.g. ILD, ITD) than absolute values.

Given the left and right panning coefficients,KL and
KR, we compute thepanning level difference(PLD):

PLD = 20 log10

∣

∣

∣

∣

KL

KR

∣

∣

∣

∣

. (16)

We computed the absolute difference between the PLDs
of both VBAP and our approach. The maximal PLD
difference (in the considered frequency band) has a linear
trend, and its maximum does not exceed3dB. Thus, the
two approaches seem to be consistent in the[0, 800]Hz
band (see Figure 7). For higher frequencies, the new
approach should yield better results, as confirmed per-
ceptively in our preliminary and informal listening tests.
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Fig. 7. Maximum difference per azimuth between PLDs of VBAP and
the proposed method in the[0, 800]Hz band.

V. L OCALIZATION

A. Azimuth Estimation

In Auditory Scene Analysis (ASA), ILDs and ITDs
are the most important cues for source localization. Lord
Rayleigh mentioned in his Duplex Theory [18] that the
ILDs are more prominent at high frequencies (where
phase ambiguities are likely to occur) whereas the ITDs
are crucial at low frequencies (which are less attenuated
during their propagation).

Obtaining an estimation of the azimuth based on the
ILD information (see Equation (2)) is just a matter of
inverting Equation (1):

θL(t, f) = arcsin

(

ILD(t, f)

α(f)

)

. (17)

Similarly, using the ITD information (see Equation (4)),
to obtain an estimation of the azimuth candidate for each
p, we invert Equation (3):

θT,p(t, f) = arcsin

(

c · ITDp(t, f)

r · β(f)

)

. (18)

The θL(t, f) estimates are more dispersed, but not am-
biguous at any frequency, so they are exploited to find
the right modulo coefficientp that unwraps the phase.
Then theθT,p(t, f) that is nearest toθL(t, f) is validated
as the finalθ estimation for the considered frequency bin,
since it exhibits a smaller deviation:

θ(t, f) = θT,m(t, f), (19)

with m = argminp |θL(t, f) − θT,p(t, f)| .
Practically, the choice ofp can be limited among two

values (⌈pr⌉, ⌊pr⌋), where

pr =

(

f · ITD(θL, f) −
1

2π
6

XL(t, f)

XR(t, f)

)

. (20)

An estimate of the azimuth of the source can be
obtained as the peak in an energy-weighted histogram
(see [9]). More precisely, for each frequency bin of each
discrete spectrum, an azimuth is estimated and the power
corresponding to this bin is accumulated in the histogram

at this azimuth. For the corresponding bin frequencyf ,
the power|X(f)|2 is estimated by inverting Equations (7)
and (8) for the left and right spectra, respectively, then the
square of the estimate of the loudest – supposedly most
reliable – channel is retained for the power estimate.

Thus, we obtain a power histogram as shown in Figure
8. This histogram is the result of the localization of a
Gaussian white noise of0.5s spatialized at azimuth−45◦.
On this figure, we can clearly see two important local
maxima (peaks), one around azimuth−45◦, the other at
azimuth −90◦. The first (and largest) one corresponds
to the sound source; the second one is a spurious peak
resulting from extreme ILDs (a problem we have to solve
in our future research).
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30◦ in a real room, with binaural signals recorded at the ears of the
musician.

For our localization tests, we spatialized a Gaussian
white noise using convolutions with the HRTFs of the
KEMAR manikin (see [2]), since they were not part of the
database used for the learning of our model coefficients
and thus should give results closer to those expected with
a real – human – listener. Indeed, in our first experiments
with real listeners (see Figure 9), the same trends as in
Figure 8 were observed: a rather broader histogram but



still with a local maximum close to the azimuth of the
sound source, plus spurious maxima at extreme azimuths
±90◦.

To verify the precision of the estimation of the azimuth,
we spatialized several noise sources at different azimuths
in the horizontal plane, between−80◦ and+80◦, and we
localized them using the proposed method. The results are
shown in Figure 10. We observe that the absolute azimuth
error is less than5◦ in the [−65, +65]◦ range.
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Fig. 10. Absolute error of the localization of the azimuth from Gaussian
white noise spatialized at different azimuths using convolutions with the
HRTFs of the KEMAR manikin.

In real reverberant environments, due to more superpo-
sitions at the microphones, an amplitude-based method
is not really adapted; in contrast, generalized cross-
correlation based ITD estimation should be more robust
[19].

B. Distance Estimation

As a reference signal for distance estimation, we use
a Gaussian white noise spatialized at azimuth zero, since
pure tones are not suitable for distance judgments [20].
The distance estimation relies on the quantification of the
spectral changes during the sound propagation in the air.

To estimate the amplitude spectrum, we first estimate
the power spectral density of the noise using the Welch’s
method [21], [22]. More precisely, we compute the mean
power of the short-term spectra overL frames, then take
its square root, thus:

|X | =

√

√

√

√

√

1

L

l=+(L−1)/2
∑

l=−(L−1)/2

|Xl|2. (21)

In our experiments, we considerL = 21 frames of
N = 2048 samples, with an overlap factor of 50% (and
with a CD-quality sampling rate of44.1kHz, thus the
corresponding sound segment has a length< 0.5s).

Then we use this amplitude spectrum to compute the
spectral centroid:

C =

∑

f f · |X(f)|
∑

f |X(f)|
. (22)

The spectral centroid moves towards low frequencies
when the source moves away from the observer. The
related perceptive brightness is an important distance cue.

We know the reference distance since the CIPIC speak-
ers were positioned on a1-m radius hoop around the
listener. By inverting the logarithm of the function of
Figure 11, obtained thanks to the ISO 9613-1 norm and
Equations (5), (6), and (22), we can propose a function
to estimate the distance from a given spectral centroid:

ρ(log (C)) = −38.89044C3 + 1070.33889C2

− 9898.69339C+30766.67908
(23)

given for the air at20◦ Celsius temperature,50% relative
humidity, and1 atm pressure.
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Fig. 11. Spectral centroid (related to perceptive brightness) as a
function of distance at20◦ Celsius temperature,50% relative humidity,
and1 atm atmospheric pressure (for white noise played at CD quality).

Up to 25m, the maximum distance error is theoretically
less than4mm, if the noise power spectral density is
known. However, if the amplitude spectrum has to be
estimated using Equation (21), then the error is greater,
though very reasonable until50m. Figure 12 shows the
results of our simulations for Gaussian white noise spa-
tialized at different distances in the[0, 100]m range.
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Fig. 12. Absolute error of the localization of the distance from Gaussian
white noise spatialized at different distances.

VI. RETROSPAT SOFTWARE SYSTEM

The RetroSpat system is being implemented as a real-
time musical software under the GNU General Public



License (GPL). The actual implementation is based on
C++, Qt42, JACK3, FFTW4 and works on Linux and
MacOS X.

Currently, RetroSpat implements the described meth-
ods (i.e. localization and spatialization) in two different
modules:RetroSpat Localizerfor speaker setup detection
and RetroSpat Spatializerfor the spatialization process.
We hope to merge the two functionalities in one unique
software soon.

A. RetroSpat Localizer

RetroSpat Localizer (see Figure 13) is in charge of the
automatic detection of the speakers configuration. It also
allows the user to interactively edit a configuration, which
has been just detected or loaded from an XML file.

The automatic detection of the positions (azimuth and
distance) of the speakers connected to the soundcard is of
great importance to adapt to new speaker setups. Indeed,
it will be one of the first actions of the interpreter in a
new environment.

For room calibration, the interpreter carries headphones
with miniature microphones encased in earpieces (see Fig-
ure 15, where Sennheiser KE4-211-2 microphones have
been inserted in standard headphones). The interpreter
orients the head towards the desired zero azimuth. Then,
each speaker plays in turn a Gaussian white noise sampled
at 44.1kHz. The binaural signals recorded from the ears
of the musician are transferred to the computer running
RetroSpat Localizer. Each speaker is then localized in
azimuth and distance. The suggested configuration can
be adjusted or modified by the interpreter according to
the rooms characteristics.

B. RetroSpat Spatializer

For sound spatialization, mono sources are loaded in
RetroSpat, parameterized, and then diffused. The settings
include the volume of each source, the initial localization,
the choice of special trajectories such as circle, arc, etc.A
loudspeaker-array configuration is the basic element for
the spatialization (see Section VI-A).

The snapshot of Figure 14 depicts a 7-source mix of
instruments and voices (note icons), in a 6-speaker front-
facing configuration (loudspeaker icons), obtained from
RetroSpat Localizer.

During the diffusion, the musician can interact individ-
ually with each source of the piece, change its parameters
(azimuth and distance), or even remove / insert a source
from / into the scene. In this early version, the interaction
with RetroSpat is provided by a mouse controller.

Thanks to an efficient implementation using the JACK
sound server, RetroSpat can diffuse properly simultaneous
sources even within the same speaker pair (see Figure 14,
three sources in speaker pair (2,3)). All the speaker pairs
have to stay in synchrony. To avoid sound perturbation,
the Qt-based user interface runs in a separated thread
with less priority than the core signal processing process.
We tested RetroSpat on a MacBook Pro, connected to
8 speakers, through a MOTU 828 MKLL soundcard,
and were able to play several sources without problems.

2see URL:http://trolltech.com/products/qt
3see URL:http://jackaudio.org
4see URL:http://www.fftw.org

However, further testing is needed to assess scalability
limits.

Fig. 15. The “phonocasque” used for the binaural recordings: standard
headphones where microphone capsules have been inserted.

C. Musical Applications

In a live concert, the acousmatic musician interacts with
the scene through a special (un)mixing console.

With RetroSpat, the musician has more free parameters
on one single controller (mouse):

• only mouse movement to control simultaneously the
azimuthal and distance location;

• mono sources as inputs;
• many sources can be spatialized to different locations

at the same time;
• a dynamic visualization of the whole scene (source

apparition, movement, speed, etc.) is provided.
We believe that RetroSpat should greatly simplify the

interpreter interactions and thus should allow him / her to
focus more on the artistic performance.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have introduced a flexible multi-
source, multi-loudspeaker system: RetroSpat. This real-
time system implements our proposed binaural to multi-
loudspeaker spatialization method. The system can also
locate the loudspeakers azimuths and distances.

Several experiments at the SCRIME studio on an
octophonic setup justify the utility of the system for
live performance by composers of electroacoustic music.
Next, we should enhance the source localization in real –
reverberant – environments, and possibly evolve to source
control through gesture or a more intuitive hardware
controller. Also, a major scientific challenge would be
to separate the different sources present in a binaural mix
(for a semi-automatic diffusion from a compact disc as
support).
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Fig. 13. RetroSpat Localizer graphical user interface with a 6-speaker configuration.

Fig. 14. RetroSpat Spatializer graphical user interface, with 7 sources spatialized on the speaker setup presented on Figure 13.
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